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ON A GEOMETRIC INTERPRETATION
OF SCHUR PARAMETERS

RODRIGO ‘AROCENA

Para Mischa Cotlar:

ala Matemdtica le debo
un maestro de excepcion

y un amigo muy querido.

ABSTRACT. As an essentially self-contained introduction to a
general approach to moment type problems, based on an original
idea due to Mischa Cotlar, we sketch a method to solve the clas
sical Caratheodory-Fejer problem and give a geometric' interpre-
tation of the Schur parameters. '

INTRODUCTION

In the late seventies, Cotlar suggested that a class of singu-
lar integrals on weighted spaces could be studied by means of
a modification of Toeplitz kernels, an idea that was first ap-
‘plied through the Cotlar-Sadosky lifting theorem [C-S.1]. That
kind of kernéls was later included in the notion of "Generali-
zed Toeplitz Kernels'" [A-C], which allows a unified approach
to several problems (see [C-S.2] for a general overview).

By means of a further generalization of that notion, the
Toeplitz-Krein-Cotlar forms [Ar.1], [Ar.2], such sﬁbjects as the
extension to the discrete plane of a theorem of Krein, on the
Fourier transform of a function of positive type on an interval,
and of the Nagy-Foiés lifting of the commutant can be conside-
red in the same framework. The basic idea is that several gener
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alized = moment problems give rise to a family of isometric ope
rators, with domains and ranges depending on the operator,
such that the original problem can be solved iff there exists
a family of commuting unitary extensions of those operators. In
this way not only existence questions can be handled; also
uhicity_conditions and descriptions of all the solutions in
the indeterminate case appear in quite a natural way. In par-
ticular, a simple geometric interpretation can be given in
this framework of the '"choice sequences'" introduced in [C-F]
and [A-C-F] as a far reaching extension of the Schur parame-
ters.

Now, those parameters, nowadays so important in several sub-
jects (see [K]), were introduced by Schur [Sch.] as an analy-
tic tool to deal with the classical Caratheodory-Fejer problem.
So, as a hopefully simple introduction to the general method
we summarized before; we want to show in this paper how <the
above mentioned Cotlar's idea leads to an operator-theoretic
solution of that problem and to a geometric characterization
of Schur parameters.

THE CARATHEODORY-FEJER PROBLEM REVISITED

NOTATION. Let T be the unit circle in the complex plane C, m
the normalized Lebesgue measure in T and Z the set of 1ntegra1
numbers. If f € L1 (T) =L (T,m), its Fourier transform f Z~+C
is given by

a 2 . .
f(k) = 7%‘Jowf(e1x)e'1kx dx = JTf(z)ik dm(z)

The support of any function h is the set supp h := {h # 0};
f € Ll(T) is a trigonometric polynomial if supp f is a finite
'set. For 1 < p <, HP(T) is the Hardy space defined by

HP(T) = {f € LP(T): f(k) = 0 if k < 0}.

THE PROBLEM. If a sequence {co,c ,cn,...} C C s given

12
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and F, denotes the set of all the functions f € Hm(T) such
that |

f(k) = ¢ k=20,1,...,n ; Ifll, <1,

k’

the problem is to characterize, for each natural n, the (n+1) -

uples such that F, is non void.

A NECESSARY CONDITION.

Assume that there exists £ € F_; then the matrix (a..). ._ given
n ‘ "ijfi,j=1,2

by a;; = a,, = 1, a;, = f, a,; = f, is positive semidefini-

te a.e. in T. Thus

2 - - 2
0 < J_Tllgll + fg,g, + fgy2, + |g,|7] dm

holds for any trigonometric polynomials 8,78, It follows that

(M o< E{(S(Li-v)hl (u)ﬁl(v) +2Re [%(u-v)«hl(u)ﬁz(v)] +6(u-v)h2(u)52(v) :u,v €7}

isvtrue for any h;,hy: Z + C with finite support, where
§: Z » C is such that supp 6§ = {0} and 6(0) = 1.
It is easy to see that, if we set cy = 0 for every k < 0 and

W= W(n) := {k €Z: 0 <k <n}, then (1) is equivalent to

(2) 0 <E(|h;W) |*:u € WhareZle,_hy (Wh,(v) u,v € W} + 2{|h,(v) |2:v € W),

Y hl,hzz Z » C such that supp hl’ supp h2 CW.

