MULTIPLICATIVE INTEGRALS AND GEOMETRY OF SPACES OF PROJECTIONS

G. CORACH, H. PORTA and L. RECHT

Dedicated to Mischa Cotlar.

INTRODUCTION

Let A be a (real or complex) Banach algebra with identity and $Q_n = \{q = (q_1, \ldots, q_n) \in A^n \colon q_k^2 = q_k, \ q_i q_k = 0 \ \text{if} \ i \neq k \ , \ \sum_{k=1}^n q_k = 1 \}.$ For $q_0 = (q_1, \ldots, q_n) \in Q_n$ the map $\pi \colon G \to Q_n$ $\pi(g) = gq_0g^{-1}$ (G denotes the group of units of A) defines a principal fibre bundle over its image (the "joint similarity orbit" of q_0 , with the terminology of [CH]); in particular, curves $\gamma \colon [0,1] \to Q_n \text{ with origin } q_0, \text{ admit a lift } \Gamma \colon [0,1] \to G, \text{ i.e.}$ $\Gamma(t)q_0\Gamma(t)^{-1} = \gamma(t)$ for all $t \in [0,1]$ (see [CPR]).

We shall construct, for γ continuous and rectifiable, an explicit lift Γ , which turns to be the horizontal lift of γ for a natural connection on Q_n introduced in $[CPR_1]$. An analogous result is obtained for the space $S_q = \{(a,b) \in A \times A: aq = a$, qb = b, $ba = q\}$ (q is a fixed idempotent of A). Given Banach spaces E and F the set $S(E,F) = \{(i,j) \in L(E,F) \times L(F,E): ji = 1_E\}$ (considered in [Do] and [Ko]), has the form S_q , when it is non-empty: in fact, if $(i_0,j_0) \in S(E,F)$, $q=i_0j_0$ is an idempotent of A = L(F) and the map $S(E,F) \rightarrow S_q$ (i,j) \mapsto (ij_0,i_0j) identifies both spaces. For a fixed $(a_0,b_0) \in S_q$ the map $\pi': G \rightarrow S_q$, $\pi'(g) = (ga_0,b_0g^{-1})$ is another principal fibre

bundle over its image. As in the case of Q_n a procedure for producing lifts of rectifiable curves $[0,1] \rightarrow S_n$, is obtained.

The main advantage of these constructions consists in the fact that they are explicit. They are special cases of the multiplicative integrals of [Po]. The case n=1 has been considered in [PR]. The reader is also referred to [CPR₁], [CPR₂] and [CPR₃] for a geometrical study of Q(=Q₁), Q_n and S_q. Earlier facts on Q_n can be found in [Ka₂], [Da], [Ka₁,Ch.II,§4], [DK].

§1. LIFTING RECTIFIABLE CURVES

Let $\gamma\colon [\alpha,\beta]\to Q_n$ be a continuous rectifiable curve. Our first objective is to construct for every $t\in [\alpha,\beta]$ an invertible element $M_{\alpha}^t\gamma$ such that

$$(M_{\alpha}^{t}\gamma)\gamma(\alpha)(M_{\alpha}^{t}\gamma)^{-1}=\gamma(t) \text{ for all } t\in [\alpha,\beta].$$

The idea of the construction is the following: given q,r in Q_n close enough, it is easy to obtain an invertible g such that $gqg^{-1}=r$; now, taking a partition T of $[\alpha,t]$,T: $\alpha=t_0 \leq t_1 \leq t_2 \leq \ldots \leq t_n=t$ fine enough such that $q^{(i)}=t_0 \leq t_1$ is near to $q^{(i+1)}$, we get for each $t=0,\ldots,n-1$ an t=1 vertible t=1 such that t=1 such that t=1 conjugates t=1 thus t=1 thus

Given $q,r \in Q_n$ we write $L(q,r) = \sum_{k=1}^n q_k r_k$.

1.1 PROPOSITION. For $q,r,s,q^{(0)},\ldots,q^{(m)}$ in Q_n the following properties hold

(i)
$$L(q,q) = 1$$

(ii)
$$qL(q,r) = L(q,r)r$$

(iii)
$$L(q,r)-1 = \sum_{k=1}^{n} q_{i}(r_{i}-q_{i})$$

(iv)
$$L(q^{(0)}, q^{(1)})L(q^{(1)}, q^{(2)})...L(q^{(m-1)}, q^{(m)}) =$$

$$= \sum_{k=1}^{n} q_k^{(0)} q_k^{(1)}...q_k^{(m)}$$

$$(v) \quad L(q^{(0)}, q^{(1)}) \dots L(q^{(m-1)}, q^{(m)}) - L(q^{(0)} - q^{(m)}) =$$

$$= \sum_{i=1}^{m-1} \sum_{k=1}^{n} q_k^{(0)} (q_k^{(0)} - q_k^{(i)}) (q_k^{(i)} - q_k^{(i+1)}) ;$$

(vi)
$$L(q,r)L(r,s)-L(q,s) = \sum_{k=1}^{n} q_k(q_k-r_k)(r_k-s_k)$$
.

We omit the proof, which is straightforward; just observe for (v) that, given idempotents p_0, \ldots, p_m in A, by induction on n it follows that

$$p_0 p_1 \dots p_{m-1} p_m - p_0 p_m = \sum_{i=1}^{m-1} p_0 (p_0 - p_i) (p_i - p_{i+1}).$$

REMARK. L(q,r) will be the invertible g mentioned at the beginning of this section.

