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AN APPROXIMATION THEOREM FOR CERTAIN SUBSETS
OF SOBQLEV SPACES

A. BENEDEK and R. PANZONE

SUMMARY. We show that a class of differentiable functions vanish
ing together with their derivatives of order less than r on

the boundary of a smooth domain @ is dense in the subset of

W"FT P (Q) defined by the functions already in»Wz’p(Q). We give

a direct proof by introducing a particular extension operator
and a related reflection operator. These subsets are Banach spa-

P
ces that we call Wr’m+r(9).

1. PRELIMINARIES AND NOTATION. Let Q be a domain in R™. By (.,.)
and [.l we shall always denote the scalar product and norm in

LZ(Q). For r a nonnegative integer we denote by H®(Q) the Sobo-

lev space HY(Q) := {u € D'(R); D*u € L?(Q) for |a| < r} with
the norm Hu;Hr(Q)H = (lzl ||D°LuII2)1/2 and by ﬁr(Q) the closure
‘ al|sr

of C() in HF(Q) (cfr.[A] where H™(@) = W' 2(q) and H™() =
= Wz’z(Q)). We state some well known facts about theSe spaces

that we shall need in what follows.

LEMMA 1. If u € H'(Q), v € H'(Q) and |a| <T, then

(Dau,v) = (u,D%).

Proof. If v, € C:(Q)‘is a sequence such that th-v;Hr(Q)H +~ 0
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then
(D%u,v) = lim (Dau,vh) = lim (u,Davh) = (u,dD%v), Q.E.D.

h—oo h=>o

Let Q be a bounded domain with C boundary (i.e. there exXxists
a finite open covering of 3Q, {Uj; j =1,...,N}, such that for

each j there is a map ¢ from Uj‘onto B ={y €RrRY; |y|] <1}

with the properties: i) ¢j is one to omne, ii) ¢j € Cw(Uj) ,

-1 c +
¢j € C (B), iii) q)j(Uj N Q)

B" = {y € B; yn>0}=BnR;).

LEMA 2. If u € C*(8) and D*u
u € HT(Q).

0 on 3Q for |a| <r, then

. N
Proof. Let U  be an open subset of @ such that ,UO Uj > Q.
.=

Using a c” partition of unity subordinate to this covering one
sees that it is enough to prove that: if u € Cr(R;) ,

Dau(xl,...,x 0) = 0 for |a| <t and supp u is bounded, then

n-1°
u € ﬁr(R;), (cf.[A], T.3.35, particularly formula (15)). Now in

that case let G(x) := u(x) for x € R; and 0 otherwise. Then
Gauss' theorem yields for ¢ € C:(Rn) and |a| <

—

J (-1)|a]ﬁDa¢ dx = (—1)la|J uD%¢ dx = J D%u.¢dx =.[ D*u.¢dx
R : Rt rt R
n n n n

a o

That is, D*# is the function D*u for |a| <r and so G € Hr(Rn).

. . T, + ~
But then u = 1lim v, in H (Rn) where Ve(x) = u(xl,...,xn_l,xn-e).

e~>0
o
Since supp Ve is compact in R;, v € Hr(R:) and the proof is

complete, Q.E.D.

2. INTRODUCTION. For r, R positive integers, r <R, let us call
. o

H_ .(®) the Hilbert space H_ (@) := H'(8) n H(Q) with the

norm of HX(Q) and call D () := {¢ € c*(%); 0% = 0 on 3 for |a| <r}.
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Now let © be a bounded domain with C* boundary. By Lemma 2,

Dr(Q) c H_ R(Q). (It also follows that this space contains

properly the space ﬁR(Q), cf.Th.5). In this paper we prove
that'Dr(Q) is a dense subset of Hi R(Q). That is

THEOREM 1. If G_ .(9) := closure of D_(%) in HR(Q), then

Gr,R(Q) = Hr,RFQ).
This the9rem can be proved in the particular case R = 2r
using results of P.D.E. as follows. For A > 0 the operator
(-0)F +a maps Hr 2r(Q) continuously into LZ(Q). This map is
2

also 1:1 since for u € Hr 2r(Q) using Lemma 1 we obtain

((-0)Tu + Au,u) (r'/a!) (D%%,u) + A lul? =

|
o~

|o]=x

"
o~

(r!/a)ID%ul? + A lul?.

la|=r
On the other hand for A great enough ((-A)r + A)Gr 2 = LZGD
(cfr.[S], Th.9-27, pg.219). In consequence Gr;Zr(Q) =}E’2rﬂn.