Now, the last condition depends only on the given data
{co,cl,...,cn} and is the same as saying that the operator Pn

on C*™*! given by the Toeplitz matrix (t » with t o =

uv)OSU,vSn

=c , satisfies IT_I < 1. Summing up:
v=u n

For F_ to be non void it is necessary that “Fh" <1.

AN AUXILIARY FORM.

In order to prove that the above necessary condition is also
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sufficient, we consider (1) as the assertion that a Toeplitz
form constructed by means of f and acting in the space

A := {h = (h,,h,), h;,h,: Z > C with finite support}

is positive, and we observe that knowing {co,cl,...,cn} is
the same as knowing the restriction of that form to a well-
defined subspace of A. These remarks motivate the following

construction.
Set W, = W;(n) ={ke€Z: k<n}, W,={ke€Z 0<k},
A(n) = {h = (h;,h) € A: supp h, C W, (n), supp h, C Wz}
and define a form B: A(n) xA(n) » C setting, for any h,h' € A(n),

(3 Btll,h') = E{hl(u)ﬁl(u): u€EW}+ E{cu_vhl(u)ﬁé(vj: (u,v) € W, b+
+ E{Eu_thCV)ﬁi(u): u,v) € Wlxwz} + E{hZCv)BE(V): v € Wz}.

Clearly, B is a sesquilinear form; it is easy to see that
IT,I <1 implies that B is positive, i.e., such that

B(h,h) > 0, v h € A(n). Now, B is an example of a generali-
zation of the classical notion of a Toeplitz form in the fol-
‘lowing sense: let S be the shift, i.e., Sg(m). = g(m-1) for
every g in A; then a Toeplitz form in A is an S-invariant
form, while it is not difficult to prove that

(4) B(Sh,Sh') = B(h,h')

whenever it makes sense, that is, for every h, h' in
D'(n) := {g € A(n): Sg € A(n)}.

Now we proceed as in the proof of the famous Naimark's dila-
tion theorem (see [N-F]): setting <h,h'> = B(h,h') for every
h,h' € A(n),’the'positive form B and the vector space A(n)
generate a Hilbert space and a canonic map A from A(n) onto
"a dense subspace of H(n), while SlD'(n) defines in the natu-

fal way (i.e., V A|D'(n) = A SlD'(n)) an isometric operator V
from D(n) onto R(n), which are both subspaces of H(n).
If follows from that construction that d1 = A(S,0),

d2 := A(0.68) implies
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. _ k
(5) Cp = <V dl’d2> , Q <k <n,

so it is natural to try to define c, for k > n by extending V
in such a way that (5) still makes sense. In fact, it is not
difficult to see that there exists a Hilbert space C contai-
ning ﬁ(n) and a unitary operator U € L(G) that extends V. Let

E be the spectral measure of U_l; we define a positive matrix

of Borel measures in T, M = (Mij)i,j=1,2’ setting Mij(.) =
= <E(')di’dj>G and we calculate the Fourier coefficients of

these measures:

» [ x [ ok . )
Mij(k) i= Jqf dMij(z) JT? d<E(z)di,dj>G <U di,dj>G, kezZ, lfJ 1,24

. -k . ek
For k = 0 we have <U dl’d1>G = <V dl’d1>H(n)
= B[S_k(G,O), (8,0)]1 = 8(-k), as it follows from the defini-
tion of B. Thus, the real measure M11 is simply Lebesgue
measure m, and the same holds for M22. Since M is a positive
matrix, M12 has to be absolutely continuous with respect to m,

_ . 1 .

