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BOUNDEDNESS OF SINGULAR INTEGRALS
ON NON NECESSARILY NORMALIZED SPACES OF HOMOGENEOUS TYPE

R. A. MACIAS and J. L. TORREA

ABSTRACT. We consider the question whether it is possible .to
study singular integrals on spaces of homogeneous type without
normalizing the metric. An affirmative answer is given, provi-
ded the measure satisfies a smoothness condition which is
strictly less restrictive than de ones considered by Aimar [A]
and David, Journé and Semmes [DJS]. To attain this we develop
useful results on the structure of spaces of homogeneous type.

INTRODUCTION

The study of problems in the setting of spaces of homogeneous
type has been proven t0’belvery fruitful in order to obtain
general results which have a wide range of applications. Fre-
quently it seems unavoidable to know a quantitative relation
between the‘measure of the ball and its radius especially in
order to get boundedness results involving integrals. This is
usually attained assuming the space to be normal as for ins-
tance, in [A],[CW],[DJS] and [W]. Essentially a space is nor-
mal if the measure of a ball is comparable to its radius. If
the open balls are open sets then the space can be normalized
as it is proven in [MS2]. However the resulting metric is

1980 Mathematics Subject Classification. Primary 42B20.
Secondary 42B25. :



98 :

not equivalent to the original one. Also in many instances so-
me kind of smoothness "condition on the measure of the balls
neédStn‘be considered as in [A] and [DJS], see [Ca] for an
example in a different situation.

We pose ourselves the question up to which point these res-
trictions are necessery. That is, for instance, whether it is
possible to give conditions for the boundedness of singular in-
tegrals on LZ, following Cotlar's lemma approach, preserving
the original metric. Which allows to keep truck of the shape
of the truncations. In a normal space conditions were given in
[A]l, [DJS] and [Wl . We show in Theorem A that an affirmative-
answer can be given considering truncations adapted to the
measure of the balls rather than to their radius, provided we
impose a smoothness condition on the measure (see (1.7)), which
is strictly less restrictive than the ones adopted in [A] and
[DJS] . Through several examples we discuss its meaning in §4.
We should point out that in [W] no smoothness condition is as-
sumed, however this work contains some serious errors, see our
remark (2.23). In order to achieve our purpose we are led to
make in §2 a careful study of integration: problems, which
we believe to be of independent interest and usefulness when
working on spaces of homogeneous type.

§1. MAIN RESULTS

Before stating the results we recall some basic facts and de-
finitions.

A quasi-distance on a set X is a non negative symmetric func-
tion, d(x,y)‘defined on X xX such that d(x,y) = 0 if and only
if x=y, and there exists a constant K satisfying

(1.1) d(x,y) <KI[d(x,2z)+d(z,y)] ,

for every x,y and z in X.

As it is proved in [MS2] given a quasi-distance d there exist
‘a quasi-distance d', uniformly equivalent to d, a finite cons-
tant C and a number B , 0 <,% < 1, such that
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' (x-a' x| <c P ay,nf,

provided d'(x,y) <r and d'(x,z) < r. Therefore we assume,
without loss of generality, the existence of 0 < 8 < 1 such
that

(1.2)  ldx,y-dx,2) | <k dixn P ag,nf,

holds whenever d(x,y) = d(x,z).

The sets {(x,y) € XxX: d(x,y) < 1/n}, n > 0, define a basis
of a metrizable uniform structure on X. The balls

B(x,r) = {y € X: d(x,y) <r}

form a bésis of neighborhoods for the topology induced by the
~uniform structure. We call the attention on the fact that
B(x,r) is not being used to denote the set

B°(x,r) = {y € X: d(x,y) <r} ,

as ‘it is usual. It can be seen that B(x,r) is not in general
the closure of B°(x,r). As will become apparently the sets
B(x,r) are more adjusted to our purposes.

A space of homogeneous type is a set X endowed with a quasi-
distance d(x,y) and a Borel measure u satisfying a '"doubling
condition" i.e. there exists a constant A such that

(1.3) u(B(x,2Kkr)) < Au(B(x,1)) ,

for every r > 0. We say that the space of homogeneous type is
normal if there exist finite and positive constants AI’Aé’ K
and K2 such that

1

A;r <u(B(x,r)) <A,r , when Ku({x}) <t <Ku(X)
B(x,r) = X , if r > Klu(X) and
B(x,r)

]

{x} s if r <K,u({x}).