1.2 PROPOSITION. For each K > 0 there exists $K_1 > 0$ such that, for every $q,r,s,q^{(0)},\ldots,q^{(m)}$ in Q_n with norm at most K it holds that

(i)
$$\|q_n\| \le K_1$$
 $(k \le n)$

(ii)
$$\sum_{k=1}^{n} \|q_k - r_k\| \le K_1 \|q - r\|$$

(iii) $\|L(q,r)\| \le \exp(K_1^2 \|q-r\|)$ and therefore $\|L(q^{(0)},q^{(1)}...L(q^{(m-1)},q^{(m)})\| \le \exp(K_1^2 \sum_{i=1}^m \|q^{(i)}-q^{(i-1)}\|)$

(iv)
$$\|L(q^{(0)}, q^{(1)}) \dots L(q^{(m-1)}, q^{(m)}) - L(q^{(0)}, q^{(m)})\| \le K_1^3 \max_{i} \|q^{(0)} - q^{(i)}\| \sum_{i=1}^{m} \|q^{(i)} - q^{(i-1)}\|$$

and when m=2,

(v)
$$\|L(q,r)L(r,s)-L(q,s)\| \le K_1^3\|q-r\| \|r-s\|$$
.

(The norm we use in $Q_n \subseteq A^n$ is $\|q\| = \max_{k \le n} \|q_k\|$).

Proof. Take $K_1 = \max\{n, K\}$. Then, (i) and (ii) follow easily. In order to prove (iii) write $L(q,r) = 1 + \sum_{k=1}^{n} q_k(r_k - q_k)$; using (i) and (ii)

$$\|L(q,r)\| \le 1 + K_1 \sum_{k=1}^{n} \|r_k - q_k\| \le 1 + K_1^2 \|r - q\| \le \exp(K_1^2 \|q - r\|)$$

Finally, 1.2 (v) implies

$$\| L(q^{(0)}, q^{(1)}) \dots L(q^{(m-1)}, q^{(m)}) - L(q^{(0)}, q^{(m)}) \| \le$$

$$\leq \sum_{i=k} K_1 \| q_k^{(0)} - q_k^{(i)} \| \| q_k^{(i)} - q_k^{(i+1)} \| \leq$$

$$\leq K_1^3 \max_{i} ||q^{(0)} - q^{(i)}|| \sum_{i} ||q_i - q_{i-1}||.$$

Suppose that $\gamma\colon [\alpha,\beta]\to Q_n$ is a (continuous) path and let $K=\max(\|\gamma(t)\|\colon \alpha\leqslant t\leqslant \beta)$. It follows from 1.2 that there is K_1 such that all conclusions there in hold for elements of the form $\gamma(t)$ with $t\in [\alpha,\beta]$. We will use this repeatedly in the proofs below.

Consider a partition T: $\alpha \leq t_0 \leq t_1 \leq \ldots \leq t_n = \beta$ and set $\gamma_k = \gamma(t_k)$. We recall that γ has finite length if $\sup_k \sum_{k=0}^n \|\gamma_k - \gamma_{k-1}\|$ is finite (Sup taken over all partitions); we denote $\ell(\gamma) = \operatorname{length}(\gamma) = \sup_k \sum_{k=0}^n \|\gamma_k - \gamma_{k-1}\|$. More precisely, if $\alpha < u < v < \beta$ we will denote by $\ell(\gamma | [u,v])$ the length of the restriction of γ to [u,v], i.e. the sup taken over all partitions of [u,v].

Given a path $\gamma\colon [\alpha,\beta]\to Q_n$ and a partition $T\colon \alpha\leqslant t_0\leqslant t_1\leqslant \ldots\leqslant t_m\leqslant \beta$ we define

$$M(T) = M(t_0, t_1, ..., t_m) = L(\gamma_m, \gamma_{m-1}) ... L(\gamma_1, \gamma_0).$$

We prove next a series of lemmas that lead to the first theorem of this section whose statement is: $\lim M(T)$ exists for a path of finite length.

We assume from now on that γ has finite length, with $K = \max \|\gamma(t)\|$, $\ell = length(\gamma)$.

Recall that K_1 is the number of 1.2.; we set $K_2 = \exp(K_1^2)$.

1.3. LEMMA. For all T $||M(T)|| \leq K_2$.

The proof follows easily from 1.1.(iii).

Consider now the partition obtained by adding a new partition point v between t_0 and t_1 , i.e. $T': \alpha \leq t_0 \leq v \leq t_1 \leq \ldots \leq t_m \leq \beta$.

1.4. LEMMA. $\|M(T') - M(T)\| \le K_1^3 K_2 \|\gamma_1 - \gamma(v)\| \|\gamma(v) - \gamma_0\|$.

Proof. Write

$$M(T') - M(T) = L(\gamma_{m}, \gamma_{m-1}) \dots L(\gamma_{1}, \gamma(v)) L(\gamma(v), \gamma_{0}) - L(\gamma_{m}, \gamma_{m-1}) \dots L(\gamma_{1}, \gamma_{0}) =$$

$$= M(t_{1}, t_{2}, \dots, t_{m}) [L(\gamma_{1}, \gamma(v)) L(\gamma(v), \gamma_{0}) - L(\gamma_{1}, \gamma_{0})]$$

and therefore, using 1.1 (v) and 1.3

$$\| \hspace{.05cm} \mathsf{M}(\hspace{.05cm}\mathsf{T}\hspace{.1cm}'\hspace{.1cm}) \hspace{.1cm} - \hspace{.05cm} \mathsf{M}(\hspace{.05cm}\mathsf{T}\hspace{.1cm}) \hspace{.1cm} \| \hspace{.1cm} \hspace{.1cm} \leqslant \hspace{.1cm} \hspace{.1cm$$

as desired.