12 = f dm-, with £ € L"(T). Thus the matrix (aij)id=1,2
-given by a =1,

i.e., dM

= f, a = f , is positive semi-

11 - 222 312 21
definite a.e so Ifl_ < 1. Moreover, for any k we have

% x) = 1 2m ixy -ikx _ 5 _ ok
(k) = Y . f(e e dx = Mlz(-k) = <U dl’d2>G

b

so %(k) = <de1,d2>n = B[Sk(d,O),(O,G)] = ¢, holds for every
k <n.

So the proof that F_ # ¢ iff Hrnﬂ < 1 is over.

DESCRIPTION OF ALL SOLUTIONS.

Let U* be the set of all the (U,G) such that G is a Hilbert
space containing H(n) and U € L(G) a unitary operator that
extends V. To each (U,G) € U* we associate f € Fn character-
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ized by

(6) , £(k) = <ud,,d,>; , k € Z.

The function f € Hw(T) is_obtained as the boundary value of an
analytic function in D = {z € C: |z| < 1}, which we also call
f and is given by

£(z) = BE()zZ%: k € 2} = 2E)Z5: k > 0}

so the correspondence (U,G) + f is given by

(7) £(z) = <(I - 20)7'd,,d,>, , [z] < 1.

In order to see that this correspondence from U* to F, is sur-
jective, remark that, if f € F, is given and c, = %(u) for
every u € Z, then (3) défines a positive S-invariant form

B: AxA +!C, so as before A and B generate a Hilbert space G
while S generates a unitary operator U € L(G) that extends V
and such that (6) holds, so f iS given by (U,G) € U#*,

Consequently, all the solutions of the Caratheodory-Fejer pro-
blem can be obtained by the method we have sketched.

‘Moreover, the (U,G) € U* we have just obtained from a given
f € F, satisfies also the minimality condition

(8) G = VIU“H(n):'n €z} ,

where V{...} denotes as usual the smallest Hilbert space that
contains all the sets in {...}, so we say that such (U,G) is a
minimal unitary extension of V. Consequently, in order to get
“the functions of F, we can restrict the above considered cor-
respondence to '

U := {(U,G) € U*: U is a minimal extension of V}

Note that, for any (U,G) € U, <Uk.dj,dj>G = 0 if k#0, j=1,2;

in fact, if j=1 and k < 0 then 0 = B [S¥(6,0),(8,0)] =

= <As®(6,0),4(5,0)> =-<v*a ,d > = <td),dp>, etc.

H (1)

If (v',G6'),(U",G") € U correspond to the same f € Fnrtheh
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U, Ut = ke, Ut

~ holds for any k,m € Z, i,j = 1,2, so setting T(U'kdi) = U"kd
‘we define a unitary operator t from G' onto G" such that

i

' = . =
TU Ut s IH(n)

TH(n)
That is, U'-y U" are essentially the same extension of V, so
we write (U',G') =~ (U",G") and we consider that they are eqﬁal
as elements of U. '

With that identification, the correspondence between U and F
is bijective: U <= Fn.

ON THE UNICITY OF THE SOLUTION.

F, will havie only one elément when the same happens with U.
Let Dfn) be the domain of V, R(n) its range and N(n), M(n) its
defect subspaces, i.e., the orthogonal complements in H(n) of
D(n), R(n), respectively.'It is, not difficult to see that V
has essentially bnly'one minimal unitary extension if at least
one of its defect subspaces (which in this case have the same
dimension) is trivial.

‘Now, D(n) = H(n) iff AS™(5,0) = Vnd1 € D(n), so we have to study

p(n) :=-dist?[V®d ,AD' (n)]

which is the infimum, for h = (hl’hZ) € A(n) with h,(n) =0,

of B[S"(5,0)+h,57(8,0)+h] = 1+ Z{h (w)|%: u <n} +

+ ZReE{cn_vﬁz(v):v > 0} + ZReE{cu_vhi(u)ﬁz(V):v'> 0, u <nl} +
+ E{Ihz(v)lzi'v > 0}. Thus, with obvious notation:

p(n) = inf{i1h#2+1h,1%+2Re<E _h ,h,>:h ,h, € ™1, h (n) = 1},
Replacing hzl(when I h) is nof zero) by -(lhzﬂ/HPnhln)Phl we
- ‘ IT_hi%: n e ¢c®™, h(n) = 1}.