We shall give a direct prbof of this fact and moreover of

Theorem 1. By using a partition of unity as in Lemma 2 it is
enough to prove

THEOREM 2. Let K be a compact set in B and u € H_ R(R;) with
supp u C K n R:. Then there exists a sequence u, € Dr(R;)

such that sﬁpp u, < BY and IIuh - u; HR(R;)H + 0 for h » =,

Our proof relies on the following result.

3. AUXILIARY LEMMA. GZven R integers Kl’KZ""’KR there
exists a polynomial p(X) of degree R-1 such that
i) p(Zj) 18 an integer for j = 0,1,...

ii)  p(2®Y) = Ky (mod 2) for1 <m <R
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iii) p(2™') = K, (mod 2) for R < m.
Proof. If x, = 2°71, i = 1,2,...,R, define p(x) by
R j-1 R
ce= . - | | - A
POO 1= 1 hg I (0x s X0 x0T (G ) /)

where hj =0 if Kj is even and hj =1 if Kj is odd.

Observe that p(x) satisfies i) and ii) since (xj - x-k)/xS is
odd for s = min(j,k) and is even for s <min(j,k). By the sa-
me reasoning for x = x , m >R, the first product in the defi-
nition of p is odd and the last is even when not empty. So
p(xm) - p(xR) is even, Q.E.D.

COROLLARY. GZven R integers Kl”"’KR’ there exists an entire

function ftz) without zeroes such that
. j-1 K4 .

i) £(297%) = (-1) ¥ for j =1,...,R
ii)  £(237h

17£(237Y for j € N.

Proof. Define

(1) f(z) := exp(imp(z))

where p(z) is the polynomial in the preceding lemma. Then
both f(z) and g(z) := 1/£(z) have the required properties,
Q.E.D.

(-]

4. AN EXTENSION OPERATOR. Let f(z) = ] ckzk be an entire
: k=0
function. We associate to f the operator

(2) - (Tau)(x',t) ) cku(k',-Zkt)
k=0

where x' = (xl,...,xn_l) € Rn-l’ t e Rl'

T, is well defined if u vanishes outside a sphere.

f
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THEOREM 3. For u € HR(R;), supp u C B, we have

i) supp T,u C B, T,u € HR(R;)

ii) ITpuHRR) D < M(£) 1uHR(RD) 1 and
3 : DqTfu = Tfh(Dau)'for h = o, la] < R
where fh is the entire function

(4) £ (2) = (-)" kZOCkZh'kzk = (-nP£2P).

Proof. The first assertion of i) is immediate. The second fol
lows from ii). Observe that if x = (x',t) € K, a compact set
in R;, then the sum defining Tgu(x',t) is finite. Therefore
(3) is correct in D'(R;). To prove ii) it is therefore enough
to prove

(5) 1T wsL2(RDT < M(£) 1us L2 (R

But Hu(x',-Zkt)H = Z-k/2 lull. Summing up, one gets

k(2h—1)/2)

ITe ul < (] lel.2 lul Q.E.D.
k=0

Observe that the lemma remains true if the roles of R; and
R are interchanged. Now we define the extension operator Eg

associated to f(z) = } ckzk by

u(x',t) for t >0
(6) Efu(x‘,t) 1= 0 for t
Tfu(x',t) for t < 0.

THEOREM 4. Let u € Hr R(R;), closure in Rn of supp u C B.
. ’ N

If the entire function £(z) verifies
(7) £(2%) = (-1)° for s =r,r+1,...,R-1
then E;u € HR(Rn), supp Efu CB apd

(8) © IEguHR(R ) < C(F) BusHRRD .
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Proof. We shall show that if |a| <R, h = a and f, is defined
by (4), then

(9) D*(Eu) = th(D“u) .

Therefore, the theorem will follow from Th.3. To prove (9) we
consider two cases.

CASE 1: o = (0,...,0,h). Let ¢ € C:(Rn). Then if we set
x = (x"t)’ »

(10) <D*E.u,¢> = (-1)"<E.u,Dl¢> =

i

I coulx',2%t) D (x',-t)) dx =

NG RRCOL

h h, ... S . (h-1)k. h &
(-1 J4 uD_¢dx + 2 c f u(x)D, (¢ (x',-2 "t))dx =
L kZO k R} e ,

(-1)hJR+u(x)D‘Qwh(x' ,t)dx'dt
n
with
(_zk)h-l
0

he~ 8

(n PR, 1) = 0(x',e) - e d(x',-27%e).

k

[}

Since } |c,|. M < ® for any M >0, it is possible to inter-
k=0 —_—
change } and f in (10). Also v, € C:(R;) N HS(R:) for any s.
Now we shall show that
'44h h ' - h
(12) (-1 JR+U(X)Dt¢h(X ,t)dx JR+ Dtu.whdx.