To assume that X is normal provides a knowledge of the measu-
re of a ball given its radius. This fact was basic, when doing
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integration in papers dealing with L2 boundedness of singular
integrals like [A]l, [DJS] and [W]. We want to avoid any hypoth
esis of this type. | Hence we use a '"smoothness'" condition on
the ‘measure alternative to the ones adopted in [A] and [DJS].

The space ofAhomogenepus type X is said to satisfy property
H if there existsa, 0 <o < 1, such that

1- 1- >
(1.4) u@rr BB -u@e,r-r8%) < auEe,) B, ®
+holds for every x € X and 0 <s <r, where B is the constant
appearing in (1.2).

Since, for instance, assumlng H does not e11m1nate spaces. con -
taining points with positive measure (1. 4) is strictly less
restrictive than those conditidons considered in [A] and [DJS].

' We present in §4 some eXamples which will help to clarify the
meaning of hypothesis H.

The standard hypothesis on the singular integral kernel K(x,y)
must also be modified in order to avoid hypothesis of the nor-
malization type. We shall study singular integral kernels
K(x,y) satisfying the follow1ng

(k.1 |K(x,y)| < Cu(B(x, d(x,y)) , for every k#y.
(K.2)  There exists a, 0 <oa<1 such that for every integer k =1

IK(x,y) -K(x,2) | + |K(y,2)-K(z,%) | <CA“°‘ku(ch,dcx,y))
provided A*u(B(y,d(y,z)) < u(B(Y,d(Y,X))

(K.3) Let 0<r<R<®

K(x,y)du(y)

_ 0, for every x € X
r<U(B(x,d(st)))SR ‘

_ K(x,y)du(x) = 0, for every y € X.
r<u(B(x,d(x,y))) <R ‘ '

Given 0 <r <R < » , define

K, Rf(0) = [ KOG £ duy)
r<u(B(x,d(x,y)))<R
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The L2 result can be stated as follows.

THEOREM A. Let X be a space of homogeneous type with property
H. Assume the kernel K(x,y) satisfies (XK.1), (K.2) and (K.3)
then there exists C such that

Ix_ _£l

crEl, < CIEN,

for every 0 { r <R, and f e LZ(X).

Having into account lemma (2.2) below it can be seen that con- -
dition (X.2) is weaker than ‘

' _ - Cd(z,y)
(K.2)' |K(x,y)-K(x,2z) |+|K(y,x)-K(z,x)| < RSN X ERI)))

provided 2d(z,y) < d(y,x).

In order to'simplify the notation and since no confusion ari-
ses in the following we shall write |E| instead of u(E) and
dx instead of du(x).

§2. TECHNICAL RESULTS

LEMMA (2.1) . Assume 0 < d(z,y) < [K(2K) "B Br. Then
0 # B(z,r-6r'7Pa(y,2)®) c B(y,r) cB(z,r+sr'Pa(z, ")
for every & such that K(2K)!7F <& < rPa(y,z) B.

Proof. By the assumptions r-Grl'Bd(y,z)B > 0. Take x in
B(z,r-drl'ed(y,z)s), then d(x,y) < 2Kr. Applying (1.2)
d(x,y) < d(x,z)+K(2Kr)1;Bd(y,z)B <r.

Then x € B(y,r). By another application of (1:2) we obtain
the remaining inclussion.

LEMMA (2.2).°If AY |B(y,s)| < |E(y,r)|, then (2K)3 s <.

Proof. It follows immediately from the doubling property (1.3).
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’ LEMMA (2.3). Assume X satisfies property H, (1.4), then either
[{x}| > 0 for every x € X or |{x}| = 0 for every x € X.

Proof. If there exists z € X of measure zero, .then given any
x €EXand 6§ >0

I{x}| ‘< |B(Z’d(z?‘x)+6$d(z’x)1-6) I_
-|B(z,d(z,x))-6%d(z,x)17F| <
< A[B(z,d(z,x)) '™ B(z,8) |°.

Letting & tend to zero, we obtain |{x}| = 0.
DEFINITION (2.4). Let T > O;we denote E(x,r) = {y:|B(x,d(x,y))| <T}.

LEMMA (2.5). Let R = sup {d(x,y): y € E(x,1r)}, then

(2.6) 'B°(x,R) € E(x,r) C B(x,R).

(2.7) |E(x,T) | <r.

(2.8) |B(x,R)| < Ar.

(2.9) If |B(x,R)| <t them E(x,r) = B(X,R).
(2.10) If |B(x,R)| > r then E(x,r) = B°(x,R).

