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INTRODUCTION

Let A be a (real or complex) Banach algebra with identity and
2 n
n . .
Q, = {a=(q,..-,q) €A™ q =q, q,q=0if i £k, kzl q = 1}.

For q, = (ql,...,qn) €Q, the map m: G -+ Qn m(g) = gqog'1 (G
“denotes the group of units of A) defines a principal fibre
bundle over its image (the "joint similarity orbit" of q,
with the terminology of [CH]); in particular, curves

y: [0,1] > Qn with origin'qo, admit a 1ift r: [0,1] - G, i.e.

r(t)qor(t)'l = y(t) for all t € [0,1] (see [CPR, ).

We shall construct, for y continuous and rectifiable, an ex-
plicit 1ift T, which turns to be the hérizqntal 1ift of y for
a natural connection on Q, introduced in [CPR;]. An analogous
result is ob'tain‘ed for the space Sq = {(a,b) EAxA: aq = a ,

gb =b, ba =q} (q is a fixed idempotent of A). Given Banach
spaces E and F the set S(E,F) = {(i,j) € L(E,F) xL(F,E)
+ji = 15} (considered in [Do] and [Ko]), has phe form,Sq, when

it is non-empty: in fact, if (io,jo) € S(E,F), q = is an

inO
idempotent of A = L(F) and the map S(E,F) - Sq (i,5) » ﬁjoﬁnj}
identifies both spaces. For a fixed (ao,bo) € Sq the map

™ G > Sq, m'(g) = (gao,bog'l) is another principal fibre
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bundle over its image. As in the case of Q, a procedure for
producing 1ifts of rectifiable curves [0,1] + Sq» is obtained.

The méin‘advantage of these constructions consists in the fact
that they are explicit. They are special cases of the multi-
plicative integrals of [Po]. The case n=1 has been considered
in [PR]. The reader is also referred to [CPR;], [CPRy] and
[CPR3) for a geometrical study of Q(=Q;), Q, and Sq- Earlier
facts on Q, can be found in [Ka,], [Dal, [Ka,,Ch.II,§4], [DK].

§1. LIFTING RECTIFIABLE CURVES

Let y: [a,B] + Q, be a continuous rectifiable curve. Our first
objective is to construct for every t € [a,B] an invertible
element M;Y such that

(ng)Y(d)(M;Y)_l = y(t) for all t € [a,B].

The idea of the construction is the following: given q,r in

Qn close enough, it is easy to obtain an invertible g such

that gqg'1 = r; now, taking a partition T of [a,t],T: a =

= tO < t1 < t2 < ... < tn = t fine enough such that q(i) =

(i+1)

= Y(tﬁ is near to q ,bwe get for each i = 0,...,n-1 an in

vertible g; such that giq(i)gi+l = q(i+1); thus g = gr =
= 8.8, _1---8) € G conjugates q(o) = y(a) with q(n) = yv(t);the

difficult task is to prove that T(t) = lim- g exists.
’ ITl+0

Given q,r E-Qn we write L(q,r) =

1.1.PROPOSITION. For q,T,s,q'%,...,q™ 4n Q, the following
properties hold

(i) L(q,q) = 1
(ii) qL(q,r) = L(q,7)T
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(V) L(a¢??,qM) L, q¢®) . .. ™, (™)

n
= 2€0) (1) . (m)
= q e
(v) L(q(o).q(l))...L(q(m‘l),q(m))-L(q(o);q(m)) -
m-1 n
= (0) ( (0) __ (i), (i) _ _(i+l)
J'.Zl kZ1 G (A7) (A Q")

n
(Vi) L(q,r)L(r’s)'L(Q:s) = kZ]_qk(qk-rk) _(rk-sk)'

We omit the proof, which is straightforward; just observe for
(v) that, given idempotents Pgs--sPg in A, by induction on n
it follows that

m-1 .
PPy« -Py 1Py PoPy = izl Po(Py-P;) (P5-Psyy) -

REMARK. L(q,r) will be the invertible g mentioned at the begin
ning of this section.

