AN APPROXIMATION THEOREM FOR CERTAIN SUBSETS OF SOBOLEV SPACES

A. BENEDEK and R. PANZONE

SUMMARY. We show that a class of differentiable functions vanishing together with their derivatives of order less than ron the boundary of a smooth domain Ω is dense in the subset of $W^{m+r,p}(\Omega)$ defined by the functions already in $W^{r,p}_{o}(\Omega)$. We give a direct proof by introducing a particular extension operator and a related reflection operator. These subsets are Banach spaces that we call $W^{p}_{r-m+r}(\Omega)$.

1. PRELIMINARIES AND NOTATION. Let Ω be a domain in R^n . By (.,.) and $\|.\|$ we shall always denote the scalar product and norm in $L^2(\Omega)$. For r a nonnegative integer we denote by $H^r(\Omega)$ the Sobolev space $H^r(\Omega):=\{u\in D^r(\Omega);\ D^\alpha u\in L^2(\Omega)\ for\ |\alpha|\leqslant r\}$ with the norm $\|u;H^r(\Omega)\|=(\sum\limits_{|\alpha|\leqslant r}\|D^\alpha u\|^2)^{1/2}$ and by $\mathring{H}^r(\Omega)$ the closure of $C_o^\infty(\Omega)$ in $H^r(\Omega)$ (cfr. [A] where $H^r(\Omega)=W^{r,2}(\Omega)$ and $\mathring{H}^r(\Omega)=W^{r,2}(\Omega)$). We state some well known facts about these spaces that we shall need in what follows.

LEMMA 1. If $u \in H^{r}(\Omega)$, $v \in \mathring{H}^{r}(\Omega)$ and $|\alpha| \leq r$, then $(D^{\alpha}u, v) = (u, D^{\alpha}v).$

Proof. If $v_h \in C_o^{\infty}(\Omega)$ is a sequence such that $\|v_h - v; H^r(\Omega)\| \to 0$

then

$$(D^{\alpha}u,v) = \lim_{h\to\infty} (D^{\alpha}u,v_h) = \lim_{h\to\infty} (u,D^{\alpha}v_h) = (u,D^{\alpha}v), Q.E.D.$$

Let Ω be a bounded domain with C^{∞} boundary (i.e. there exists a finite open covering of $\partial\Omega$, $\{U_j; j=1,\ldots,N\}$, such that for each j there is a map ϕ_j from U_j onto $B=\{y\in R^n; |y|<1\}$ with the properties: i) ϕ_j is one to one, ii) $\phi_j\in C^{\infty}(U_j)$, $\phi_j^{-1}\in C^{\infty}(B)$, iii) $\phi_j(U_j\cap\Omega)=B^+=\{y\in B; y_n>0\}=B\cap R_n^+)$.

LEMMA 2. If $u \in C^r(\bar{\Omega})$ and $D^{\alpha}u = 0$ on $\partial\Omega$ for $|\alpha| < r$, then $u \in \mathring{H}^r(\Omega)$.

Proof. Let U_o be an open subset of Ω such that $\bigcup_{j=0}^N U_j \supset \overline{\Omega}$. Using a C^∞ partition of unity subordinate to this covering one sees that it is enough to prove that: if $u \in C^r(\overline{R_n^+})$, $D^\alpha u(x_1,\ldots,x_{n-1},0)=0$ for $|\alpha|< r$ and supp u is bounded, then $u\in \mathring{H}^r(R_n^+)$, (cf. [A], T.3.35, particularly formula (15)). Now in that case let $\widetilde{u}(x):=u(x)$ for $x\in R_n^+$ and 0 otherwise. Then Gauss' theorem yields for $\phi\in C_o^\infty(R_n)$ and $|\alpha|\leqslant r$

$$\int_{R_{n}} (-1)^{|\alpha|} \widetilde{u} D^{\alpha} \phi dx = (-1)^{|\alpha|} \int_{R_{n}^{+}} u D^{\alpha} \phi dx = \int_{R_{n}^{+}} D^{\alpha} u \cdot \phi dx = \int_{R_{n}} \widetilde{D^{\alpha} u} \cdot \phi dx$$

That is, $D^{\alpha}\tilde{u}$ is the function $\widetilde{D^{\alpha}u}$ for $|\alpha| \leq r$ and so $\tilde{u} \in H^{r}(R_{n})$. But then $u = \lim_{\varepsilon \to 0} v_{\varepsilon}$ in $H^{r}(R_{n}^{+})$ where $v_{\varepsilon}(x) = \tilde{u}(x_{1}, \dots, x_{n-1}, x_{n}^{-\varepsilon})$. Since supp v_{ε} is compact in R_{n}^{+} , $v_{\varepsilon} \in \mathring{H}^{r}(R_{n}^{+})$ and the proof is complete, Q.E.D.