0, and R(n) = H(n) iff p'(n)=0,

can see that p(n) = inf{lhl?

‘Clearly, D(n) = H(n) iff p(n)

with p'(n) = inf{lhl? - Irn*hlzz h € ™!, h(o) = 1}. Now, if
\ n+1

J i8 the antilinear transformation in C given by
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(Jh) (j) = h(n-j), 0 < j <n, then Jr =T _*J, so
i -ir*ni%: hoe <™, ho) = 1} = (IR Ir_tmi?: hoe ¢, he) = 1) =

= {IJhy? - 1Jr_hi%:h € c®!, h(n) = 1}; thus, p(n) = p'(n).

o - - : 2

Since rn*s = (co,...,cn), p(n) < Isn? - HPn*GH =
=1-E{|cj|2:0<j<n}.

If IT | <1 and h(n) = 1, then InI? - Ir_hi% > Ihl - IT_hi >
=1 - ﬂPnH, so urnn < 1 implies p(n) =1 - HFnH. In this way

we arrive at the following

(9) PROPOSITION. Given {CO,C .,cn} cC, set

1>

F_o= {f e H°(T): £(k) = k=0,1,...,n; I€l_ <1}, let T_

Ck’

be the operator in Cn+1>given by the matrix (t )

uv’ 0<€u,v<n °’

witht = ¢ ifu<<vandt =0 4if u>v, and set
uv v-u uv

p(n) = inf{IhI? - T hi%: h € ¢, n(n) = 1}. Then:

a) Fn ) =IUT I <1< p =20=pm =1-1IT1.

n+1

b) o(n) = inf(lhl? - IT *ni%: he ™, h(0) = 1} <1-3lley]?: 0 <j <n)

‘¢ #(Fn) =1*p(@m) =0.

It only remains to prove that p(n) = 0 implies | I‘nll < 1. Assume that _
I I > 1. Let h' € C™ be such that Ih'l = 1 and T h'| = a >

n+l, g(n) = 0} there

> 1. If h' does not belong to C* = {g € C
exists a non zero scalar b such that bh'(n) - 1; if h = bh'
then p(n) < Fhi% - IT_hi? = [b]?(1-a®) < 0. If h' € C?, set
h ='bh' +v, b séalar and v = (0,...,1); then h(n) = 1 and
i? - e i? = [b2nte? + 1 - b2t - IT vI? - 2Re[b<T h',T v>] =
= [b|?(1-a®) -2Re [b<T_h',T_v>] + 1 - E{chlzz 0 <j <n} , which

is negative for a convenient b; thus p(n) < 0.
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CONDITIONS FOR THE EXISTENCE AND UNICITY OF SOLUTIONS.

ﬂPnH < 1 iff the operator (I - Pn*Pn) is positive semidefinite.
If an operator B is given by the matrix (buv}bSu,vSn and if s

denotes the determinant of (buv)OSu,vSm’ then: i) B is positi-

ve semidefinite (i.e., <Bh,h> > 0 for every h) iff Am = 0 for
0 <m < n; ii) B is positive definite (i.e., <Bh,h> > 0 for

every non zero h) iff Am >0 for 0 <m <n. Now:

(10) p(n) = 0 <= HFnH =1 <

(1 - Pn*Pn) is positive semidefinite and det(I - Fn*Fn) =0

It is easy to proVe the equivalence between the second and the
third condition. Let HPnH <1< p(n) =>0.

n+1l

If det(I - rh*rn) 0, there exists a non zero h € C such

that (I - Fn*Pn)h 0, so IIhII2 = HFnhHZ. Let m < n maximum

such that h(m) # 0 and assume h(m) = 1. From ||h||2 = III‘mhII2 we

get p(m) = 0, so #(Fm) 1 and p(n) = 0.

