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SPATIAL TEMPORAL RESPONSE FUNCTIONS OF PLASMA ELECTRODYNAMICS

GRACIELA GNAVI(*) and FAUSTO T. GRATTON(®)

The polarization response tensor, for a uniform plasma without
fields which may contain beams, is obtained in the space-time
representation considering the charges induced by delta-like
electric fields. The derivation and a discussion of the proper
ties, for several one and three dimensional cases, does not re
ly on Fourier transforms and is given directly in the X, t de-
scription. The integro-differential equations of plasma electro
dynamics are set up with these responses. A formalization of
the method and its connection with other electrodynamical con-

cepts are also presented.

1. INTRODUCTION

Physical systems Qith the properties of causality, linearity,
space homogeneity and time invariance are characterized by in-
tegral constitutive equations of the convolution type ([1]). Re
sponse and excitation in these systems are linked by general
expressions of the.form

t

F(X,1) =J dr j a3t h(x-E,t-1).E(E,1) . (1)

-0

- v | .
Here we have written the'polarization P(x,t) as a functional

(*) Members of the Argentine Consejo Nacional de Investiga-
ciones Cientificas y Técnicas.
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of the electric field E(x,t) in a plasma([ﬂ).The'kernel h(x,t)
is called the polarization response tensor. Due to causality,

h(x,t) = 0 for t < 0. When E(X,t) is known, it gives the inner
plasma currents through the equation 8P (x,t)/st = j(X,t). The

k,w Fourier transform Ff,w[h(f’t)] = X(K,w), is the complex

susceptibility tensor, a fundamental quantity in plasma elec-
trodynamics, related to the dielectric tensor by €(k,w) =

= I + 4rX(k,w). For colisionless plasmas, X(k,w) is tradition
ally derived by perturbative calculations from Vlasov and
Maxwell equations, working in the k,w space. In principle
h(X,t) can be calculated from X(K,») performing inverse
Fourier transforms. However, in few problems the real x, t dy-
namical behaviour is brought forth due to its natural complex-
ity.

We have noted recently that the one dimensional, longitudinal
response function h(x,t) can be derived directly by simple phy
sical arguments ([3]).This approach may be called the percussion
method and can be extended to other cases. In mathematical
terms it consists, essentially, in the determination of an

X,t Green's function for the inverse polarization operator.
The procedure does not pass through the k,w space. In some ca-
- ses the Vlasov equation is not needed to derive the polariza-
tion response by this method, although basically the same phy-
sical .information is used. In the case of a non-homogeneous
plasma, formed by radially focused beams, the r,t polarization
response function was similarly obtained ([4]).We found it useful
for setting up the integral equation for the electrostatic mo-
des of the system. The percussion approach shows in a clear
way the basic physical elements that produce the plasma pola-
rization.

In this paper we study the spatial-temporal polarization res-
ponse tensor of a uniform plésma, without externally imposed
fields. We give the three dimensional responsé h(x,t) for
isotropic distribution functions fo(Vz). For non isotropic
plasmas we derive, for simplicity, the averaged longitudinal
Hyy(y,t) and transverse sz(y,t) components for excitations
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Ey z(y,t) with planar symmetry. The responses Hyy‘and Hz

functions of one space variable, y, are the integrals of hyy and hzz,

Z’

respectively, over the other two variables Xx, z. These results
have been derived taking into consideration the possible pre-
sence of beams in the plasma. The paper is organized as follows.
In section 2 we describe the method and its relation with the
main concepts of plasma electrodynamics. In section 3 and 4 we
obtain the one dimensional résponses Hyy, H . and discuss their

properties. In section 5 we prove the equivalence of the k,w
transform of sz with the transverse susceptibility X% (k,w).

Section 6 is devoted to the three dimensional response tensor
for isotropic plasmas. We present an explicit form of the inte
gro-differential equation for the electric field in this case.
In section 7 we show how to formalize the percussion approach
with the integration of the Vlasov equation along trajectories.

2. IMPULSIVE ELECTRIC FIELDS

In the k,w representation, Maxwell equations are written as ([5])
AK,w) . E®Kw) = -(ri/w) T, ®w) , (@)

where A is the Maxwell operator defined by A = A° + 471X ,

A =1 + (cz/wz) (kk - kzI) is the Maxwell vacuum operator and
Te are the external currents. If we define a vacuum tensor

L°(x,t) = F;lt[A°(i,w)] , €q.(2) can be written in the X,t re-
i

presentation as

[ [ rEEen 0 - wE,Gn + FE) (3)

t

where ‘ae(i;t) = J Te(f,t')dt'.