Suppose now that S: $\alpha \leq s_0 \leq s_1 \leq \ldots \leq s_\ell \leq \beta$ is a partition finer than T: $\alpha \leq t_0 \leq t_1 \leq \ldots \leq t_m \leq \beta$. In order to prove the next lemma we will label the partition points as follows:

$$\alpha \leqslant s_0 \leqslant t_0 \leqslant s_1 \leqslant \ldots \leqslant s_h = t_1 \leqslant s_{h+1} \leqslant \ldots \leqslant s_k = t_2 \leqslant \ldots \text{ etc.}$$

1.5. LEMMA.
$$\|M(S) - M(T)\| \le K_1^3 K_2 \ell \max_{j} \{\ell(\gamma | [t_j, t_{j+1}])\}.$$

Proof. Write

$$x_0 = M(s_0, ..., s_h), x_1 = M(s_h, ..., s_k), \text{ etc.},$$

$$y_0 = M(t_0, t_1),$$

$$y_1 = M(t_1, t_2), \text{ etc.},$$

and

$$w = M(S) - M(T).$$

Then

$$W = x_{m-1}x_{m-2}...x_0-y_{m-1}y_{m-2}...y_0 =$$

$$= x_{m-1}...x_1(x_0-y_0)+x_{m-1}...x_2(x_1-y_1)y_0+...+$$

$$+ x_{m-1}...x_{i+1}(x_i-y_i)y_{i-1}...y_0+...+(x_{m-1}-y_{m-1})y_{m-2}...y_0$$

and also $x_{m-1} x_{j+1} = M(s_q, s_{q+1}, \dots, s_m)$ with $s_q = t_{j+1}$ and $y_{j-1} y_0 = M(t_0, \dots, t_j)$.

Therefore, using 1.3

$$\|w\| \le K_2^2 \sum_{j=1}^m \|x_j - y_j\|.$$

We can write $x_j - y_j = M(u_0, u_1, ..., u_r) - M(u_0, u_r)$ where $u_0, ..., u_r$ denote the s_j between t_j and t_{j+1} , so that in particular $u_0 = t_j$, $u_r = t_{j+1}$. Clearly

$$x_{j} - y_{j} = M(u_{0}, ..., u_{r}) - M(u_{0}, u_{2}, ..., u_{r}) + M(u_{0}, u_{2}, ..., u_{r}) - ... + M(u_{0}, u_{r-1}, u_{r}) - M(u_{0}, u_{r}),$$

and to each difference we apply 1.4 to obtain

$$\begin{split} &\| \mathsf{M}(\mathsf{u}_0,\mathsf{u}_{\mathtt{i}},\mathsf{u}_{\mathtt{i}+1},\ldots,\mathsf{u}_{\mathtt{r}}) \cdot \mathsf{M}(\mathsf{u}_0,\mathsf{u}_{\mathtt{i}+1},\ldots,\mathsf{u}_{\mathtt{r}}) \, \| \, \leqslant \\ & \leqslant \mathsf{K}_1^3 \mathsf{K}_2 \| \gamma(\mathsf{u}_{\mathtt{i}+1}) \cdot \gamma(\mathsf{u}_{\mathtt{i}}) \, \| \| \gamma(\mathsf{u}_{\mathtt{i}}) \cdot \gamma(\mathsf{u}_0) \, \| \, \leqslant \\ & \leqslant \mathsf{K}_1^3 \mathsf{K}_2 \ell(\gamma | \, [\mathsf{t}_{\mathtt{i}},\mathsf{t}_{\mathtt{i}+1}]) \, \| \gamma(\mathsf{u}_{\mathtt{i}+1}) \cdot \gamma(\mathsf{u}_{\mathtt{i}}) \, \| \, . \end{split}$$

Thus $\|x_j - y_j\| \le K_1^3 K_2 \ell(\gamma | [t_j, t_{j+1}])^2$ and it follows that

$$\|\mathbf{w}\| \leq K_{1}^{3} K_{2} \sum_{j=0}^{m-1} \ell(\gamma | [t_{j}, t_{j+1}]) \leq$$

$$\leq K_{1}^{3} K_{2} \ell \max_{i} \ell(\gamma | [t_{j}, t_{j+1}]) ,$$

which proves the lemma.

The results of the next lemma are well-known.

1.6. LEMMA. Let $\gamma(t)$, $\alpha \leq t \leq \beta$ be a continuous path with fini

te length in a Banach space and let $\epsilon>0$. Then:

- (i) there exists $\delta > 0$ such that if $\alpha = t_0 \leq t_1 \leq \ldots \leq t_m = 0$ $= \beta \text{ is a partition of } [\alpha, \beta] \text{ with } \max_k |t_k t_{k-1}| < \delta \text{ then}$ $\ell(\gamma) \leq \varepsilon + \sum_{1}^{m} \|\gamma(t_k) \gamma(t_{k-1})\|;$
- (ii) there exists $\delta' > 0$ such that if $[u,v] \subseteq [\alpha,\beta]$ and $0 \le v u \le \delta'$ then $\ell(\gamma|[u,v]) \le \epsilon$.
- 1.7. THEOREM. Let $\gamma\colon [\alpha,\beta]\to \mathsf{Q}_n$ be a continuous path with finite length. Then, there is an element $\mathsf{M}_\alpha^\beta\gamma$ when $\max_k |\mathsf{t}_k^{-1}_k|\to 0.$

Proof. Let T_1, T_2, \ldots be a sequence of partitions of $[\alpha, \beta]$ such that T_{m+1} is finer than T_m and with $|T_m| \to 0$. From 1.5 and 1.6 (ii) it follows that $\{M(T_m)\}$ is a Cauchy sequence in A. Let $M_{\alpha}^{\beta} \gamma = \lim_{n \to \infty} M(T_m)$.