. n n
In fact, since u € ﬁr(R;), by Lemma 1,

Rt
n

(13) (-1)*‘[ un‘t‘whdx = (-1)h°jJR+D{u.D2'jwhdx for j = min(h,r).
. | W
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This proves (12) for h < r{‘If‘h >r, then in view of (7),
¥, (x',0) = 0 and also DYwh(x',O) = 0 for |y| < h-r. Then by

Lemma 2, wh € Hh-r(R;), and we can apply again Lemma 1 to the
right hand sidé of (13) (j = r now!) thus obtaining (12).
The combination of (10) with (12) yields

<Dquu,¢$ = J'D“u.wh dx = <E. (D%u),¢>.
: h

CASE 2: o = (al,...,an_l,o). Then (9) is true regardless con-
dition (7) for u € Hq(R;), q > |a|. In fact, letn(t) € dnﬂﬁ),
n =20 for |t| <1/2, n=1 for |t| > 1, and call n_(t) := n(t/e).
Thenbfor ¢ € Cw(R ) we have n b € Cw(R' U R+) and so

(- 1)|“'<E u,D%> = (- 1)|“|1um<E u,n, %> =

<DaEfu,¢>
‘ e*0

Lin (-1) %<8 0,10 9)> = Lin <B (00, 0> = B0 0,
€0 e->0

’

To combine this two cases we write o = (G,,5...,0 ,
1 n-1

+ (0, .,0,h) = o' + o and obtain D*(E.w) = Da'th(Du"u)

0) +

= Ef (D u), Q.E.D.

5. . A REFLECTION OPERATOR. Next we define an operator E which
is a generallzatlon of ¢(x',t) » -o(x',-t).

f(z) = 2 ck k he the entire function constructed in the
k=0
Corollary of section 3 for K; =i if i <rand K; = i-1 for
r <i<R.
That is
a8y fFYH = (ifor 1 <i<r; f@YY = (D for r <i <R

dkzk. For v a function with
0 .

Further, let g(z) := 1/£(z)

nes~8

k
bounded support let us define



( T v )) dkv(x',-Zkt) for t >0,
Ev(x',t) := k:0
1 T,y = 1 cvx',-2%0), t <0.
k= )

=

LEMMA 3. If ¢ € C:(Rn), then

i)  E¢ € C_(R))

ii) B¢ = ¢ implies ¢ € D _(R))
iii) E%¢ = ¢ '

iv)  IESH(R) I < M_l$;HS(R)DI v s € N.

V) Let v € HS(R™), support of v C B, If the sequence
{6 ) C C.(B) verifies lim l¢_-vi;H*(R™)I = 0, then
m->oo

lim IB¢_ - Ev;HS(R™)I = 0.

m->oo

Proof. 1) It is clear from the definition that supp E¢ is

bounded and that E¢ € CW(R; U R;). Also

PEo(x',+0) = ( § &, (-2 M%(x',0) = (-1) g2 I (x',0)
k=0 ) .
(15) |
PEO(x',-0) = (] ¢ (29 Mm% x,0 = (-1 Me(x',0).
) k=0 '

i) then follows from
(16) g2 = g2 = 1.
ii) Let a <rT. Using (15) and (14) it follows that

(17) D%E¢(x',0) = (-1) P£(2°®)D%(x',0) = -D%(x',0).
But if E¢ = ¢ then |

(18) D*E¢(x',0) = D*¢(x',0)

Comparing (17) and (18) we get D®*¢(x',0) = 0 for |la] <r, that
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is ¢ € Dr(Rn)'

iii) Observe that T T ¢(x',t) = ) d, ( ) ch¢(x',2k+ht))
g k=0 h=0

. ¢(xv,23t)(#zo chj_k).

1
e~ 8

3
_x = 1 if j=0 and 0 other-
wise. Therefore, it holds pointwise that

Since f(z).g(z) = 1 we have i d c.
k=0 - &3

(19) | T, T (x',t) = o(x',t) = T, T o(x',t).

iv) By i), IE®;H (RN < ITg03H (R + 1T 03H(RD) . Now

Theorem 3 yields iv).

v) By iv), E¢m is a Cauchy sequence in H°(R™). Therefore,

there exists U € HS(Rn) such that HE¢m - U;H®(R™) I tends to
zZero.

But in virtue of Theorem 3, ii) both norms IIE¢m - Tgv;HS(R;)H
and IE$ - va;HS(R;)H tend to zero. So U restricted to R; is
equal to Tgv and U restricted to R; is T,v. Since the distri-
bution U is a function of L2(Rn) it follows that U = Ev , Q.E.D.