1.2 PROPOSITION. For each K >.0 there exists Ky > 0 sueh that,
(0) (m)

for every q,r,s,q P | in Q, with norm at most K it
holds that

(D el <K (k<m

(ii) k£1 la, -t I <K la-ri
(iii) IL(a,1) I < exp(K2la-Tl) and therefore

m . .
1La¢®,qV L@@ D,y <expx] ] 1a® -y

i=1
(iv) 1@ ®,a®)y . @™ g™y L@ ? ™) <

RO ) n ' )
< Ki m?xﬂq(o)-q(l)" ) "q(l)_q(l—l)"
=1

1
and when m=2,

(v) WIL(q,r)L(r,s)-L(q,s)l <Ki||q-r|| Ir-sl.

(The norm we use in Q_ C A" Zs lql = maxlq,ll).
n k<n k

Proof. Take K, = max{n,K}. Then, (i) and (ii) follow easily.
2 .
kZlqk(rk-qk) ; using

In order to prove (iii) write L(q,r) = 1 +
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(i) and (ii)

IL(a, )1 <1+ K J.0n -ql <1 + K2Ir-ql < exp(Klq-Tl)

Finally, 1.2 (v) implies

1:(a 9 ,a L™, ™ 1?01 <
< 1 x0e{®-q{Pung{P ¢ <
i,k

< X] maxiq{®-q(y Tag-a; -

Suppose that y:[a,B] + Q, is a (continuous) path and let

K = max(Iy(t)l: o <t <B). It follows from 1.2 that there is
K; such that all conclusions there in hold for elements of the
form y(t) with t € [o,B]. We will use this repeatedly in the
proofs below.

Consider a partition T: o < t, < fl<... < tn = B and set

0
Y T Y(tk). We recall that y has finite length if

Sup z"Yk'Yk—lu is finite (Sup taken over all partitions); we
denJ;e 2(y) = length(y) = Sup ZNYk-Yk_IH. More precisely, if
a <u<v <pg we will denote b; £(y|fu,v]) the length of the
restriction of y to [u,v], i.e.~the sup taken over all parti-

tions of [u,v].

Given a path y: [a,B] - Q and a partition T: o < t0 < t1 < ...
n
< tm < B we define

M(T) = M(tg,t 5.5t ) = Llyo,vp ) Llypsvg) -

We prove next a series of lemmas that lead to the first theo-
rem of this section whose statement is: lim M(T) exists for a
path of finite length.

We assume from now on that y has finite length, with
K = maxly (t) I, £ = length(y). '

Recall that Kl is the number of 1.2.; we set K2 = exp(K%).
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1.3. LEMMA. For all T IM(T)I < K,.

The -proof follows easily from 1.1.(iii).

Consider now the partition obtained by adding a new partition

point v between to and t» i.e. T': a.< tp <Vt <...<

<tm<8-
1.4. LEMMA. IM(T')-M(T) 1 < K3K, 0y, -v(¥) 1Y (V) -y, 1.

Proof. Write

M(T") -M(T)

n

L(vpsYppd oo LOY Y (VI L(Y (V) 5vy) -

- Llvpsvp_q) - Ly svg)

M(t sty .t ) ILCY Y (DL (YEV) 5 ) -L(yy5 7))
and therefore, using 1.1 (v) and 1.3
IMCT') -M(T) I < KKy, -y (V) 1y (V) -v(0)

as desired.

Suppose now that S: a < Sg SS; < ..: <5, < B is a partition
finer than T: a < tg <ty < ... <t <B. In order to prove

the next lemma we will label the partition points as follows:

o <s <t0 <51<... <S, = 'c1 < Sp+1 .o <5 T t2 <...etc.

0
©1.5. LEMMA. IM(S)-M(T)I <KJK, £ max{(y| [t;,t, 1)),
’ j

Proof. Write

ol
|

= M(so,...,sh), x
= M(toytl) ’

¥y = M(t,t,), etc.,

1 M(sh,...,sk), etc.,

&
I

and

W M(S) -M(T) .
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Then

W= Xp-1%m-2" X0 Vn-1Ym-2"*"Y0 ~

...xl(xo-y0)+xm_1...xz(xl-yl)y0+ el +

xm—l

+ xm_l...xj+1(xj —yj)yj_l...yo+...+(xm_l—y 1 Ym-2" Yo
and also xm_l...xj+1 = M(sq,>
yj—l"'yo = M(to;,..,tj).

vv.»S_ ) with s =1t., . and
m q

q+l’ 3+l

Therefore, using 1.3

2 m
< ]
hwil <K ) Ix-y 0.

j=1

.>u

We can write xj—yj = M(uo,ul,...,ur)-M(uO,ur) where u .