Suppose that $\epsilon > 0$. By 1.6 (ii) there is $\delta > 0$ such that $0 \le v-u \le \delta$ implies $K_1^3K_2\ell.\ell(\gamma | [u,v]) \le \epsilon$. Assume now that W is any partition of $[\alpha,\beta]$ with $|W| \le \delta$. We can write

$$\begin{split} \|M_{\alpha}^{\beta} \gamma - M(W)\| & \leq \|M_{\alpha}^{\beta} \gamma - M(T_{m})\| + \|M(T_{m}) - M(T_{m} \cup W)\| & + \\ (*) & + \|M(T_{m} \cup W) - M(W)\|. \end{split}$$

From 1.5 with T=W and S = $T_m \cup W$ we get

$$\|M(T_m \cup W) - M(W)\| \le \varepsilon$$
 for all m;

again from 1.5 with T=T $_{\rm m}$ and S = T $_{\rm m} \cup W$ and using 1.6 we get

$$\lim_{m} \| M(T_{m}) - M(T_{m} \cup W) \| = 0.$$

Hence taking limit for $m\to\infty$ in (*) we obtain $\|M_\alpha^\beta\gamma-M(W)\|\leqslant\epsilon$ and this concludes the proof.

Clearly, by considering the restrictions of γ to subintervals

 $[u,v] \subseteq [\alpha,\beta]$ we will have elements $\textbf{M}_u^v \gamma$.

1.8. COROLLARY. If $f\colon A\to B$ is a homomorphism of Banach algebras preserving the identities, then $f(M_{\alpha}^{\beta}\gamma)=M_{\alpha}^{\beta}(f\circ\gamma)$. In particular, for every $g\in G(A)=g(M_{\alpha}^{\beta}\gamma)\,g^{-1}=M_{\alpha}^{\beta}(g\gamma g^{-1})$.

Proof. It suffices to observe that $f(M_{\gamma}(T)) = M_{f \circ \gamma}(T)$ for each partition T and apply the theorem.

1.9. PROPOSITION. For each $[u,v] \subseteq [\alpha,\beta]$ the element $M_u^v \gamma$ is invertible in A and $(M_u^v \gamma)^{-1} = M_u^v \sigma$, where σ is the opposite path of γ , i.e., $\sigma(t) = \gamma(u+v-t)$. Moreover, $M_u^v \gamma = 1$ $(u \in [\alpha,\beta])$.

Proof. Let T: $u = t_0 \le t_1 \le \ldots \le t_m = v$ be a partition of [u,v] and S the "opposite partition", i.e., $s_k = u+v-t_{m-k}$. Then $(M_u^V\gamma)(M_u^V\sigma) = \lim_{n \to \infty} M_{\gamma}(T).M_{\sigma}(S)$ as T gets finer, where the notation $M_{\gamma}(T)$, $M_{\sigma}(S)$ is self-explanatory.

Clearly $M_{\gamma}(T)M_{\sigma}(S) = L(\gamma_m, \gamma_{m-1}) \cdot L(\gamma_{m-1}, \gamma_{m-2}) \cdot ... L(\gamma_1, \gamma_0) \cdot L(\sigma_m, \sigma_{m-1}) \cdot ... L(\sigma_{m-1}, \sigma_{m-2}) \cdot ... L(\sigma_1, \sigma_0) = L(\gamma_m, \gamma_{m-1}) \cdot ... L(\gamma_1, \gamma_0) \cdot L(\gamma_0, \gamma_1) \cdot ... L(\gamma_{m-1}, \gamma_m)$ where $\gamma_j = \gamma(t_j)$ and $\sigma_k = \sigma(s_k) \cdot Now$, for p,q in P_n it holds $L(p,q)L(q,p) = 1 - \sum_{j=1}^{n} p_j(q_j - p_j)^2 p_j$ so we obtain

We can apply the same device to the central term $L(\gamma_2,\gamma_1).L(\gamma_1,\gamma_2)$ so we get

$$\begin{split} \mathsf{M}_{\gamma}(\mathsf{T}) \, \mathsf{M}_{\sigma}(\mathsf{S}) &= \, \mathsf{L}(\gamma_{m}, \gamma_{m-1}) \dots \mathsf{L}(\gamma_{3}, \gamma_{2}) \, \mathsf{L}(\gamma_{2}, \gamma_{3}) \dots \mathsf{L}(\gamma_{m-1}, \gamma_{m}) \, \, - \\ &- \, \mathsf{L}(\gamma_{m}, \gamma_{m-1}) \dots \mathsf{L}(\gamma_{3}, \gamma_{2}) \, (\sum_{i=1}^{n} \, \gamma_{2}^{(i)} \, (\gamma_{1}^{(i)} - \gamma_{2}^{(i)})^{2} \gamma_{2}^{(i)}) \, \, . \\ &\cdot \, \mathsf{L}(\gamma_{2}, \gamma_{3}) \dots \mathsf{L}(\gamma_{m-1}, \gamma_{m}) \, \, - \\ &- \, \mathsf{L}(\gamma_{m}, \gamma_{m-1}) \dots \mathsf{L}(\gamma_{2}, \gamma_{1}) \, (\sum_{i=1}^{n} \, \gamma_{1}^{(i)} \, (\gamma_{0}^{(i)} - \gamma_{1}^{(i)})^{2} \gamma_{1}^{(i)}) \, \, . \\ &\cdot \, \mathsf{L}(\gamma_{1}, \gamma_{2}) \dots \mathsf{L}(\gamma_{m-1}, \gamma_{m}) \, . \end{split}$$