Proof. As it is well known if |X| <« then X is bounded, on
the other hand if |X| = = then |B(x,s)| goes to infinity if s
tends to infinity,.therefore R <o, If y belongs to E(x,r) by
definition of R, d(x,y) <R, in particular 7

E(x,r) C B(x,R).
Let us assume |B(X,R)| <r. If y € B(x,R) then
|B(x,d(x,y))| < [B(x,R)| <.
This says that y.E E(x,r), in particular E(x,r) = B(x,R). Thus
(2.9) is proved and (2.6), (2.7) and (2.8) in this case.

Assume now |B(x,R)| > r. Therefore d(x,y) <R for every y in
E(x,r) and there exists a sequence'{yj}j such that Yj € E(x,r)
and Ty = d(x,yj) increases to R. Then

' [
CE(x,m) = U B(x,Ty) = B°(x,R)
J=
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and
|E(x,r)| = 1im IB(x,rj)I <r.

j+oo

This proves (2.10) and completes the proof of (2.6), (2.7)
and (2.8).

LEMMA (2.11). |B(y,d(z,y))| <AlB(z,d(z,y))| <A?[B(y,d(z,y))|.

Proof. It is immediate from the doubling property (1.3) and
(1.1). :

With the notation of Lemma (2.5), we have

LEMMA (2.12). If X satisfies H then
E(x,r) = B(x,R) ,

for every x in X and Tt > 0.

. Proof. Let us assume |{x}| = 0. Then given 0 <n <R,
0<[BGLR| - [B°(x,R)| < [Be,RR'EF)| - [Bx,R-RIE)| <
< AlB,R) | [Bx,m) |2

Therefore |B(x,R)| < |B°(x,R)| < r. Thus E(x,r) = B(x,R). Let
us suppose |{x}| > 0. Then by lemma (2.3), |{y}| > 0 for eve-
ry y € X. Thus {y} = B(y,e) for some € = e(y) > 0 (see [MS2]).
By (2.9) we can assume |B(x,R)| > r. In this case there exists
a sequence {yj}j such that y; € E(x,r) and ry = d(x,yj) in-
creases to R. Let 0. < €5 < T satisfying B(yj,ej) = {yj}.

Thus

1-8_By | _ . 1-8 8
0 < |{x}| < [B(yjry+ri Tt el)| - [Blyg,ry T Rel) <

<ABOLT )T BO e %
By (2.11) this is less than

A2|B(x,rj) | 1'é‘|{yj} 1% < A? rl_“]{yj}la‘.

This implies the existence of an infinite number of points
contained in B(x,R) with measure greater than a constant which
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is impossible.

COROLLARY (2.13). If X satisfies H and |{x}| = 0 for some x €X,
then
[B(y,)| = [B°(y,m)|

for any y € X and r >'0.

Let us denéte C(x,k) = E(x,Ak+1)\ E(x,Ak).
LEMMA (2.14). Assume |X| > ARt > | {x}|. Then C(x,k) # @ for
every X € X. . :

Proof. Let N, = {r: A < |B(x,r)| <AI*l}. Assume N; # 0 and
let r € Nj. Since . »
B = B(x,r) = U B(x,d(x,y))
: yeEB -
there exists y such that

Al < |B(x,d(x,y)) | <adtl,
then C(x,j) # @. Therefore it .is enough to prove Ny # #. In
order to do this we shall show that N = @ implies_Nj = @ for
every j > k. Let k; = min {j > k: Nj # @} and r; be the infi-
mum of Np . Thus, r; > 0 and

1
k ) k1+1
Al < |B(x,r))| <A

k
If |B(x,ry)| = A ! then T, € N _, which is a contradiction.
1-

Thérefore T,

(2K)"'r, ¢ Ny, implying

must belong to Nkl. On the other hand,

k k
IB(x,r))| <A[B(x,(20)7'r)| <AA <Al

which is again a contradiction.

In the following we assume X satisfies property‘H. Let

Rz = sup‘{d(k,y): y € E(x,Ak)}.
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By lemma (2.12), E(x,Ak) = B(x, Rk) In particular,
(2.15) C(x,k) = B(x,R; ;)-B(X,R}).