02"
denote the sj between tj and tj%l’ so that in particular

u, = t., u_ = t.
r

j¥1 Clearly

xj—yj = M(uo,...,ur)-M(uo,uz,...,ur)+M(u0,u2,...,ur) -
<o *tM(ug,u o ,u ) -M(ug,u ),
-and to each difference we apply 1.4 to obtain
HM(uO,ui,u

.,ur)-M(uO,u .,ur)ﬂ <

i+12°" i+1°°"

3 -
< KiKply(uy ) -y (u) My Quy) -y(ugd I <
< KJK, (| Tty b DIy (g, ) -y(u) .
' 3 2 .
Thus ij—yju < K1K2£(y|[tj,tj+l]) and it follows that

. 3 m-1
Wl < K7K, jz z(yl[tj,tj+1]) <

3
< Kle L m?x £(Y|[tj,tj+1]) ,
.which proves the lemma.

The results of the next lemma are well-known.

1.6. LEMMA. Let v(t), o <t < B -be a continuous path with finZ
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te length in a Banach space and let € > 0.
Then: |
(i) there exists 6 > 0 such that if a = tg Sty < ...t =
=B 28 q paitition of [o, 8] with mixltk-tk-1| < § then

m

L(y) <€+ % Tyt ) -v(t ;)5

(ii) there exists &' > 0 such that if [u,v] C [o,B] and
0 <v-u < §' then £(y|[u,v]) <e .

1.7. THEOREM. Let y: [o,B] > Q; be a continuous path with fi-
nite length, Then, there is an element ng when
mixltk'tkd' -+ 0.

Proof. Let‘Tl,Tz,... be a sequence of partitions of [a,8]
such that T: is finer than T_ and with |T_| + 0. From 1.5
m+1 m m
and 1.6 (ii) it follows that {M(Tm)} is a Cauchy sequence in
B, = 13
A. Let MaY lim M(Tm) .

Suppose that € > 0. By 1.6 (ii) there is § > 0 such that
0 <v-u < § implies K%Kzf_.z(yl [u,vl) < e. Assume now that W is
any partition of [a,B] with |W| < §. We can write

B B .
“MaY MW I < "MaY M(Tm) II+IIM(Tm) M(TmUW) M+
(&) _
+ IIM(Tm UW) -M(W) II..
From 1.5 with T=W and S = 'I_‘mUW we get
IIM(TmuW) -M(W) Il < e for all m;

again from 1.5 with T=T, and S = TmUW and using 1.6 we get

LimIM(T,) -M(T, UW) I = 0.

Hence taking limit for m - = in (*) we obtain IIMSy-M(W) I <e
and this concludes the proof.

Clearly, by considering the restrictions of y to subintervals
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[u,vl C [a,8] we will have elements MZy.

1;8..COROLLARY, If £f: A >~ B ©Zs a homomorphism of Banach alge-
bras preserving the identities, then f(ng) = Mg(fo Y).

particular, for every g € G(A) g(MEy)g'l = Mg(gyg'l).

Proof. It suffices to observe that f(My(T)) = Mf°Y(T) for each

partition T and apply the theorem.

1.9. PROPOSITION. For each [u,v] C [a,B] the element sz is8
invertible in A and (sz)_l = MZG, where o <8 the opposite

path of v, 2.e., o(t) = y(u+v-t). Moreover, MXY‘= 1 (ue€ [a,B]).

Proof. Let ' T: u = t, < t, <...<t =v be a partition of

0

[u,v] and S. the '"opposite partition', i.e., s, = u+v-t

k m-k*

Then (M)y) (M o) = lim M, (T) .M (S) as T gets finer, where the

notation MY(T)’ MO(S) is self-exblanatory.