2. INTRODUCTION. For r, R positive integers, r < R, let us call $H_{r,R}(\Omega)$ the Hilbert space $H_{r,R}(\Omega):=\overset{\sigma}{H^r}(\Omega)\cap H^R(\Omega)$ with the norm of $H^R(\Omega)$ and call $D_r(\Omega):=\{\phi\in C^\infty(\overline{\Omega})\,;\,D^{\alpha}\phi=0\text{ on }\partial\Omega\text{ for }|\alpha|< r\}$.

Now let Ω be a bounded domain with C^{∞} boundary. By Lemma 2, $D_{\mathbf{r}}(\Omega) \subseteq H_{\mathbf{r},R}(\Omega)$. (It also follows that this space contains properly the space $\mathring{H}^R(\Omega)$, cf.Th.5). In this paper we prove that $D_{\mathbf{r}}(\Omega)$ is a dense subset of $H_{\mathbf{r},R}(\Omega)$. That is

THEOREM 1. If
$$G_{r,R}(\Omega)$$
 := closure of $D_r(\Omega)$ in $H^R(\Omega)$, then
$$G_{r,R}(\Omega) = H_{r,R}(\Omega).$$

This theorem can be proved in the particular case R = 2r using results of P.D.E. as follows. For $\lambda > 0$ the operator $(-\Delta)^r + \lambda$ maps $H_{r,2r}(\Omega)$ continuously into $L^2(\Omega)$. This map is also 1:1 since for $u \in H_{r,2r}(\Omega)$ using Lemma 1 we obtain

$$((-\Delta)^{r}u + \lambda u, u) = \sum_{|\alpha|=r} (r!/\alpha!) (D^{2\alpha}u, u) + \lambda \|u\|^{2} =$$

$$= \sum_{|\alpha|=r} (r!/\alpha!) \|D^{\alpha}u\|^{2} + \lambda \|u\|^{2}.$$

On the other hand for λ great enough $((-\Delta)^r + \lambda)G_{r,2r} = L^2(\Omega)$ (cfr.[S], Th.9-27, pg.219). In consequence $G_{r,2r}(\Omega) = H_{r,2r}(\Omega)$. We shall give a direct proof of this fact and moreover of Theorem 1. By using a partition of unity as in Lemma 2 it is enough to prove

THEOREM 2. Let K be a compact set in B and $u \in H_{r,R}(R_n^+)$ with supp $u \subset K \cap R_n^+$. Then there exists a sequence $u_h \in D_r(R_n^+)$ such that supp $u_h \subset B^+$ and $\|u_h - u$; $H^R(R_n^+)\| \to 0$ for $h \to \infty$.

Our proof relies on the following result.

- 3. AUXILIARY LEMMA. Given R integers K_1, K_2, \ldots, K_R there exists a polynomial p(x) of degree R-1 such that
- i) $p(2^{j})$ is an integer for j = 0,1,...
- ii) $p(2^{m-1}) = K_m \pmod{2} \text{ for } 1 \le m \le R$

iii)
$$p(2^{m-1}) = K_R \pmod{2}$$
 for $R < m$.

Proof. If $x_i = 2^{i-1}$, i = 1, 2, ..., R, define p(x) by

$$p(x) := \sum_{j=1}^{R} h_{j} \prod_{k=1}^{j-1} ((x - x_{k})/x_{k}) \cdot \prod_{k=j+1}^{R} ((x - x_{k})/x_{j})$$

where $h_j = 0$ if K_j is even and $h_j = 1$ if K_j is odd. Observe that p(x) satisfies i) and ii) since $(x_j - x_k)/x_s$ is odd for $s = \min(j,k)$ and is even for $s < \min(j,k)$. By the same reasoning for $x = x_m$, m > R, the first product in the definition of p is odd and the last is even when not empty. So $p(x_m) - p(x_p)$ is even, Q.E.D.