+1

Moreover by (2.7) and Lemma (2.14), if |X| > A¥*! > |(x}],

(2.16) Ak-1

< [B(x,R) | < A",
LEMMA (2.17). Let us suppose (ZK)h> [ZK(ZK)I_B]I/B. Then

AP |B(x,d(x;2)) | < Al™l,

implies
C(x,i)AC(z,1) C [B(x,R’i‘+1+s’i‘+1)-B(z,R’l.‘ﬂ-s’i‘H)] U
X X X X
U [B(z,Ri+Si)-B(z,Ri-Si)] ,
where s¥ - 3 K(ZK)I—B(R;‘)I'Bd(x,z)B

Proof. By (2.16) and the assumption
AP|B(x,d(x,2)) | <A1l < |B(x,R})].

Thus using Lemma (2.2)

(2.18) (2x(20 P e, 2) < (20"acx,2) < RY <RI,

Then we can apply Lemma (2.1) with § = % K(ZK)I-B to obtgin
B(z,R’j‘-s’j‘) CB(x,RZ.{) CB(z,R§+S;.<), j o= i,i+1,

where ‘S;.{ = 6(R§) 1-8 d(x,z)B.

Having into account (2.15) if y € C(x,1)AC(z,1) we have four
possibilities

' X
). Then vy €B(z, R,+1 S ) -B(z, R1+1)

P y € C(x,1) B(z R1+1

P,i Y € C(x,i) n B(z,Rz). Then yeB(z',R)-B(z R.-S.).

P,: y € c.(z,i)-B(z,R’i‘+1). Then yeB(z‘,R 1) -B(z, Rl+1 1+1)
Pty € C(z,i) n B(x,R’i‘). Then vy eB(z,R‘i‘+si)-B(z R?)
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The proof is complete.

COROLLARY (2.19). On the conditions of the Lemma above

b4 X i-3
|B(z,Ri - si)J > AT,
: ¥
Moreover if y € C(x,i)AC(z,1) tken
B(z,d(y,2))| > A*™%,
Proof. By (2.18) d(x,z) < R: and 4(R§;S§) > R:. Thus using
(2.16) and the doubling condition of the measure. '

AL < [B(x,RY) | < AIB(z,RD)| < A%[B(z,RYs ).

On the other hand if y € C(z,i) then |B(z,d(z,y))| > Al 1

y € C(x,i)-C(z,i) then -either P, or P, hold. In the first

i+l i+l

case Yy € E(z,A"" ") therefore |B(z,d(z,y)i| > A In the sec-

ond case d(z,y) > R?-S; therefore

B(z,d(2,y))] > |B(2,R}-sD| > aT™,

COROLLARY (2.20). In the conditions of Lemma (2.17)

lc(x,1)ac(z,1) | < ca*® |B(z,d(x,2)) |°.

Proof. Property H implies
1- 1-
D, = [B(z,REn RT3 (2, RE-nPRTP) | <
< c|B(z,RD |17 |B(z,m |,
From (2.18) it follows that we can apply Lemma (2.1).
B(z,R}) C B(x,R§+aR§(1‘B) d(x,2)P) ¢
c'B(x,ZRﬁ).

Therefore taking nB = % K(ZK)I'Bd(x,z)B and appling doubling
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property
D, < CIB(x,RD |17 [B(z,d(x,2))|* <
< cat=®) 3¢z, d(x,2)) |%.
Clearly the same bound is true for Di+1'
Let xi(x,y) = Xc(x’i’(y). Observe ;hét

(z.21) Xi(x!Y) < Xi_l(Y,X)+Xi(Y,X)TXi+1(Y,X)-

LEMMA (2.22). If Al < |X|, 4t follows

i(1l+q)

10,50 = [1BG,a0y)) |9 (x,y)dy < cA

I'(i,q,y) [IB(x,d(x,y))|qxi(x,y)dx,< calal i@ +a)

If either Al > |X| or |{x}| = Al potn integrals are zero.

Proof.
1B(x,d(x,5)) | X, (x,y)dy < CAT9|E(x,aAM*]) | < cal(l+D)

Let us consider I'(i,q,y), by Lemma (2.11) an& (2.21)
' (ha <al?l [iBo,aeay )t x e <

<alel [1ei-1,q,9)+100,q,y)+#1(i*1,q,7)] <

< calal piti+e),

REMARK (2.23). Lemma (2.22) seems to be a substitute for in-
equality (1) in Theorem (2.1) of [W]. That inequality is not
true in general as can be seen taking X = {0,1,2,3,...,n,...};
u(n) = 1; d(n,m) = |n-m| and considering f to be -

Ylo,11 =5 <%q0,21 OF Xpu,m) SF <Ko e
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§ 3. PROOFS OF THEOREMS

We shall use the following

"COTLAR'S LEMMA. Zet H be a Hilbert space and Tl’TZ""’T a

N
finite of linear and continuous-operators on H. Let c:Z + [0,o)

T 1/2

such that 2 c(e): = A <o and let Tz be the adjoint of T..