Clearly M (TIM(S) =Lvy,vy 1) L0y 157 o) - -L0vs¥g) Log,0, ).
(0, 150y 5) -+ -L(01,00) = LOYg»¥g_p) -+ -LCY;»¥g) LCYgsvy) - -LC¥p_p» V)

where Yj = y(tj) and o, = c(s Now, for p,q in Pn it holds

k k)'

L(p,a)L(q,p) =1 - E p,(a;-p; ) p; So we obtain

1—

n

M (TIMGES) = L0y Yoy« L0y ¥ PLOY YL OV ) + - Ll 57

LYy To) -+ L7 (1 - 2 RIS R ORI

m" ‘m-

L(Yl,vz Ly pyy) =

Lvps 1)--.L(Yz,vl)---L(Ym_l,Ym) -

m” m-
= L(¥psYpy) - L(Yz,Yl)( Z (Y(l) v 2 {D)

< LOypvy) e Ly oY) -
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We can apply the same device to the central term
L(v,,7,) -L(¥}5Y,) so we get

M (TIM (S) = Llvp ¥y ) -+ -LCY3 ¥ LCv,5v3) oo Llvy_poYy) -

m” 'm-
" Ll Vg e+ 1031 Z v {P-y 1))211(1)) :

. L(Yz’Ys)"'L(Ym_lem) =

- LYYy )+ L(YZ,YI)(I Y(l) (i) (1)) (1)).

m m—
. L(YI’YZ) L(Y l’Y)
After m steps we reach, using 1.1 (iv) m times,.

- p oml (1) _ (i+1)42
M (DM (8) =1 - ] T M(T)> - )M (S)

k=1 i=Q
where Tj: tj <tj+1 < ... <tm and
Sj: Sg S8; < ... <sn_j_1.

Therefore, taking norms and using 1.3

IM(T)M(8)-11 < % ) 2 Iy {2 <
k-l i=

< K . max 2 (v;|[u,v]) naxlly(l) 1((i+1)ll.

' Taking limits as T gets finer, we conclude from the uniform
continuity of y that

max | Yy

(i) _ (i+1)
I - 0.
ik k

-Thus lim MY(T)Md(S) = 1, as claimed.

For u <v in [a0,B] we define

u _ V.-
Moy = (M;Y)
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With this definition we are allowed to write MZY for any pair
u,v in [a,B].

1.10. PROPOSITION. (MZY)(ij) = M:Y for all u,v,w in [a,B].

Proof. Assume first that w <u <v. Let T and S be partitions
of [w,u] and [u,v], respectively. Clearly M(S)M(T) = M(T v S)
and taking limits we obtain the desired formula. All other

cases reduce to this. For instance, when w < v < u we get
u, _ mu v u -lyu v v, _ u_y=1
MwY'° Mwy.Mwy, whence (MVY) Mwy = Mwy, but MuY = (MVY)

and the formula follows.
The next result proves the lifting property of_sz.
1.11. THEOREM. (M'y)y(uw) (M'y)™! = v(v).

Proof. Let T: tg=u<t; <...<t,6 =v be a partition of
[u,v]; then
M(T) = LQvpsvg_q)---L0vysvg)

and each L(Yj,Yj;l) is invertible if T is fine enough. Then,
using 1.1 (ii) m times,

M(T) Y(WMET) ™h = M(T) ¥ M(T) ™ = v (¥)
and the theorem follows taking the limit as T gets finer.
If we define, for each t in [a,B],
r(t) = My ,
we summarize the properties of MZY as follows.
©1.12. THEOREM. (i) I is a function from [a,B] into G with
T(a) = 1; (ii) ('"Barrow's rule") MZY = I‘(\r)I‘(u)'1
(u,v € [o,81); (iii) y(t) = F(OY()T() ™" (t € [a;8]).

Finally, we prove T coincides with the lifting of ¥y
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exhibited in [CPR,], when y is ct.

1.13. THEOREM. (i) If y Z& a continuous and rectifiable path

in Qg then T <s continuous and rectifiable in G;
(ii) If v Zs a C1 path in Qn_then I' Zs also a C1 path in G and

n
satisfies I' = (] ?iYi)P , to y.
E i=l

We need a lemma

1.14. LEMMA. If Yy is a path of class cl and T: u = tg St; <
< ... < fm = v 78 a partition, then

IM(T) -M(u,v) I < (v-u)KZH?HwZ(YI[u,v]).