-00

For electrostatic perturbations with rot E = 0, eq.(3) reduces
to
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E(x,t) = -4mlq (x,t) + P(x,t)] . 4)
Thus any electrostatic field can be produced by a proper combi
nation of external and inner polarization charges. In particu-
lar, the percussion method requires localized and impulsive

fields of the form EI(X,t) = e s(x) §(t)é,, where gld) s

the electric field strength and éj is the unit vector in the
X5 direction, j=1,2,3. Using these fields in eq. (1) we get

() 2 - - €D
P, t) = hy Gty &) (5)

Thus, by computing the polarizations Pij) produced by delta-
like electric fields Eg, we obtain the components of the pola-
rization response tensor. The impulsive field gives a percus-
sion to the plasma particles which modifies their velocity in
Av, without changing their position. The corfesponding altera-
tion of the ‘distribution function is. easy to evaluate. After
the percussion the particles flow freely, in the absence of
any perturbative field, hence the current and the polarization
can be computed.

It must be noted (from eq.(4)) that the solitary pulse of the
- electric field in the plasma can be achieved 6n1y by the arti-
ficial inclusion of a set of external charges, so that &e(i,t)=

= -ﬁ(j)(i,t), for all t > 0. When h(x,t) is known, eq.(4) to-
gether with eq. (1) can be used to find the system of external
charges necessary to produce any particular electrical field
in the plasma, according to the equation

t

-4nae(= E(x,t) +4m f dr f a3t hG-E,t-1).EE,1) . (6)

-00
Conversely, eq.(6) can be regarded as the integral equation

for the determination of the electric field E(x,t) in electros
tatic problems, with or without external charges.

The same ideas can be extended to the treatment of electromag-
netic perturbations, where eq.(3) takes now the place of eq.
(6). The calculation of the polarizations, eq.(5), is more in-
-volved, because an induced magnetic‘ﬁield accompanies the im-
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pulsive electric field. This magnetic field produces additio-
nal polarization currents, as we show in section 4.

Summarizing, the response tensor h(x,t) is an auxiliary con-
cept which can be used: (a) to find the x,t distribution of in-
ner charges induced in the plasma in any electrodynamical prob:
lem when the electric field is given; (b) to set up the inte-
gro—differential equation for E(X,t) in initial and boundary
-problems with assigned external charges. The peculiar feature
of the percussion method is that a Fourier representation is
not needed for the derivation of h(x,t).

3. PERCUSSION AND LONGITUDINAL RESPONSE

We analyze the polarization produced by two electric fields

E; : = &6(y) 8§(t), in a uniform plasma, without external mag-

netic field. These planar excitations are related to one di-
mensional responses, according to eq. (1), P;(y,t) = & Hyy(y,tL

P2 (y,t) = & sz(y,t)? where Hij(y’t) = [f dx dz hij(i,t).

Let us take first the pulse E;, normal to the excitation plane.
This is an electrostatic case due to the symmetry. We introdu-
¢» such that §. = 1/2 ¢
for |y| < e and §. = 0 when |y] > € , as approximants of §(y).

ce the set of rectangular functions §

“For brevity we consider the perturbation of one species of
particles only. The electrons within the layer |y| < e at t=0
suffer a jump Avy = -(e/m)&/2¢ in the velocity component vy

This increment produces a charge per unit area

o(v) = eno[fo(vx,Vy,vz) - fo(vx,vy+Avy,vz)]2€ originated from

particles with velocity v, per unit of velocity space, situa-
ted in |y| < e (f,(v) is the distribution function of the elec
trons normalized to unity, n, in the electron'density).bThe
first term represents the uncompensated charge of the back-
ground ions,_left by the electrons with initial velocity V-
The second term is due to new electrons, which after the per-
cussion assume the velocity vy. If the perturbation is small
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we have o = —&(w§/4ﬂ)afo/avy to first order in the pulse in-
tensity & (mp is the plasma frequency). These particles move
then with different constant velocities and constitute a set
of planes travelling charged layers. Neglecting the layer
width €, we write for t > 0 :