=—00 1

. ) N

If ITAT.I < c(i-j) and IT.T*I < c(i-j) then I § T.I <A.
» 1] i73 i=1 i

See [C].

Proof ofvTheorem A. We denote Kj(x,y) = K(x,y)xj(xzy) and de-
v fine,ij(x)v= JKj(x,y)f(y)dy, for any function f in LZ(X).
Using Lemma (2.22) and proceeding as in [A] it follows that
Tj is.unifQ;mly bounded on L2 and the kernel of the adjoint

operator T; is Kg(x,y) = Kj(y,x). Moreover

T;ij(x) = J{IKi(y,x)Kj(y,z)dy}f(z)dz.

and .
81,800 12 < (1], 00K, 0 may ] £ 12 a2

i jlei(y,x)Kj(y,z)dyl dz

Applying again Lemma (2.22) and the boundedness of the kernel
the second factor is bounded by a constant  -independent of.i
and j. Assume that, whenever j > i

(3.1 JIIKi(Y,X)Kj(y,z)dyl dz < ca®(i-3)
Then, in this case

IT4T£1 < CA“(i_j)Ilf(z)|2I[IJKi(y.x)Kj(y,z)dﬂdx]az |

< ca*ti=9 g2,

-If i > j, using again (3.1)
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ITAT £12 < cj|f(z) |2[JlJ’K.(y,x)K.(y',z)dyldx]dz <
j 2 . 1 J \
< ca®l-Dyg2,

It is clear that the same estimate holds for HTiTgﬂzz.Therefo-

re aplying Cotlar's Lemma the Theorem follows.

" Let us prove (3.1). By (K.3)

/
|
< I

I

K; (7, %) K (y,z)dy|dz =

i

J[K (7,2 K, (6, DI K; (7, x)dy [z <
K.

i

(y,x)|ff|Kj(y,z)rKj(x,z)ldz}dy.

, where (2K)® > [2K(2K)1'B]1/6. Let

Take C1

- 1 00 11K 0,2 K, (2 [dzdey
_CllB(y,l(y,X))leJ‘l * J 1

By (K.1) and Lemma (2.22)

1

JlKJ.(Y:Z)'dz <cC f R dz < cC.

Cc(y,3)
Also

J|Kj(x,z)|dz <cC.

Therefore using once more (K.1) and Lemma (2.22)

X; (y5x) :
I.<C —_— <

1 1|B(>',d(y X)|
CIIB(y,d(Y,xD)IzAJ

Aj -0 X (Y,X)
< Gf[|3cy,d(y,x))|] |ch,dcy,x))|

dy <

< ca®ti=9)

It remains to consider
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1= | 1 0u0 1€ 1607, 2) K 05, 2) [z )ay.
j-1 . J J
¢, |B(y,d(y, ) [<a’

In order to prove the boundedness of I, let

I, = J ERLHCA I{JIK(Y.'_Z) "K(x,2) [X;(y,2)dz}dy.
CllB(Y9d(y’x)) |<AJ-1 . "

Observe that if x € C(y,i), z € C(y,j) and AP|B(y,d(x,y))|<Ai™},
A B(y,deom | <1 <A BOLAG, ) |,
where £ = max (h-j+1,-i-1). Then

A By, d(x,y)) | < IB(y,d(y,2))].

Therefore using (K.2) and (K.1)

I

3 J . Xi(YsX)‘ j ~a(j-1) X.(¥,2)

8G7,d0,07] A B.aG,o0] 4 &

Applying Lemma (2.22)
-a(j-1i)
I, <CA .
We need to show a similar bound for 122

I,, = J K (y,%) HIIXJ' (y>2)-X; (x,2) | [K(x,z2) |dz}dy
i1 j
Cl|3(y,d(y,X))|<AJ ’

<c - X% ( 1
51 BOLAE)] ] e eD] a2t dr-
¢, |B(y,d(y,%)) <A , C(y,3)AC(x, ]
By Corollary (2.19) we get
-3 Xi(y’x) . . .
Ipp < CA I _TFG,dy |C(y,3)aC(x,3) |dy.

CllB(y,d(y,X))|<Aj

By Corollary (2.20) and Lemma (2.22)
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o )
1, < WA [y 50 BoKa 1% oy <

< carU-9),

-Therefore

-aj-1)-
I2 < 121 + 122 < CA .