n+l

‘Conversely, if p(n) = 0, there exists {hV: v=0})ccC such

that h_(n) =1 and |h 12 -Ir_h 12 goes to 0. If {h_} has a
v v nv ‘ v

bounded subsequence, p(n) is a minimum, so HFnH 1. If Hth

goes to =, we can find a vector g such that lgl 1 and

1gl? - 1T_gi? = 0, etc.
The proof of’(10)'is over.
We now show how p can be calculated when det(I - Fn*Pn) > 0.

= - * . N . -
Let B (1 Fn Pn) be given by the matrix (buV)OSu,vSn with

respect to the canonic base {eo,e .,en} in €%l and call

12"

Am the determinant of the matrix (b Orthonormalizing

uv)OSu,vsm'

{eo,el,...,en} with respect to fhe scalar product defined by

the positive operator B, i.e., (h,h') := <Bh,h'> , we obtain
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a basis {go,gl,...,gn} such that also gm(m) = JiAm_17Am) if

m > 0 and g,(0) = VAO'l. Given h = E{ajgj: 0 <j <n} then

h(n) = angn(n), so h(n) = 1 iff a = 1/gn(n); moreover,

<Bh,h> = E{laj|2: 0 <j <n}. Thus, p(n) = inf{<Bh,h>: h(n)=1}=

= 1[|gn(n)|2. Consequently:

(11). Let p(n) > 0 « (I-T *T ) is positive definite « IT_I <1; if

Am, 0 <m< n,.are the principal minors of the matrix (I-Ih*ﬂg

and A_; = 1 then p(n) = An/An-l‘
Now, when p(n) is positive, it is not difficult to prove that
the isometry V has an infinite number of essentially different .
minimal unitary extensions, so F is infinite. Thus, a proof
has been given of the following:

THEOREM A. Given {cg,c;,...,c } € C"7F, set

F o= {£ e H"(T): £(K) = ¢, k = 0,1,...,n ; Ifl, <1},

a) Let Tn‘be the operator in Cn+1 whose matrix with respect to

the canonic base <is (tuv)OSu,vsn with tuv = Syiu Zf u < v and
ty, =0 if u>v; set o(n) = inflhh1*-IT_hi*:h ec™, h@) = 1},
Then: Fn 18 non empty < “Fnﬂ <1< 1I-T* <is positive se-

midefinite < p(n) = 0.

b) F_ has only one element < ﬂPn" 1< 1-T* <is positi-
ve semidefinite and det(I - Fn*Fn) =0 < p() =0.

c) Fﬁ has more that one element < #(Fn) = o < "Fn" <1 e
=T - Fn*Fn ig positive definite < p(n) > 0.

d) When (I - T _*T ) Zs positive definite, <if A, 0<m<n,

are the principal minors of the matrix (I - Fn*Fn) and A, =1,

then p(n) ='An/An_1.

For classical proofs and corresponding references see [Ak.].
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A recent account on the relations between operator theory and
moment problems is given in [Sa].

A CHARACTERIZATION OF SCHUR PARAMETERS.

For each n we have a space H(n) and an isometry V with domain
D(n) and range R(n). In fact, that operator should be called
V(n), but since the restriction of V(n+1) to D(n) equals V(n)
we set V = V(n) for every n. Now, H(n) = H(n-1) v{Vndl} =
D(n+1) and R(n-1) C R(n) N D(n) C R(n-1) v {V?d,}v{d,} =
H(n), so it follows that

(12)  #(Fy) >1<R(n) # D(n) < R() # R(n) ND(n) <

< D(n) # R(n) ND(n) =R(MN) N D(n) = R(n-1), n > 0.