COROLLARY. Given R integers K_1, \ldots, K_R , there exists an entire function f(z) without zeroes such that

i)
$$f(2^{j-1}) = (-1)^{K_j} \text{ for } j = 1,...,R$$

ii)
$$f(2^{j-1}) = 1/f(2^{j-1})$$
 for $j \in N$.

Proof. Define

(1)
$$f(z) := \exp(i\pi p(z))$$

where p(z) is the polynomial in the preceding lemma. Then both f(z) and g(z) := 1/f(z) have the required properties, 0.E.D.

4. AN EXTENSION OPERATOR. Let $f(z) = \sum_{k=0}^{\infty} c_k z^k$ be an entire function. We associate to f the operator

(2)
$$(T_{f}u)(x',t) := \sum_{k=0}^{\infty} c_{k}u(x',-2^{k}t)$$

where $x' = (x_1, ..., x_{n-1}) \in R_{n-1}$, $t \in R_1$. T_f is well defined if u vanishes outside a sphere. THEOREM 3. For $u \in H^{R}(R_{n}^{+})$, supp $u \subset B^{+}$, we have

i) supp
$$T_f u \subset B^-$$
, $T_f u \in H^R(R_n^-)$

ii)
$$\|T_f u; H^R(R_n^-)\| \le M(f) \|u; H^R(R_n^+)\|$$
 and

(3)
$$D^{\alpha}T_{f}u = T_{f_{h}}(D^{\alpha}u) \text{ for } h = \alpha_{n}, |\alpha| \leq R$$

where f_h is the entire function

(4)
$$f_h(z) := (-1)^h \sum_{k=0}^{\infty} c_k 2^{h \cdot k} z^k = (-1)^h f(2^h z).$$

Proof. The first assertion of i) is immediate. The second follows from ii). Observe that if $x = (x',t) \in K$, a compact set in R_n , then the sum defining $T_f u(x',t)$ is finite. Therefore (3) is correct in $D'(R_n)$. To prove ii) it is therefore enough to prove

(5)
$$\|T_{f_h}u;L^2(R_n^-)\| \leq M(f_h)\|u;L^2(R_n^+)\|.$$

But $\|u(x', -2^k t)\| = 2^{-k/2} \|u\|$. Summing up, one gets

$$\|T_{f_h}u\| \le (\sum_{k=0}^{\infty} |c_k| \cdot 2^{k(2h-1)/2}) \|u\|$$
 Q.E.D.

Observe that the lemma remains true if the roles of R_n^+ and R_n^- are interchanged. Now we define the extension operator E_f associated to $f(z) = \sum_{i=1}^n c_i z^k$ by

(6)
$$E_{f}u(x',t) := \begin{cases} u(x',t) & \text{for } t > 0 \\ 0 & \text{for } t = 0 \\ T_{f}u(x',t) & \text{for } t < 0. \end{cases}$$

THEOREM 4. Let $u \in H_{r,R}(R_n^+)$, closure in R_n of supp $u \subset B$.

If the entire function f(z) verifies

(7)
$$f(2^s) = (-1)^s$$
 for $s = r,r+1,...,R-1$

then $E_f u \in H^R(R_n)$, supp $E_f u \subset B$ and

(8)
$$\|E_{f}u;H^{R}(R_{n})\| \leq C(f) \|u;H^{R}(R_{n}^{+})\|.$$

Proof. We shall show that if $|\alpha| \le R$, $h = \alpha_n$ and f_h is defined by (4), then

$$D^{\alpha}(E_{f}u) = E_{f_{h}}(D^{\alpha}u).$$

Therefore, the theorem will follow from Th.3. To prove (9) we consider two cases.