- _ 2 )
o(v,t) = &(mp/4w) S(y vyt) afo/BVy , (7)

for the charge density, per unit of velocity space, moving
with velocity vy.’The current density jy at y,t is therefore

. c g2 1.2 '
Jy(y,t) &(mp/4n) (y/t%) aFo/avylvy_y/t , fory#0,
= 8(w§/4n) G(yj A, for y =0,
where Fo(Vy) = Jdv dv, f,(v) and A = lim J dvy Fo(vy).

e+0 ]vy|<e

The factor A is the fraction of electrons with vy, = 0 (this
includes, for instance, the case of beams along x,z with

vy = 0). The time integral of the current at a fixed position
y gives the polarization

PS(y,t) = &(w/4m) Fo(y/t) , for y #0,

a(wf)/w) ASs(y) t, for y = 0.

Comparing with & Hyy we finally get

H (y,t) = (w2/4m) Fo(y,t) , fory # 0,
yy P .
(8)
= (w§/4n) At §(y) , fory =0.
For a cold beam with velocity V°, fo(v) = (v - V°). Then,
- (0l _yes | (9)
= t) t.
Ho (y,t) = (w,/4m) 8(y - Vit)

In Ref. [3] we have shown the equivalence of eq.(8) with the
formula that can be derived starting from the well-known lon-
gitudinal susceptibility Xz(k,m). Therefore we do not elabo-
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rate further on this result, except for a comment on the con-
figuration of charges for this case. The plasma charges and
currents are given by p = -& aHyy/ay , jJ = & BHyy/at , respec-

tively. However, in order to produce the impulsive field, the

following external charges and currents are also needed

p = (&/4m)[8' (y)s(t) + 4n aHyy/By]' ,

e

j o= -(&4m) [8(y)&' (t) + 4n BHyy/Bt]

For a symmetric function Fo(vy) = Fo(-vy) (e.g. a Maxwellian)
there are neither polarization currents nor charges at y=0,
for all t. Thus, to have a delta-like electric field we need
only a dipolar layer of external charges at y=0, pulsed in
time. We may conceive a layer of neutral atoms which are polar
ized during a short time and return to neutrality. External
charges must then be added at all times, but this is of no
consequence for the plasma since we assume that the interac-
tion of charged particles is only through the self-consistent
field.

4. THE RESPONSE TO ELECTROMAGNETIC EXCITATION

. We consider now a field E;, contained in the percussion plane.
Associated to it there is a magnetic field B; = -c&§' (y) for
t > 0. The particles' acceleration is, for t > 0,

a(y,t) = -(e/mBI8(£)6(y)&,+8' (1) (v &,-v,e )] . (10)

The particles that pass through y=0 experiment changes of ve-
locity at all times. We introduce here also the set 6f func-
tions &l , such that §_ = 1/€2 for -e <y <0 , 6 = 0 at y=0,
8L = -1/e? for 0 <y < e and 8! = 0 when |y| > € , as approx-
imants for §'(y).

The jump Av, is formed by two terms: Av,; = -(e/m)&/2e of

electric origin as before, for those particles within |y| <

at t=0, and sz due to the magnetic terms. Let us take first

2
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Vy >0 and t > 0. When an electron crosses the layer (-&,0) it

suffers a velocity increment szz = -(e/m)&Jdt'(vy/ez), where

the 1imits of integration are t and t + e/vy. Thus, ’
Av,, = -(e/m)&/e. After crossing the following layer (O,Ej it

loses the same amount szz' The same can be said for electrons

with vy < 0, for t > 0. We conclude that particles with Vy # 0

gain sz at y = 0 and lose instantly the same increment when

2
they leave the position y = 0, However, there also exist par-
ticles with vy # 0 which are located at y = 0 for t = 0. These
suffer the influence of half §! only, so that for them

av , = (e/m) &/ e.These particles do not lose their velocity
increment.
For the variation of the v, component we obtain
‘ t+e/v : t+(e/v_)+(e/v!)
v, = —(e/m)&[[ Y at vz/e2 + [ y Y at v;(-1/€2)]=
t

t+e/v
y.