After m steps we reach, using 1.1 (iv) m times,

$$M_{\gamma}(T) M_{\sigma}(S) = 1 - \sum_{k=1}^{n} \sum_{i=0}^{m-1} M_{\gamma}(T_{i}) (\gamma_{k}^{(i)} - \gamma_{k}^{(i+1)})^{2} M_{\gamma}(S_{i})$$

where T_i : $t_i \le t_{i+1} \le \ldots \le t_m$ and

$$s_{j}: s_{0} \le s_{1} \le \dots \le s_{n-j-1}.$$

Therefore, taking norms and using 1.3

$$\begin{split} \| M_{\gamma}(T) M_{\sigma}(S) - 1 \| & \leq K_{2}^{2} \sum_{k=1}^{n} \sum_{i=0}^{m-1} \| \gamma_{k}^{(i)} - \gamma_{k}^{(i+1)} \|^{2} \leq \\ & \leq K_{2}^{2} \cdot n \max_{i} \ell \left(\gamma_{i} \middle| [u, v] \right) \max_{i, k} \| \gamma_{k}^{(i)} - \gamma_{k}^{(i+1)} \| . \end{split}$$

Taking limits as T gets finer, we conclude from the uniform continuity of $\boldsymbol{\gamma}$ that

$$\max_{\substack{i,k}} \|\gamma_k^{(i)} - \gamma_k^{(i+1)}\| \rightarrow 0.$$

Thus $\lim_{\gamma} M_{\gamma}(T) M_{\sigma}(S) = 1$, as claimed.

For $u \leq v$ in $[\alpha, \beta]$ we define

$$M_{v}^{u} \gamma = (M_{u}^{v} \gamma)^{-1}.$$

With this definition we are allowed to write $M_u^v \gamma$ for any pair u,v in $[\alpha,\beta]$.

1.10. PROPOSITION. $(M_u^v\gamma)(M_v^w\gamma) = M_u^w\gamma \text{ for all } u,v,w \text{ in } [\alpha,\beta]$.

Proof. Assume first that $w \le u \le v$. Let T and S be partitions of [w,u] and [u,v], respectively. Clearly $M(S)M(T) = M(T \cup S)$ and taking limits we obtain the desired formula. All other cases reduce to this. For instance, when $w \le v \le u$ we get $M_w^u \gamma = M_w^u \gamma$. Whence $(M_v^u \gamma)^{-1} M_w^u \gamma = M_w^v \gamma$; but $M_u^v \gamma = (M_v^u \gamma)^{-1}$ and the formula follows.

The next result proves the lifting property of $M_{v}^{u}\gamma$.

1.11. THEOREM.
$$(M_u^v \gamma) \gamma(u) (M_u^v \gamma)^{-1} = \gamma(v)$$
.

Proof. Let T: $t_0 = u \le t_1 \le ... \le t_w = v$ be a partition of [u,v]; then

$$M(T) = L(\gamma_m, \gamma_{m-1}) \dots L(\gamma_1, \gamma_0)$$

and each $L(\gamma_j, \gamma_{j-1})$ is invertible if T is fine enough. Then, using 1.1 (ii) m times,

$$M(T)\gamma(u)M(T)^{-1} = M(T)\gamma_0M(T)^{-1} = \gamma(v)$$

and the theorem follows taking the limit as T gets finer.

If we define, for each t in $[\alpha, \beta]$,

$$\Gamma(t) = M_a^t \gamma$$
,

we summarize the properties of $\textbf{M}_{u}^{\textbf{V}} \gamma$ as follows.

1.12. THEOREM. (i) Γ is a function from $[\alpha, \beta]$ into G with $\Gamma(\alpha) = 1$; (ii) ("Barrow's rule") $M_{\mathbf{u}}^{\mathbf{v}} \gamma = \Gamma(\mathbf{v}) \Gamma(\mathbf{u})^{-1}$ ($\mathbf{u}, \mathbf{v} \in [\alpha, \beta]$); (iii) $\gamma(t) = \Gamma(t) \gamma(\alpha) \Gamma(t)^{-1}$ ($t \in [\alpha, \beta]$).

Finally, we prove Γ coincides with the lifting of γ

exhibited in [CPR $_{\uparrow}$], when γ is C 1 .

1.13. THEOREM. (i) If γ is a continuous and rectifiable path in Q_n then Γ is continuous and rectifiable in G;

(ii) If γ is a C^1 path in Q_n then Γ is also a C^1 path in G and satisfies $\dot{\Gamma} = (\sum_{i=1}^{n} \dot{\gamma}_i \gamma_i) \Gamma$, to γ .