These remarks lead to the following reformulation of the uni-
city condition. '

We set d,(0) = d;, d,(0) = d; and note that, if n > 0 and
#(Fh-1) > 1, the vectors d;(n),d,(n) are well defined by the
conditions

(13)  4,(n) € R@) NR@ D' , 14, @1 =1, ¥
d,(n) € D(m) NR@-1" , 1)@

l’\dl(n)> > 0 b

1, <dy,d,@m)>>0.

In such conditions, R(n) # D(n) iff dl(n) and dz(n) are not
colinear, thus motivating the following

DEFINITION. Set 70 = <d1,d2> , and, if n > 0 and #(Fn_l) >1,

'yn

<d;(n),d,(n)>.

‘Then: #(Fn_l) > 1 and |7n| <1 = #(F)>1. Conséquently,

(18) - |7,] <1, 17,1 <1 =#EF) >1;

171 < Voo 17 1 <1, 14,1 = 1 = #(E ) >1, #(FD=1.

The situation is as follows:
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Remark that'|7n| measures the angle between the defect subspa-
ces N(n) and‘M(n);

Moreover, p(n) = distzldé,R(n)]‘ dist2[<d2,d2(n)>d2(n),R(n)] =

dist?(d,,R(n-11(1-17,1%), so:

= <d2,d2(n)>2dist2 [d,(n),R(n)]

(15) If #(F__)) > 1 then p(n) = p(n-1)(1-|7_|%) = n{(1-|~7j|2): 0 <j <n}.

Now, (14) is precisely the fundamental property of the Schur
" parameters {7j} associated to f(z) = E{csz: j = 0}, which are
defined by the iteration formula :

£,=F , £, = E@1VEIFE@I} , 7, = £0) , §30,

which is to be continued up to the first 7, of modulus 1
(= fn(z) = 7n), if any; each 7, depends on f(k) = Ch for k < n.
Thus, we are led to the conjecture

71’1 = ,7n
More precisely, we shall prove that
THEOREM B. Given a sequence {cn: n =0} ccC, let {7n:n”> 0}

be its Schur parameters and {Vn: n = 0} defined as above. Then:

(1) {7h}'is infinite iff {in} is infinite, i.e., iff ¥, <1
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for every n, and in such case ¥, =7,

(i1) vyl <1,eenlv | <1, |‘7n+1| =1 =7l <1,...,

Fal <1, Mgl = 1 27,.= 7,

; » 3 =0,...,n+1.

Note that by means of the antilinear isometry J we. can prove
that <V®d,,d,(n)> = <d,,d,(m)> = p(n-1)'/2 , n > 1.

-1/2

Also: '7n = p(n-1) <d1(n),d2> , =1,

A FORMULA FOR!d,(n), n > 0. |

From R(n) = V{delc, m < 0} G‘V{dezz m > n} e9'V{Vpd1,qu2: 0 <p,q <n}
it follows that dl(.n) € R(n) N R(n-1_)l can be written as
d;(n) = Bla (n)VPd;: 1 <p <n} + E{e'q(n)quzz 1<q< n}
and is orthogonal to Vpdl, 0 <p <n, and to-ngz, 0 <q <n.
Thus:

(i) ap(n) o+ E{Bq(n)cp_q: 1<q §p} 0 ,0<p<n,

(kii) ‘z{'ap (n)c

q<p<n}+ﬁq(n) 0, 0<q<n.

P'q:
Remembering that <Vnd1,d1(n)> = p(n-1)1/2 we arrive at

(iii) o () + Be (M _ : 1 <q<n} = o(n-1)1/2,

Setting a(n) = E{aj(n)ej_ :1<j<n},

l A

B(n) = Z{Bj(n)ej_l: 1 gj <n} ’
from (i) and (iii) we get a(n) = -I‘n_l*s(n)+p(n-1)llzen_l, and,
frbm (ii), g(n) = -I‘-n_la(n). Consequently:
(16) d,(n) = E{ap(n)Vpd.I: 1<p<n} + E{Bq(n)quZ: 1<q<n},
with  am) = (o, (...q @) = (-1 %, N7l %

8 = (8,(m)...8 (M) =-T _ o).