A-(e/m)&[(vz/vy).- (v;/v;)]/e s

for vy # 0, t > 0. Since Av,, Avy depend linearly on &, there-
* fore within the linear approximation Vé/V; = vz/vy. Hence we
can say that the electrons gain Avy = -(e/m)&vz/vye when they
cross y=0, and lose it immediately. Considering as before par-
ticles with vy # 0, located at y=0 for t=0, we find that they
gain Avy = (e/m)&vz/vye from half of 8! and this increment is
not lost thereafter.

We have seen in the previous section that Velocity jumps at
y=0 generate charged layers. The layers created at time t have
a charge per unit area

o(V,t) -eno2elv, afo/avz , fort=0

1

i

-enoe[sz afa/avz + Avy afo/avy] , for t>0.

2
When we account for the motion of these layers, the charge
density per unit of velocity space (neglecting the width €) is
given by
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0(y,,t) = ~(u/an) (8(y) 3fe/av, + [8(y-v, 1) - 6(N1(v,/v)) 3fo/av ), (11)

when vy # 0. In deriving this equation note that the contribu-

tions of Av, and Av,, cancel each other when y # 0. Two terms

1
contribute only at y = 0 and they correspond to the charge and
discharge of layefs due to velocity jumps of the particles
that cross the §! influence region, as commented above. This
is a process that takes place continuously in time.

To complete the analysis, consider now electrons with vy = 0

1= -(e/m)&/e and Av,, = 0 to

first order in &, while Avy = ayt = (e/m)&vztd'(y). Thus . the

at t = 0. For these we get Av,

contribution to the charge density of the particles with
v. = 0 is
y

o(y,v,t) = -&(mi/lln)[d(y) 9E./0v, - §'(y) v,t ¥fo/ov.]  (12)

Now we compute jz from eqs.(11) and (12). We have

. _ 3 - _ 2 '
i, (y,t) =1 dVvoaly,v,t)v, = 8(wp/41r){6(y)Pfdvy[Fo (vy)+g (vy)/vy] -

Pfdvyé(y-vyt)g'(vy)/vy +»6(y) lim [ dvy Fo(vy) +

>0 |vy|<€

+

8'(y)t lim f dv. g'(v)} =
>0 |vy|<€ 7 y

8(w§/4ﬂ){5(¥)[1 + P.fdvy g'(vy)/vy]

+

$'y) tB} , y=0,

—8(m§/41r) g'(y/t)ly , y#0. ' (13)

We introduced here the function g(vy) fdv;hgygfoﬁh and

the constant B = 1lim [ - dv_ g'(v.) = g(0%) - g(07). The
e>0 |vy|<e Y Y

symbol P denotes principal value of the integral. We observe

that this integral is finite under the assumﬁtion g' (o) =

= g'(0"). We shall consider this valid in the rest of the pa-

per. With another integrétion over time we obtain P7. The fi-

nal result is
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H,,(y,t) (w /Am) (s t(1 +Plav g (V M) + 78"t 8] , y=0,

y/t. :
(mﬁ/éhr)f dvy, g'(vy)/v;, y<o0 , (14)

2 ~ 7.2
-(wp/41r) E/t dvy g'(vy)/v.y , y>0.

It is clear from eqs.(14) that the response is zero when |[y/t|
is larger than the maximum velocity of the particles in the
plasma. As t » », for y # 0, H,, tends to a constant value

since there are no charged layers left to pass throﬁgh the
plane y = constant.

We may note that if the plasma is cold in the variable v,, i.e.
if £, has a G(V ) factor, then g = 0 and H 2z is zero except

at the or1g1n, where it is given by (w /41)8(y)t. The k,w
Fourier transform of this expression 1eads to 4mX(w) = -w%/wz,
the familiar result of cold plasmas. From eqs.(11) and (12) it
is easy to see that Hyz = H,, = 0 when fdv v £, = 0. If, in

addition, we assume that fdv, v f 6 = 0, i.e. in the absence of

steady state currents parallel to the plane of excitation, we
find H = sz ='ny = 0. Thus, the one dimensional response

tensor is diagonal with H glven by eq.(8), H 2z by eqs.(14)
and Hxx has expressions 51m11ar to sz, with a function k(vy)=
- 2 RN

= fdvx dvz foo(V) in place of g(vy).

In the presence of a cold'beam, £,(v) = 8(v - V°), we obtain
(taking V; > 0)

H,, (7,t) = Wi/em) (V22 V320 () VS8 (Va-y/t)-20 (V3-y/t)], ¥ # 0,

(15)

2 2 pro2 o
(wp/fln)[1+V; /Yy] sy)t , y=0.