Proof. Write

M(T) -M(u,v) = M(to,...,gn)-M(to,tm)

m-1

b

J

1 M(to,tj,tj+1,...,tm)-M(to,tj+l,...,t ).

From 1.3 and 1.4 each term can be majorized by

KZ(Y|[u,v])HYj+L-YjH (for K = K3K,)
so that
. . m-1
IM(T) -M(u, V) I < Ke(y| [u,vl)  § My, q-vsll.
j=0 J J

The mean value theorem applied to each "Yj;l'yj" gives the ma-

jorant
. . m-1
Ke(y|lu,v)ivl, } (tj+1-tj), as claimed.
j=0

Proof of 1.14. Write

t+h

P(t+h)-T(t) = (M{PY)T(e)-T(8) = (M Py-1)T(¢)

t+h

and define z = (Mt

y-1)-(M(t,t+h)-1). Then
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z = 1im(M(t,t1,...,tm_l,t+h)-M(t1,t+h)).
'The inequality used in the proof of 1.14 shows that

<

o
IM(t,t 5. .est _;5t+h) -M(t, t+h) | <Ke(y|[t,t+h]) ‘2
J=

(l)"Yj.,_l'YJ-II
< Ke(y| [t,t+h])2.
By definition of z, T(t+h)-T(t) = (z+M(t,t+h)-1)T(t) so that
IT(t+h) -T() 1 < ITC) N Chzn+IM(t, t+h)-11) <
< IT(t) ukf_(yl [t,t+h]) 2+IM(t, t+h) -11) .

Now, M(t,t+h) = L(y(t+h),y(t)) and we get, using 1.3,

IM(t,t+h) =11 < K'Iy(t) Iy (t+h) -y(t) .

Thus HF(t+hJ-Tft)H < (f+s)HF(t)H, with r = Kl(yllt,t+h])2 s
s = K'llyl_ly(t+h) -y(t) I, which proves the continuity of T.
Applying the last inequality to each pair t=tj, t+h = tj+1 of
a partition T of [a,B] we get

2 '
JZ IT(t;,)-T(t )N <ITI, K § ey [ty e, D T*ITI, Ke(y).

Taking limits as T gets finer it follows that £(T) <ITI_K'£(y)
This proves part (i) . Assume now that y is of class cl. Then

1 t+h

(P(t+h) -T(t)) = £ME™y-Dyr(e)

=1

= 1.

i t+h) -M(t,t+h))
T

HZ

m-12

1
m i (M(t,tl,...,t

and by 1.14 ’
iz <xmyiecvl e, tenn)

whence 1im % z =0.
h->0

We compute now

1

.1 . t+h
1 (T(t+h)-T(t)) =1 ™ -Dr(t) =
o B 11-1:(1)IH e
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lim (hz+ —(M(t t+h)-1))T(t) " =
h->0

Lin ¢ (LOy(t+h) v (8)-1))T(t) ;
h->0

but %(L(Y(t+h),Y(t))'1)-‘ 2 y;(t+h). h(y (t)-v,(t+h)) which

1_
i

+0 , to 2 ) (t)y (t) or, which is the
1-1

converges, when q
{
t

m .
same, to ) v; (£)y;(t). Thus
' i=1

lim Hv(r(t+h) r(t)) = (1 v;(Oy;(eNT(D) ,
h-+0 i=1

O

as claimed.

H
1.15. REMARKS. (i) The results above follow ‘the patterns es-
tablished in [PR]', although the computations here are more
envolved.

(ii) The differential equation I = (Ziiyi)F has been found,
independently, bfiKato [Ka2] and Daleckii [Da] in the 50's

The geometrical meaning of their solutions, however, has been
first established in [CPR,].

“§2. LIFTING CURVES OF BANACH SPACE DECOMPOSITIONS

Recall, from the Introduction, that an idempotent q of a Ba-
nach algebra A determines a space

Sq = {(a,b) € AxA: aq=a , gb=b , ba=ql.

An extensive study of the geometry of Sq, together with some
associated maps like Sq + Q, given by (a,b) +— ab, can be
found in [CPR4]. A connection V is introduced in S, and the
horizontal 1lift of a curve in S4 (horizontal with respect to
V) is obtained by means of a linear differential equation,
just as in the case of Q, (see §1). In this section we descri
be the construction of a specific 1ift of a (rectifiable and
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continuous) curve y in Sq, which turns to be, when y is, say,
of class Cl, the horizontal 1ift of y. We shall follow the
lines of §1 so that we only need to prove the main inequali-
ties.

Given 8 = (a,b), &' = (a',b') in Sq consider L(§,8') = ab' +
+ (1-r)(1-r'), where r = ab and r' = a'b'; observe that both
are idempotent elements of A.