CASE 1: α = (0,...,0,h). Let $\phi \in C_o^{\infty}(R_n)$. Then if we set x = (x',t),

$$(10) \qquad \langle D^{\alpha}E_{f}u, \phi \rangle = (-1)^{h} \langle E_{f}u, D_{t}^{h} \phi \rangle =$$

$$= (-1)^{h} \int_{R_{n}^{+}} (uD_{t}^{h} \phi + (-1)^{h} \sum_{k=0}^{\infty} c_{k}u(x', 2^{k}t) \cdot D_{t}^{h} \phi(x', -t)) dx =$$

$$= (-1)^{h} \int_{R_{n}^{+}} uD_{t}^{h} \phi dx + \sum_{k=0}^{\infty} 2^{(h-1)k} c_{k} \int_{R_{n}^{+}} u(x) D_{t}^{h} (\phi(x', -2^{-k}t)) dx =$$

$$= (-1)^{h} \int_{R_{n}^{+}} u(x) D_{t}^{h} \psi_{h}(x', t) dx' dt$$

with

(11)
$$\psi_h(x',t) = \phi(x',t) - \sum_{k=0}^{\infty} (-2^k)^{h-1} c_k \phi(x',-2^{-k}t).$$

Since $\sum\limits_{k=0}^{\infty}|c_k|$. $M^k<\infty$ for any M>0, it is possible to interchange $\sum\limits_{n=0}^{\infty}$ and $\sum\limits_{n=0}^{\infty}$ in (10). Also $\psi_h\in C_0^\infty(\overline{R_n^+})\cap H^s(R_n^+)$ for any s.

Now we shall show that

(12)
$$(-1)^h \int_{R_n^+} u(x) D_t^h \psi_h(x',t) dx = \int_{R_n^+} D_t^h u \cdot \psi_h dx.$$

In fact, since $u \in \mathring{H}^r(R_n^+)$, by Lemma 1,

(13)
$$(-1)^{h} \int_{\mathbb{R}_{n}^{+}} u D_{t}^{h} \psi_{h} dx = (-1)^{h-j} \int_{\mathbb{R}_{n}^{+}} D_{t}^{j} u . D_{t}^{h-j} \psi_{h} dx \quad \text{for} \quad j = \min(h,r).$$

This proves (12) for $h \le r$. If h > r, then in view of (7), $\psi_h(x',0) = 0$ and also $D^\gamma \psi_h(x',0) = 0$ for $|\gamma| \le h$ -r. Then by Lemma 2, $\psi_h \in \mathring{H}^{h-r}(R_n^+)$, and we can apply again Lemma 1 to the right hand side of (13) (j = r now!) thus obtaining (12). The combination of (10) with (12) yields

$$< D^{\alpha} E_{f} u, \phi > = \int D^{\alpha} u. \psi_{h} dx = < E_{f_{h}} (D^{\alpha} u), \phi > .$$

CASE 2: $\alpha = (\alpha_1, \dots, \alpha_{n-1}, 0)$. Then (9) is true regardless condition (7) for $u \in H^q(R_n^+)$, $q \geqslant |\alpha|$. In fact, let $\eta(t) \in C^\infty(R_1)$, $\eta = 0$ for |t| < 1/2, $\eta = 1$ for |t| > 1, and call $\eta_\varepsilon(t) := \eta(t/\varepsilon)$. Then for $\phi \in C_o^\infty(R_n)$ we have $\eta_\varepsilon \phi \in C_o^\infty(R_n^- \cup R_n^+)$ and so

$$\begin{split} <\mathbf{D}^{\alpha}\mathbf{E}_{\mathbf{f}}\mathbf{u}, \phi> &= (-1)^{\left|\alpha\right|} <\mathbf{E}_{\mathbf{f}}\mathbf{u}, \mathbf{D}^{\alpha}\phi> &= (-1)^{\left|\alpha\right|} \lim_{\varepsilon \to 0} <\mathbf{E}_{\mathbf{f}}\mathbf{u}, \eta_{\varepsilon}\mathbf{D}^{\alpha}\phi> &= \\ &= \lim_{\varepsilon \to 0} (-1)^{\left|\alpha\right|} <\mathbf{E}_{\mathbf{f}}\mathbf{u}, \mathbf{D}^{\alpha}(\eta_{\varepsilon}\phi)> &= \lim_{\varepsilon \to 0} <\mathbf{E}_{\mathbf{f}}(\mathbf{D}^{\alpha}\mathbf{u}), \eta_{\varepsilon}\phi> &= <\mathbf{E}_{\mathbf{f}}(\mathbf{D}^{\alpha}\mathbf{u}), \phi>. \end{split}$$

To combine this two cases we write $\alpha = (\alpha_1, \dots, \alpha_{n-1}, 0) + (0, \dots, 0, h) = \alpha' + \alpha''$ and obtain $D^{\alpha}(E_f u) = D^{\alpha'}E_{f_h}(D^{\alpha''}u) = E_{f_h}(D^{\alpha}u)$, Q.E.D.