Here 6(y) is the Heaviside (or step) function.

For an»isotfopic plasma, f; = fo(vz) , we have
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Pfd ' = -1 + A. Therefore,
i) v, 8 (vy)/vy + Therefore

H,, (y=0,t) = (wi/4m) 8(y) t A (16a)

In the absence of a cold component with v = 0, sz(y=0,t) = 0.
When y # 0, instead, we find

oo

H,, (7,t) = (ul/4m) f v, F,(v)/v o . (16D)

lyl<t .

We conclude with a remark of a mathematical nature. Equations
(8) and (]4) hold for distribution functions which are linear
combinations of functions of the type f,(v) = ¢1(9) +

+ 0BV, VBV -V )O(v, V) + ¢5(WE(v, U ) + ¢, (F) 6(v,-U)
x §(v,-U,) + ¢55(G-0) , and similar ones. The functions ¢,
¢2, ¢3, ¢4 are continuous and ¢5 is a constant. The second

term describes jumps in one or more velocity componentsvand
the third, fourth and fifth ones allow for the presence of
concentrated constituents or beams in one, two or three velo-
city components.

5. THE TRANSVERSE SUSCEPTIBILITY

We obtain here the complex transverse susceptibility xt(k,m)
by transforming Fourier the response function sz. Note that

H(y,t) = F;lt[X(O,k,O)]. If we set

G (v) = jv du g'(w)/u? and G, (V) Jw du g' (u)/u? ,

we may write
4nuhm=-m@ﬁnf@gmmy+myﬁmfﬁr<h&mx
0" . .
x 9(t) J dy G_(y/‘c)e_1ky - Ifkdy G+(y/t)e_1ky 1.
-0 ’ 0

On the other hand we have
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J dt et g(t) Jd*dy e ik G, (y/t) =

f0+ dv v G!(v)/u(w-kv) + [v G+(V)/w2]v=o+ =

-1 fiﬁVg'(V)/V + kf L4V g'(v)/(w-kv) - [Q G+(V)]v=0+]/w2
0 0

and similarly

(o]

. 0~ .
J dt et g(t) J dy e %Y 6 (y/t) =

_ (V) 0~ 2
= [J dv g'(v)/v + kj dv g' (v)/(w-kv) - I[v G_(v)]v=0-]/w .

Since [vG,] _,+ + [VG_1 _,- = 0, when g'(0") = g"(0)

(which is the condition for the finiteness of Pfdv g'(v)/v)
and noting that B = lim w f dv g'(v)/(w-kv), we obtain

e>0 |v|<e

4 XF(k,0) = -(wp/m)? [1 - k jw dv g' (v)/ (w-kv)]

‘which coincides with the traditional result ( [5]).

6. A THREE DIMENSIONAL RESPONSE

For isotropic plasmas, the poiarization effect of the induced
magnetic field is null and the calculation of h is straightforward,
as in the electrostatic case of section 3. Let us take a point-
like excitation E = &5(t) §(x) éz , with induced magnetic com-

ponents Bx = -c&(t)s(x)s'(y)é(z) , By = c&O(t)s'(x)s(y)s(z)
Bz = 0. The particles that pass through the origin'for't >0
experiment velocity increments

(e/m)&fdt v &' (x)6(y)s(z) o(t) ,

Av
X

av, (e/m)&fdt v_&(x)68'(y)6(z) 6(t)
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av,l= -(e/m)&rdtlv, 8 ()8(y) + v 8(x)6' ()] 8(2) B(t)

The perturbation of the distribution function in the linear
approximation is Af = Av Bfo/avx.+ Avy afo/avy f szafo/mk.