We need a lemma

1.14. LEMMA. If γ is a path of class C^1 and T: $u = t_0 \le t_1 \le \ldots \le t_m = v$ is a partition, then

$$\| \mathbf{M}(\mathbf{T}) - \mathbf{M}(\mathbf{u}, \mathbf{v}) \| \leq (\mathbf{v} - \mathbf{u}) K_2 \| \dot{\boldsymbol{\gamma}} \|_{\infty} \ell(\boldsymbol{\gamma} | [\mathbf{u}, \mathbf{v}]).$$

Proof. Write

$$M(T) - M(u,v) = M(t_0, ..., t_m) - M(t_0, t_m) =$$

$$= \sum_{j=1}^{m-1} M(t_0, t_j, t_{j+1}, ..., t_m) - M(t_0, t_{j+1}, ..., t_m).$$

From 1.3 and 1.4 each term can be majorized by

$$K\ell(\gamma | [u,v]) \| \gamma_{j+1} - \gamma_j \|$$
 (for $K = K_1^3 K_2$)

so that

$$\|M(T) - M(u, v)\| \le K\ell(\gamma | [u, v]) \sum_{j=0}^{m-1} \|\gamma_{j+1} - \gamma_j\|.$$

The mean value theorem applied to each $\|\gamma_{j+1}^{}-\gamma_{j}^{}\|$ gives the majorant

$$K\ell(\gamma|[u,v])\|\dot{\gamma}\|_{\infty} \sum_{j=0}^{m-1} (t_{j+1}-t_{j}), \text{ as claimed.}$$

Proof of 1.14. Write

$$\Gamma(t+h)-\Gamma(t) = (M_t^{t+h}\gamma)\Gamma(t)-\Gamma(t) = (M_t^{t+h}\gamma-1)\Gamma(t)$$

and define $z = (M_t^{t+h}\gamma-1)-(M(t,t+h)-1)$. Then

$$z = \lim(M(t,t_1,...,t_{m-1},t+h)-M(t_1,t+h)).$$

The inequality used in the proof of 1.14 shows that

$$\leq K\ell(\gamma | [t,t+h])^2$$
.

By definition of z, $\Gamma(t+h)-\Gamma(t)=(z+M(t,t+h)-1)\Gamma(t)$ so that

$$\|\Gamma(t+h) - \Gamma(t)\| \leq \|\Gamma(t)\| (\|z\| + \|M(t,t+h) - 1\|) \leq$$

$$\leq \|\Gamma(t)\| K \ell(\gamma | [t,t+h])^2 + \|M(t,t+h) - 1\|).$$

Now, $M(t,t+h) = L(\gamma(t+h),\gamma(t))$ and we get, using 1.3,

$$||M(t,t+h)-1|| \le K' ||\gamma(t)|| ||\gamma(t+h)-\gamma(t)||.$$

Thus $\|\Gamma(t+h)-\Gamma(t)\| \leq (r+s)\|\Gamma(t)\|$, with $r = K\ell(\gamma|[t,t+h])^2$, $s = K'\|\gamma\|_{\infty}\|\gamma(t+h)-\gamma(t)\|$, which proves the continuity of Γ . Applying the last inequality to each pair $t=t_j$, $t+h=t_{j+1}$ of a partition T of $[\alpha,\beta]$ we get

$$\textstyle\sum\limits_{j}\,\,\|\Gamma(t_{j+1})\,\cdot\Gamma(t_{j})\,\|\,\leqslant\,\|\Gamma\|_{\infty}\,\,K\,\,\textstyle\sum\limits_{j}\,\,\ell(\gamma|\,[t_{j}\,,t_{j+1}]\,)^{\,2}\,+\|\Gamma\|_{\infty}\,\,K^{\,\prime}\ell(\gamma)\,.$$

Taking limits as T gets finer it follows that $\ell(\Gamma) \leq \|\Gamma\|_{\infty} K' \ell(\gamma)$ This proves part (i). Assume now that γ is of class C^1 . Then

$$\frac{1}{h}(\Gamma(t+h)-\Gamma(t)) = \frac{1}{h}(M_t^{t+h}\gamma-1)\Gamma(t) ,$$

$$\frac{1}{h}z = \lim_{m} \frac{1}{h} (M(t,t_1,...,t_{m-1},t+h)-M(t,t+h))$$

and by 1.14

$$\left\| \frac{1}{h} z \right\| \leq K'' \|\dot{\gamma}\|_{\infty} \ell(\gamma | [t, t+h])$$

whence $\lim_{h\to 0} \frac{1}{h} z = 0$.

We compute now

$$\lim_{h\to 0} \frac{1}{h} \left(\Gamma(t+h) - \Gamma(t)\right) = \lim_{h\to 0} \frac{1}{h} \left(M_t^{t+h} \gamma - 1\right) \Gamma(t) =$$

=
$$\lim_{h\to 0} \left(\frac{1}{h}z + \frac{1}{h}(M(t,t+h)-1))\Gamma(t)\right) =$$

= $\lim_{h\to 0} \frac{1}{h} \left(L(\gamma(t+h),\gamma(t)-1))\Gamma(t)\right);$

but $\frac{1}{h}(L(\gamma(t+h),\gamma(t))-1) = \sum_{i=1}^{n} \gamma_i(t+h) \cdot \frac{1}{h}(\gamma_i(t)-\gamma_i(t+h))$ which converges, when $h \to 0$, to $-\sum_{i=1}^{n} \gamma_i(t)\dot{\gamma}_i(t)$ or, which is the same, to $\sum_{i=1}^{m} \dot{\gamma}_i(t)\gamma_i(t)$. Thus

$$\lim_{h\to 0} \frac{1}{h} \left(\Gamma(t+h) - \Gamma(t) \right) = \left(\sum_{i=1}^{n} \dot{\gamma}_{i}(t) \gamma_{i}(t) \right) \Gamma(t) ,$$

as claimed.