§4. EXAMPLES

We present some examples in order to understand better proper-
ty H and the relation befween the metric and the measure. In
previous works, besides the requirement for X to be normalized,
the following hypothesis has being imposed

(4.1) IB(x,7)| - |B(x,s)| < C(r-s).yrl_Y s

for every 0 < s < r and some y > 0. The case y=1 has being
considered in [A] and y positive in [DJS] . Observe that the
condition is really meaningful when s is close to r, since
otherwise the normalization of the spacé suffices. Thus, it
is clear that (4.1) is more restrictive as y increases, ‘there
fore it is enough to consider y < 1. Clearly (4.1) implies H.
The contrary is not true even in the case of normalized X; see
example (4.5). Thus, all the examples considered in [A] are
.included, as for instance R"™ with parabolic metrics and Lebes
gue measure, compact groups with a quasi-metric induced by a
Vitali family, etc. o

EXAMPLES OF SPACES THAT DO NOT SATISFY H.

'(4.2) Let X.-= [R - (2,4)] U {3}, d(x,y) the usual distance
and measure y defined by p({3}) = 2 and u(E - {3}) =.|E|,
where |E| stands for Lebesgue measure. It is easy to see that
(X,d,n) is a space of homogeneous type that does not satis-
fy the conclusion of Lemma (2.3).

(4.3) For n > 0, let In be the open interval in R centered at
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i

ZnQ-% of radius (Zn)-l.kLet

X = nl=Jl{[2n-1,2n] V] In}

Take d(x,y) the euclidean distance and define the measure u
‘ :

u(E) = nzl JXE(x)(X[Zn_l’Zn](x)fnxln(x)) dx.

It is clear that (X,d,u)’is an space of homogeneous type. Mo-
reover '

1 < u(B(20,5+55)) - u(B(2n,5- o))
holds for every n > 0. On the other hand
» 1 .
u(B(2n,9)) 1% u(B(2n,5)% + 0
as n tends .to infinity for any 0 <a <1.

EXAMPLES OF SPACES SATISFYING H.
(4.4) The space considered in (2.23) satisfies H.

(4.5) Let (X,dY,u) be a space of homogeneous 'type, where d
is distance, Yy > 0 and such that

u(B(x,t)) =1t , A >o0.
It is well known, see for instance [MS1, that.if

I |
? = m1n(1,Y)

then dY satisfies (1.2). We shall prove that property H is
true for o = min(1,6/l). We observe that it is sufficient to

take r > 2n.> 0 on property H. Let ¢ = ri PnB

D = u(B(x,r+e)) - u(B(x,r-¢)) = (r4e}x-(r;é)} B

A-1

= £ 2€,

where r-e < § < r+e. From Tt > 2n > 0 it follows
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A-1

D <t l2e = crM BB < crhy e h e,

Y -
(4.6) Let (Xi,dil,ui), i=1,2, as in (4.5). It is clear that

taking X = Xlx XZ’ T

M, ®u, and
- = ' "1 Y2
d(x,y) = d((x},x,),(y;5y,)) = max{d, "(x;,y,),d,"(x,,Y,)},

(X,d,u) becomes a space of homogeneous type. Moreover it can
be shown that

A+
W(B(X,1)) =1 ' 2%,

la(x,y)-d(x,7) | <crl Bay,nf ,

for d(x,y) <r; d(X,z) <r and B = min(B,,B,). Proceeding as
in (4.5) it follows that (X,d,u) satisfies H, with

a = m1n(1,7) = m1n(1,——ﬁ;—}\——2—

(4.7) As an immediate application of (4.6) we consider

n n ’
R® =R 1x...xR¥, n,>1,
. 1

. s
= - 1
di(xi,}’i) - |xi yil ’ Yi> 0 ’

u; = Lebesgue measure in R , thus ui(B(xi,r)) = Ci T .

Theérefore taking Ai = ni/Yi and By = min(1,y;1),'by (4.5), we
get
B. min(1,v.)
L. iy _ i
a; = m1n(1,7TJ e
1 1
Then we are in the conditions of (4.6) and (X,d,u) satisfies

H with

=

i . 1 1
— 3 B-=min(l;—/,...,—)
1 Yi R P

>
it
[Wage bl

i



[a]

[cal
[c]

[cw]
[DJé]
[MS1]

[Ms 2]

[w]
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. -1 -1
mln(1’Y1 ’ "”Yk )

-1 -1
Yy Mgte.aty, 0y

= mi By -
o = m;n(1,7) =
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