5. A REFLECTION OPERATOR. Next we define an operator E which is a generalization of $\phi(x',t) \rightarrow -\phi(x',-t)$. Let $f(z) = \sum_{k=0}^{\infty} c_k z^k \text{ be the entire function constructed in the Corollary of section 3 for K_i = i if i < r and K_i = i-1 for <math>r < i \leq R$.

That is

(14)
$$f(2^{i-1}) = (-1)^i$$
 for $1 \le i \le r$; $f(2^{i-1}) = (-1)^{i-1}$ for $r < i \le R$.

Further, let $g(z):=1/f(z)=\sum\limits_{k=0}^{\infty}d_kz^k$. For v a function with bounded support let us define

$$Ev(x',t) := \begin{cases} T_g v = \sum_{k=0}^{\infty} d_k v(x',-2^k t) & \text{for } t > 0, \\ T_f v = \sum_{k=0}^{\infty} c_k v(x',-2^k t), & t \leq 0. \end{cases}$$

LEMMA 3. If $\phi \in C_0^{\infty}(R_n)$, then

i)
$$E\phi \in C_0^{\infty}(R_n)$$

ii) E
$$\phi = \phi$$
 implies $\phi \in D_r(R_n^+)$

iii)
$$E^2 \phi = \phi$$

iv)
$$\|E\phi;H^{s}(R_{n})\| \leq M_{s}\|\phi;H^{s}(R_{n})\| \quad \forall s \in N.$$

v) Let $v \in H^s(R^n)$, support of $v \subseteq B$. If the sequence $\{\phi_m\} \subseteq C_o^{\infty}(B)$ verifies $\lim_{m \to \infty} \|\phi_m - v; H^s(R^n)\| = 0$, then $\lim_{n \to \infty} \|E\phi_m - Ev; H^s(R^n)\| = 0.$

Proof. i) It is clear from the definition that supp E ϕ is bounded and that $E\phi \in C^{\infty}(R_n^- \cup R_n^+)$. Also

$$\begin{cases} D^{\alpha} E \phi(\mathbf{x',+0}) &= (\sum\limits_{k=0}^{\infty} d_k (-2^k)^{\alpha_n}) D^{\alpha} \phi(\mathbf{x',0}) = (-1)^{\alpha_n} g(2^{\alpha_n}) D^{\alpha} \phi(\mathbf{x',0}) \\ D^{\alpha} E \phi(\mathbf{x',-0}) &= (\sum\limits_{k=0}^{\infty} c_k (-2^k)^{\alpha_n}) D^{\alpha} \phi(\mathbf{x',0}) = (-1)^{\alpha_n} f(2^{\alpha_n}) D^{\alpha} \phi(\mathbf{x',0}). \end{cases}$$

i) then follows from

(16)
$$f(2^h) = g(2^h) = \pm 1$$
.

ii) Let $\alpha_n < r$. Using (15) and (14) it follows that

(17)
$$D^{\alpha}E\phi(x',0) = (-1)^{\alpha}nf(2^{\alpha}n)D^{\alpha}\phi(x',0) = -D^{\alpha}\phi(x',0).$$

But if $E\phi = \phi$ then

(18)
$$D^{\alpha}E\phi(x',0) = D^{\alpha}\phi(x',0)$$

Comparing (17) and (18) we get $D^{\alpha}\phi(x',0)=0$ for $|\alpha|< r$, that

is
$$\phi \in D_r(R_n^+)$$
.