- 1.15. REMARKS. (i) The results above follow the patterns established in [PR]^F, although the computations here are more envolved.
- (ii) The differential equation $\dot{\Gamma} = (\dot{\Sigma}\dot{\gamma}_i\gamma_i)\Gamma$ has been found, independently, by Kato [Ka₂] and Daleckii [Da] in the 50's. The geometrical meaning of their solutions, however, has been first established in [CPR₁].

§2. LIFTING CURVES OF BANACH SPACE DECOMPOSITIONS

Recall, from the Introduction, that an idempotent q of a Banach algebra A determines a space

$$S_{q} = \{(a,b) \in A \times A: aq=a, qb=b, ba=q\}.$$

An extensive study of the geometry of S_q , together with some associated maps like $S_q \to Q$, given by $(a,b) \mapsto ab$, can be found in $[CPR_4]$. A connection ∇ is introduced in S_q and the horizontal lift of a curve in S_q (horizontal with respect to ∇) is obtained by means of a linear differential equation, just as in the case of Q_n (see §1). In this section we describe the construction of a specific lift of a (rectifiable and

continuous) curve γ in S_q , which turns to be, when γ is, say, of class C^1 , the horizontal lift of γ . We shall follow the lines of §1 so that we only need to prove the main inequalities.

Given $\delta = (a,b)$, $\delta' = (a',b')$ in S_q consider $L(\delta,\delta') = ab' + (1-r)(1-r')$, where r = ab and r' = a'b'; observe that both are idempotent elements of A.

It is clear that, for δ, δ' close enough, $L(\delta, \delta')$ is invertible. Moreover, if we define an action of G over S_q by $g.\delta = (ga,bg^{-1})$, it is clear that $L(\delta,\delta').\delta' = \delta$.

- 2.1. PROPOSITION. Let δ,δ',δ'' be fixed elements of S_q with norm at most K. There exists $K_1>0$ such that
 - (i) $\|L(\delta, \delta')\| \le 1 + K_1 \|\delta \delta'\|$
- $(\text{ii}) \quad \| L(\delta,\delta')L(\delta',\delta'') L(\delta,\delta'') \| \leqslant K_1 \| \delta \delta' \| \| \delta' \delta'' \|.$

Proof. Both inequalities follow easily from the identities

$$(2.1.1) \quad L(\delta,\delta') = 1 + (1-r)(a-a')b' + a(b'-b)$$

(2.1.2)
$$L(\delta, \delta')L(\delta', \delta'') - L(\delta, \delta'') =$$

= $[(a'-a)b' + ab(a-a')b'][a'(b'-b'') + a'b'(a'-a'')b''].$

Let $\gamma: [\alpha, \beta] \to S_q$ be a rectifiable continuous curve and consider a partition of $[\alpha, t]$, T: $t_0 = \alpha \le t_1 \le \ldots \le t_n = t$ fine enough such that, for every $k = 1, 2, \ldots, n$,

 $g_k = L(\gamma(t_k), \gamma(t_{k-1}))$ is invertible. Denoting $\gamma(t) = (a(t), b(t))$ and $\gamma(t_k) = \gamma_k = (a_k, b_k)$, we shall prove that all invertible elements of the form $g_T = g_n g_{n-1} \dots g_1$ are uniformly bounded, independently of T.

2.2. LEMMA. There is a constant M, depending only on γ , such that for every partition T of $[\alpha,t]$ $\|g_{\tau}\| \leq M$.

Proof. By 2.1 (i), with $K = \sup ||\gamma(t)||$, it follows that

$$\|g_k\| \le 1 + K_1 \|\gamma_k - \gamma_{k-1}\|$$
 so that

$$\begin{split} \| \mathbf{g}_{\mathbf{T}} \| & \leq \prod_{k=1}^{n} \| \mathbf{g}_{k} \| \leq \prod_{k=1}^{n} (1 + K_{1} \| \gamma_{k} - \gamma_{k-1} \|) \leq \\ & \leq \exp \sum_{k=1}^{n} K_{1} \| \gamma_{k} - \gamma_{k-1} \| \leq \exp(K_{1} \ell_{t}) = M. \end{split}$$

where ℓ_{+} is the length of $\gamma | [\alpha, t]$.

2.3. LEMMA. Given two partitions

 $T_1\colon s\leqslant w\leqslant v_0\leqslant\ldots\leqslant v_n\quad;\quad T_2\colon s\leqslant v_0\leqslant\ldots\leqslant v_n$ of $[s,v_n]\subseteq[\alpha,\beta]$, for the same constant K_1 of 2.1, it holds that

$$\|\, g_{_{\mathrm{T}_{_{1}}}} - g_{_{\mathrm{T}_{_{2}}}} \| \,\, \leqslant \, K_{_{1}} \|\, g_{_{\mathrm{T}}} , \|\, \ell_{_{\mathbf{s}}}^{^{\mathbf{v}} n} \|\, \gamma(\mathbf{v}_{_{0}}) - \gamma(\mathbf{w})\, \|\,$$

where $T': v_0 \leq v_1 \leq \ldots \leq v_n$ and $\ell_s^{v_n}$ is the length of $\gamma | [s, v_n]$.