Note that conditions (14) for r < i <R are not really used
in the proof of Lemma 3.

6. PROOF OF THEOREM 2. Let u € Hr,R(R;), supp u C K and call
u' := Efu (cfr.(6)). Observe that by (14) the hypotheses of
Theorem 4 are fulfilled . Thereby u' € HR(Rn), supp u' = K' =
= compact in B and Eu' € HR(Rn). In consequence, from the de-
finition of u' we have Eu' = u' a.e. (cf.(19)). Now let

¢£ € C:(B) be a sequence converging to u' in HR(Rn). By Lemma

3, V), E¢h converges to Eu' = u' in HR(Rn) and then
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(20) Ju' - ¢p;HN(R )1 » 0 for h > =

if oy = (¢£ + E¢£)/2.

Using Lemma 3, iii), we see that E¢h = ¢h. Then by ii) of the

same Lemma we obtain that u ¢, restricted to R; belongs to

h
+ . . R R,
D (R]). Since Iu - uH (RO = u' - ¢, 3H (RN <
< u' - ¢h;HR(Rn)“, we see by (20) that the sequence u, satis-

fies all the requirements, Q.E.D.

7. THE SPACES Wg R(ﬂ). Our method can be applied to prove that
D (%) is dense in other Banach spaces. For 1 <p <, 0 <r <R,

r, R integers, let us define

WP (@) = WErP(@) n WX P(Q) with the norm |.;WX*Py.

THEOREM 1'. If Q <s a bounded domain with c” boundary, then
Dr(Q) is dense in WE k(Q).

This theorem reduces to prove

,R(R;).

THEOREM 2'. {u € Dr(R;): supp u bounded} Ze dense in WS
The proof follows the same lines as that of Theorem 2 noticing
that the operator Ef defined by (6) is continuous from h@ R(R;')
into WR’p(Rn), and the operator E of Lemma 3 is continuous in

WR’p(Rn). Lemma 2 should be replaced by

LEMMA 2'. If u € C*(8) and D*u = 0 on 3R for |a| < T, then

u e W;’p(Q).

THEOREM 5. Let r be a positive integer and R a nonnegative one.

The completion of Dr(Q) in the norm H.;WR’p(Q)" is8 Zsomorphic
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to the space Wﬁ’p(ﬂ) if R <1 and isomorphic to WS‘R(Q).Q
3

R, .
2W>P(@) if R>r.
Proof. In fact, for R < r, because of Lemma 2', we have
@ ' R,Pp
C, (2) ©D_(2) € D (Q) C W, (2).
If R >r, it follows from Theorem 1' that Wg R o) W?’p. To pro-

- ve that the inclusion is proper consider the function

)

Y € Cj(Rl), ¢ and ¥ equal to one in a neighborhood of zero.

oy . + oo
k(x) = xn¢(x')w(xn) restricted to Rn where ¢(x') € CO(RH_1
Then, k is of bounded support and belongs to WR“RR;)rwhg’pﬁq).
If k belonged to Wg’p(R;) then k should belong to WR’p(R;).

However, D;+lk is not a function, Q.E.D.
n

By the same argument one gets, for r < S < R, the proper in-
clusions

r;p P p R,p
(21) W 2 Wr ? Wr Q WO .

It also holds, since Q is bounded, that the norm

(22) (Y § ap%u;LP(e)gP)l/P
j=r |a|=j

is equivalent to the original norm in WE R(Q), (cf.[A]l, p.158).

8. COMMENTS. The construction of the extension operator (6),
Ef, with f as in paragraph 3, is similar to the one used by
Seeley in [Se]l however corresponding to entire functions of

different nature. In order that E; extends Cm(ii) to C@(Rn),
Seeley needs f(Zh) = (—1)h for h = 0,1,... and this is not

true for our f since we have f(Zh) = (-1)h+1 for h =0,...,r-1

(on the other hand the coefficients a, found by Seeley define.

k
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an entire function of exponential type with zeroes and in that
case g = 1/f is not entire). This explains the main difference
between oﬁr extension operator and that of Seeley and other
extension operators, for example, the altqgéther different one
constructed by A.P.Calderdén ([C], p.45). It consists in the
fact that for the extension E; the functions DaEfu, la| < T,
can be discontinuous at the boundary except in the case when
they vanish there, and therefore Eg does not define a conti-

nuous operator from WR’p(Q) into WR’P(Rh) (but it does when

restricted to WE'R(Q), (cf.Th.4)).
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