iii) Observe that
$$T_g T_f \phi(x',t) = \sum_{k=0}^{\infty} d_k (\sum_{h=0}^{\infty} c_h \phi(x',2^{k+h}t)) =$$

$$= \sum_{j=0}^{\infty} \phi(x', 2^{j}t) \left(\sum_{k=0}^{j} d_{k} c_{j-k} \right).$$

Since f(z).g(z) = 1 we have $\sum_{k=0}^{j} d_k c_{j-k} = 1$ if j=0 and 0 otherwise. Therefore, it holds pointwise that

(19)
$$T_g T_f \phi(x',t) = \phi(x',t) = T_f T_g \phi(x',t).$$

- iv) By i), $\|E\phi; H^s(R_n)\| \leq \|T_f\phi; H^s(R_n)\| + \|T_g\phi; H^s(R_n^+)\|$. Now Theorem 3 yields iv).
- v) By iv), $E\phi_m$ is a Cauchy sequence in $H^s(R^n)$. Therefore, there exists $U \in H^s(R^n)$ such that $\|E\phi_m U; H^s(R^n)\|$ tends to zero.

But in virtue of Theorem 3, ii) both norms $\|E\phi_m - T_gv;H^s(R_n^+)\|$ and $\|E\phi_m - T_fv;H^s(R_n^-)\|$ tend to zero. So U restricted to R_n^+ is equal to T_gv and U restricted to R_n^- is T_fv . Since the distribution U is a function of $L^2(R^n)$ it follows that U = Ev, Q.E.D. Note that conditions (14) for $r < i \le R$ are not really used in the proof of Lemma 3.

6. PROOF OF THEOREM 2. Let $u \in H_{r,R}(R_n^+)$, supp $u \subset K$ and call $u' := E_f u$ (cfr.(6)). Observe that by (14) the hypotheses of Theorem 4 are fulfilled. Thereby $u' \in H^R(R_n)$, supp u' = K' = 0 compact in B and $Eu' \in H^R(R_n)$. In consequence, from the definition of u' we have Eu' = u' a.e. (cf.(19)). Now let $\phi_h' \in C_o^\infty(B)$ be a sequence converging to u' in $H^R(R_n)$. By Lemma 3, v), $E\phi_h'$ converges to Eu' = u' in $H^R(R_n)$ and then

(20)
$$\|\mathbf{u'} - \phi_h; \mathbf{H}^{R}(\mathbf{R}_n)\| \to 0 \text{ for } h \to \infty$$

if $\phi_h := (\phi_h' + E\phi_h')/2$.

Using Lemma 3, iii), we see that $\mathrm{E}\phi_h = \phi_h$. Then by ii) of the same Lemma we obtain that $\mathrm{u}_h := \phi_h$ restricted to R_n^+ belongs to $\mathrm{D}_{\mathbf{r}}(\mathrm{R}_n^+)$. Since $\|\mathrm{u} - \mathrm{u}_h; \mathrm{H}^R(\mathrm{R}_n^+)\| = \|\mathrm{u}' - \phi_h; \mathrm{H}^R(\mathrm{R}_n^+)\| \leqslant \|\mathrm{u}' - \phi_h; \mathrm{H}^R(\mathrm{R}_n^+)\|$, we see by (20) that the sequence u_h satisfies all the requirements, Q.E.D.

7. THE SPACES $W_{r,R}^p(\Omega)$. Our method can be applied to prove that $D_r(\Omega)$ is dense in other Banach spaces. For $1 \le p < \infty$, 0 < r < R, r, R integers, let us define

$$W_{r,R}^{p}(\Omega) := W_{o}^{r,p}(\Omega) \cap W^{R,p}(\Omega)$$
 with the norm $\|.;W^{R,p}\|$.

THEOREM 1'. If Ω is a bounded domain with C^{∞} boundary, then $D_{\mathbf{r}}(\Omega)$ is dense in $W^{p}_{\mathbf{r},R}(\Omega)$.

This theorem reduces to prove

THEOREM 2'. { $u \in D_r(R_n^+)$: supp u bounded} is dense in $W_{r,R}^p(R_n^+)$. The proof follows the same lines as that of Theorem 2 noticing that the operator E_f defined by (6) is continuous from $W_{r,R}^p(R_n^+)$ into $W_r^{R,p}(R_n^-)$, and the operator E of Lemma 3 is continuous in $W_r^{R,p}(R_n^-)$. Lemma 2 should be replaced by

LEMMA 2'. If $u \in C^r(\overline{\Omega})$ and $D^{\alpha}u = 0$ on $\partial\Omega$ for $|\alpha| < r$, then $u \in W^{r,p}_0(\Omega)$.