Proof. Let $x = L(\gamma(v_0), \gamma(w))L(\gamma(w), \gamma(s))-L(\gamma(v_0), \gamma(t))$. By 2.1 (ii)

$$\|x\| \leq K_1 \|\gamma(w) - \gamma(s)\| \|\gamma(w) - \gamma(v_0)\| \leq K_1 \|\gamma(w) - \gamma(v_0)\| \ell_s^{V_0}.$$

Let $z = g_{T_1} - g_{T_2} = g_{T_1} x$. Then

$$\|z\| \le \|g_T, \|\|x\| \le K_1 \|g_T, \|\ell_s^{v_n}\|\gamma(v_0) - \gamma(w)\|$$
.

2.4. LEMMA. Given partitions

$$S = (s_0, ..., s_m)$$
, $T = (t_0, ..., t_n)$ of $[\alpha, t]$,

S finer than T, there exists a constant \boldsymbol{K}_2 depending only on $\boldsymbol{\gamma}$ such that

$$\|\mathbf{g}_{\mathbf{S}} - \mathbf{g}_{\mathbf{T}}\| \leq \mathbf{K}_{2} \ \ell_{\beta} \ \underset{\mathbf{k}}{\text{max}} \ \ell_{\mathbf{t}_{\mathbf{k}}}^{\mathbf{t}_{\mathbf{k}+1}} \ .$$

We omit the proof because is a simple variation of that of 1.5, using the estimates of 2.2 and 2.3. Moreover the rest of the proof of the following theorem follows the lines of 1.7-1.14, just replacing the corresponding lemmas by these proven in this section.

2.5. THEOREM. Let $\gamma\colon [\alpha,\beta] \to S_q$ be a rectifiable and continuous curve in S_q . Then, for every $t\in [\alpha,\beta]$ the limit $\Gamma(t)=\lim_{\|T\|\to 0}g_T$ exists and Γ is a rectifiable and continuous curve $[\alpha,\beta] \to G$ such that $\Gamma(t).\gamma(\alpha)=\gamma(t)$ for all $t\in [\alpha,\beta]$. If γ is a C^1 -curve then Γ is the unique solution of the initial value problem

$$\dot{\Gamma} = (-a\dot{b} + \dot{r}r)\Gamma$$
, $\Gamma(\alpha) = 1$.

Proof. We only consider the last assertion. Let $t \in [\alpha, \beta]$, h > 0 and T a partition of $[\alpha, t]$ T: $t_0 = \alpha < t_1 < \ldots < t_n = t$. If h is small enough and $g_{t+h} = a(t+h)b(t)+(1-r(t+h))(1-r(t))$,

$$\Gamma(t+h)-\Gamma(t) = g_{t+h}\Gamma(t)-\Gamma(t)+o(h)$$
,

by the first part of the theorem; so it is enough to prove that $\lim_{h\to 0} (g_{t+h}-1)/h = -a(t)\dot{b}(t)+\dot{r}(t)r(t)$.

Computing

$$g_{t+h}-1 = a(t+h)b(t)-r(t+h)-r(t)+r(t+h)r(t) =$$

= $a(t+h)(b(t)-b(t+h))+(r(t+h)-r(t)r(t))$

and the result follows.

REFERENCES

- [CH] R.CURTO and D.A.HERRERO, On closures of joint similarity orbits, Int.Eq.Op.Th.8 (1985), 489-556.
- [CPR₁] G.CORACH, H.PORTA and L.RECHT, Differential geometry of systems of projectors in Banach algebras, Pac.J. Math. 143 (1990), 1-20.
- [CPR₂] G.CORACH, H.PORTA and L.RECHT, The geometry of spaces of projections in C*-algebras, Advances in Mathematics, to appear.
- [CPR3] G.CORACH, H.PORTA and L.RECHT, Two C*-algebra inequalities, Analysis at Urbana (Proc.Special Year in Modern Analysis at Urbana, Illinois), Cambridge University Press (1989), 141-143.
- [CPR₄] G.CORACH, H.PORTA and L.RECHT, Differential Geometry of spaces of relatively regular operators, Int.Eq.Op. Th. (to appear).
 - [Da] Ju.L.DALECKII, On continuous rotation of subspaces in a Banach space, Uspehi Mat.Nauk 12(1957) 3(75), 147-154 (Russian).
 - [DK] Ju.L.DALECKII and M.G.KREIN, Stability of solutions of differential equations in Banach spaces, Trans. Math.Monographs 43, AMS, Providence, 1974.
 - [Do] A.DOUADY, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann.Inst.Fourier 16 (1966), 1-95.
 - [Ka] T.KATO, Perturbation theory for linear operators, 2nd. edition, Springer-Verlag, Berlin, 1984.
 - [Ka₂] T.KATO, On the adiabatic theorem of quantum mechanics, J.Phys.Soc.Japan 5 (1950), 433-439.
 - [Po] V.P.POTAPOV, The multiplicative structure of J-contractive matrix functions; Appendix, Transl.Amer.Soc.(II)
 15 (1960), 131-244.
 - [PR] H.PORTA and L.RECHT, Spaces of projections in a Banach algebra, Acta Cient. Venez. 38 (1987), 408-426.

G. CORACH

Instituto Argentino de Matemática CONICET Viamonte 1636 (1054) Buenos Aires. Argentina.

H. PORTA

Department of Mathematics University of Illinois at Urbana-Champaign Urbana, Il. 61801, U.S.A.

L. RECHT

Universidad Simón Bolívar Apartado Postal 89000 Caracas. Venezuela

Recibido en Marzo de 1989.