It is clear thét,'for §,8' close enough, L(6§,8') is inverti-
ble. Moreover, if we define an action of G over Sq by g.§ =

='(ga,Bg-l), it is clear that L(§,8').8' = 8.

2.1. PROPOSITION. Let §,8',8" be fixed elements of Sq with
norm at most K. There exists K, > 0 such that

(1) IL(8,8")0 <1 + K 08-8"I
(ii) IL(8,8")L(8',6")-L(8,8") I <K Ns-8'NIs"-8"I.

Pioof. Both inequalities follow easily from the identities
(2.1.1) L(6,8'") =1 + (1-r)(a-a')b' + a(b'-b)
(2.1.2) L(G,S')L(G',d")-L(G,G") =

= [(a'-a)b' + ab(a-a")b'][a'(b'-b'") + a'b'(a'-a'")b"].

Let ¥: [a,B]-+Sq be a rectifiable continuous curve and consi-

der a partition of [a,t], T: to = o < t, < ... < tn = t fine

enough such that, for every k =:1,2,...,n,
g8, = L(y(tk),y(tk_l)) is invertible. Denoting y(t) = (a(t),b(t))

and y(t,) = y, = (a,,b, ), we shall prove that all invertible

k

elements of the form g, = 8.8

28po1- -8 are uniformly bounded,

» independently of T.

2.2. LEMMA. There is a constant M, depending only on vy, such
that for every partition T of [a,tl] "ng < M.

Proof. By 2.1 (i), with K = suply(t)ll, it follows that
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Ig h <71 + Ky -v,_;I so that
n , n
gl < kgl gt < I O+ Kilye=ve D <
n :
< exp kzl Kily-v,_ b <exp(K;2) = M.
where £ is the vileng‘th of vl la,t].

2.3. LEMMA. Given two partitions

0 2
of [s,vn] C [a,Bl, for the same constant Ky of 2.1, <t holds

T1:s<w<.v S...<v, 5 T s<vy<...<vV

that
v

. n

nng-gTzﬂ S Kilgp 2 Ty (vy)-y(w) I

v
where T': v, < vV S ... SV and ts‘n- i8 the length of y|[s,vn].

Proof. Let x = L(v(vy),y(W))L(y(w),y(s))-L(y(vy),v(t)). By
2.1 (ii)

Il <K Y00 -¥(8) 1Y () -y (i) | < Ky Iy (o) -v(vg) 1.

Let z = griX. Then

ng-gTZ' =

v
lzl < Ngp hixl < K kgp 12,1y (vy) -y (W

2.4. LEMMA. Gzven partitions
S = (so,...,sm) , T = (to,...,tn) of [o,tl],

S finer than T, there exists a constant K2 depending only on
Y such that
Cr+l

lgg-goll <K, ZB mix Ltk
We omit the proof because is a simple variation of that of 1.5,
using the estimates of 2.2 and 2.3. Moreover the rest of the
proof of ﬂmafollowing theorem follows the lines of 1.7-1.14,
just replacing the corresponding lemmas by these proven'in this
section.
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2.5. THEOREM. Let Y: [a,B] +‘Sq be a rectifiable and conti-
nuous curve in S,. Then, for every t € [a,B] the limit

T(t) =|}ﬁm gy exists and T <s a rectifiable and continuous
Ti->0 ’

curve [a,8] + G such that T(t).y(a) = y(t) for all t € [a,B].

If vy is a Cl—curve then T is the unique solution of the ini-

"tial value problem

b= I—aﬁ + frjr ,b r(e) = 1.

Proof. We only consider the last assertion. Let t € [a,B],
h >0 and T a partition of [a,t] T: tg =0 <t; <... <tp=t.’
If h is small enough and gt+h = a(t+h)b(t)+(1-r(t+h)) (1-r(t)),

P(t+h) -T(t) = g, T(t)-T(t)+o(h),

by the first part of the theorem; so it is enough to prove

that lim (g,,,-1)/h = —a(t)b(t)+r(t)T(t).
h-+0

Computing
1 = a(t+h)b(t)-r(t+h)-r(t) +r(t+h)r(t) =

a(t+h) (b(t)-b(t+h)) +(r(t+h) -T ()T (1))

Ee4n”

and the'result‘follpws.
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