THEOREM 5. Let r be a positive integer and R a nonnegative one. The completion of $D_{\mathbf{r}}(\Omega)$ in the norm $\|\cdot; \mathbf{W}^{\mathbf{R},\,\mathbf{p}}(\Omega)\|$ is isomorphic

to the space $W_o^{R,p}(\Omega)$ if $R \le r$ and isomorphic to $W_{r,R}^{p}(\Omega) \supseteq W_o^{R,p}(\Omega)$ if R > r.

Proof. In fact, for $R \le r$, because of Lemma 2', we have

$$C_o^{\infty}(\Omega) \subset D_r(\Omega) \subset D_R(\Omega) \subset W_o^{R,p}(\Omega)$$
.

If R > r, it follows from Theorem 1' that $W_{r,R}^P \supset W_o^{R,P}$. To prove that the inclusion is proper consider the function $k(x) = x_n^r \phi(x^i) \psi(x_n)$ restricted to R_n^+ where $\phi(x^i) \in C_o^\infty(R_{n-1})$, $\psi \in C_o^\infty(R_1)$, ϕ and ψ equal to one in a neighborhood of zero. Then, k is of bounded support and belongs to $W^{R,P}(R_n^+) \cap W_o^{r,P}(R_n^+)$. If k belonged to $W_o^{R,P}(R_n^+)$ then k should belong to $W^{R,P}(R_n^+)$. However, $D_{x_n}^{r+1} \tilde{k}$ is not a function, Q.E.D.

By the same argument one gets, for r < S < R, the proper inclusions

$$(21) W_o^{r,p} \supseteq W_{r,s}^p \supseteq W_{r,R}^p \supseteq W_o^{R,p}.$$

It also holds, since Ω is bounded, that the norm

(22)
$$(\sum_{j=r}^{R} \sum_{|\alpha|=j} \|D^{\alpha}u; L^{p}(\Omega)\|^{p})^{1/p}$$

is equivalent to the original norm in $W_{r,R}^p(\Omega)$, (cf.[A], p.158).

8. COMMENTS. The construction of the extension operator (6), E_f , with f as in paragraph 3, is similar to the one used by Seeley in [Se] however corresponding to entire functions of different nature. In order that E_f extends $C^{\infty}(\overline{R_n^+})$ to $C^{\infty}(R_n)$, Seeley needs $f(2^h) = (-1)^h$ for $h = 0, 1, \ldots$ and this is not true for our f since we have $f(2^h) = (-1)^{h+1}$ for $h = 0, \ldots, r-1$ (on the other hand the coefficients a_k found by Seeley define.

an entire function of exponential type with zeroes and in that case g = 1/f is not entire). This explains the main difference between our extension operator and that of Seeley and other extension operators, for example, the altogether different one constructed by A.P.Calderón ([C], p.45). It consists in the fact that for the extension E_f the functions $D^{\alpha}E_fu$, $|\alpha| < r$, can be discontinuous at the boundary except in the case when they vanish there, and therefore E_f does not define a continuous operator from $W^{R,p}(\Omega)$ into $W^{R,p}(R_n)$ (but it does when restricted to $W^{P}_{r,R}(\Omega)$, (cf.Th.4)).

REFERENCES

- [A] ADAMS, R.A., Sobolev Spaces, Academic Press, (1975).
- [C] CALDERON, A.P., Lebesgue Spaces of Differentiable Functions and Distributions, Proc. of Symposia in Pure Math., AMS, (1961), pp. 33-49.
- [S] SCHECHTER, M., Modern Methods in Partial Differential Equations, McGraw-Hill Inc. (1977).
- [Se] SEELEY, R.T., Extension of C^{∞} -functions defined in a half-space, Proc. Amer. Math. Soc. 15 (1964), pp. 625-626.

Instituto de Matemática UNS - CONICET 8.000 Bahía Blanca, Argentina