FORMULAS FOR'Y_,
-1/2

The above shows that 'Yh = p(n-1) <d;(n),d,> =
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= p(n-1)-1/zf{ap(n)cp: 1<p<n}, so:

. : -1 - R
= - * . 5 =
(7 ¥ =<1 I'n._1 r_ ) en—l’Z{Cpep—1'1 <p <n}> if n>0, Vo= ¢

0
. -1
= = - *
Setting 6(n) 68 * ... ¥ O € (I - T _(* 1) e ;>
Y = ' ] -
(16) shows that 7, elc1 + ..t encn » so Cramer's rule gi

ves 7n as a quotient of determinants:

(18) ¥, = Dn/An if n>0 |, Yo = o »

where Zn = det(I - T

*T ) and D_is the determinant of
n-1 "n-1 n )

the matrix obtained from the one of (I - I _,*T _,) by repla-

cing the last row by c S (so in particular ﬁl = cl).

1t

We now show that we may assume that o # 0. If Cy = =0

= Ce1

we set c¢', = c . Then, with obvious nota-

0 k = Ck+ercc
tion, the correspondence from H(t+n) to H'(n)-given by

t,...,c'
vE*Pd, > v'Pd , y p <n, and Vid, » V', , vq >0,
defines a unitary operator by means of which we can prove that
Y = 7;1, v n > 0. That is, 7t+n[ztf(z)] = 7n[f(z)]. From
Schur's original work we know that the same holds for the Tn-

So, in order to prove that"?‘n = 7v,, We may assume that Co 0.

APLICATION OF A FORMULA OF SCHUR.
In [Sch.] it is proved that y_ = -d_ /8 , with 6_ = A_ and d
n n n n n n

the determinant of/thé matrix M = (M each Mjk =

_ _ jk)j,k=1,2’
= [mjk(r,s)] being an n by n matrix given as follows (with the

non specified entries equal to zero):

mll(r,r-1) =1 for 2 <r<n, m11(1,n) =Co s

c, for 1<r<nand 1 <t <n-rtl, mu(r,r-1) =c, for

mlz(r,r+t-1)

2<r<n;
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t
mzz(r,r-1) =1 for 2 <r <n.

m,,(r,r-t-1) = c_for 2 <r < nand 0 <t <r-2, my,(1,n) = 1;

Thus, det M, = (—1)n_1c0, and, if c, # 0, there exists Mll_1

and M = P(Q, with P = (PJk)J k=1,2° P11 =M P, =Py =0,
_ _ _ _ -1

Pyp = T and Q= (Qy) 5 wa1,20 Qjy = I, Qpp = My, Mpps Q

M, 15 Q,, = M,,. From a lemma also due to Schur it follows

that det Q = det(M M21M11 Iy ) and consequently

) n
dn = (-1) o det(M M21M11 Mlz)‘

Now, Mll_lM12 = [x(r,s): 1 < r,s < n] is such that
[x(r,s): 1 < r,s <n-1] 1is the matrix of Fn_z and x(n,s)
co'lcs, 1<s<n, x(r,n) =c__., 1<s <n-1, while

[mlz(r+1,s): 1< r,s <n-1] is the matrix of Fn_z*, and

12(1 s) = mlz(s+1,n) =0 for 1 <s <n-1, m12(1,n) = 1. Thus,

M21M11 M12 = [y(r,s): 1 <r,s <nl has the following form:

. ) . . . .
[y(r+1,s): 1 < r,s <n-11 is the matrix of LS P
-1

y(1,s) = Cy Cg» 1 <s <n; y(r+1,n) = ~1-i%n-1-5" :0<j<r-1},

1<r <n-1..

Now, remembering the definition of D n’ it is not difficult to

see that d_ = (-1)"c, det(M,,-M, M Y

21 11 12) =D . Thus, theo-

rem B has been proved.

In a sequel to this paper, our approach will be related with
entropy considerations.
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