However, when f_ = fo(vz) we have afo/avx = 2v_ 8f°/3v2 and

similar formulas for y and z. Thus we immediately see that Af=
= 0, when t > 0. For t=0 there is the effect of the electric
field only and considerations similar to those of section 3
lead to a charge density p,; per unit of velocity space, given
by

0(X,V,t) = -&(w§/4n) §(x - vt) of /ov..  (17)
It is possible to show that the one dimensional responses can

also be obtained from this formula. For instaﬁce, taking
hzz(i,t) and integrating over x and z we get

t
H,,(0,t) -(wi/4ﬂ) §(y) § dx az JO dt' 1lim | dv_  «x

e>0 |v_|<e 7Y
y

x [ dv dv, 8(x-v t) 8(z-v,t) v, 3f,/3v, =

= (wi/4ﬂ) S(y) t A ,

t

H,,(y,t) = -(u2/4m) f dx dz j dt f v §(x-Vt) v, 9f,/0v =

0

t
= (m2/4ﬂ) J dt' Fo(yz/t'z)/t' s, Y # 0.
P 0

With a changé of variable these expressions coincide with egs.
(16) derived in section 4 for an isotropic plasma. Starting
from p for a delta-like electric field oriented along éy and
following a similar procedure we obtain the longitudinal res-

ponse, eq.(8).

It is interesting to find.the‘explicit form of h for three
dimensional excitations. Returning to eq.(17) we have

t
- _ 2 - dt' 3 2 2
h (x,t) = -2(wp/4ﬂ) JO ;T§ f d7v §(r/t - v) v, of ,/av =
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- (w2/am) (22 /1Y j , av? v? ag /vt | for |R|=rs0 ,
P (r/t)

[}

, -
hzz(O,t) (wp/4ﬂ) s(x) t C ,

where C is the fraction of particles with zero velocity. Com-
pleting similar calculations we prove the result

hij(i,t) -(w§/4ﬂ) (xixj/r4) : av? v? 3f°/3v2 , forr # 0,

(x/t)?

2 -
(wp/4ﬂ) §(x) t C Sij , forr =0. (18)

Here Sij is the Kronecker delta.

The integro-differential equation for the electric field in
a plasma can be written as

2 2% 3j
ﬂza-(x-é,t-r) -4 —& . (19)

oT ot

h

3
at

N

+c? rot rot E = -4 f‘d3g r dr h(E,1).
0

For an isotropic plasma and assuming that the electric field
and its first derivative are zero for t + - and that

lim vsfg(vz) = 0 , we may rearrange the equation as
v )
2 i, f - o
3E, 2 rot rot £ = -w? J d3E & E/£6) fm dt W(EZ/TZ).E(X—E,t-T) -
at? P 0
3 . | .
-4 —2 - W CERY) (20)
at P '

where £ stands for |E| and W(vz) = 1Ov6fg(vz) + 4v8fﬁ(v2). For
a Maxwellian distribution function ff = (a/1T)3/2 exp(-avz)
and the function W takes the particularly simple form

WM(VZ) = (a/n)a/zexp(-avz) (4V8a2 - 10 v6a) and C = 0. When '
the plasma is cold, the integral part of eq.(20) does not con-
tribute and C=1. For a monoenergetic isotropic distribution

we have fo(vz) = G(Vz'— Vf)/ZnVo. In this case,
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R(X,t) = (w/81°V,) (R R/c*) [0(V,-1/t) + (x/0)26(x?/t? - VD))

and, therefore,

2

trh.

A2+ rot ot B = -(l/2v,) e (EE/EY) 4 BB, tEy,) 4
3t P t °
’ 82 o 3j ‘
+2(8/V,) — EGx-E,t-E/V))} - 4m —= . (21)
ot ot

A sum of distributions of this type, with proper weights, may
represent a discretization of an isotropic distribution func-
tion. '

7. PERCUSSION AND INTEGRATION ALONG ORBITS

We formalize here the percussion procedure used in the deriva-
tion of the’response functions. For definiteness we take the
case of section 4, which includes the simpler cases of sections
3 and 6. The linearized Vlasov equation can be written as

4 ] ]
gef,= - a . ¥, /av (z2)

where f, is the perturbed distribution function and the time
derivative is taken along the orbits
x=x, +Vv,t , Vv =v, = const.

The acceleration is given by eq.(10). Integrating eq. (22)
between 0 and the present time t along the trajectories and
setting -

fl(io,VO,O_) =0, we get, for t > 0 ,
t
fl(i,\'r,t) = 8(e/m){J0_6(y°+vyt')5(t')dt' 3f°/3vz T+
t
+ Jo_a'(y°+vyt')e(t') at' (v 3£,/3v, - v,3E,/8v )}

These integrals give generalized functions which must be inter
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preted as operating on functions of the velocity Vy. Thus,

t
I dt' 8(y, + v_t')s8(t') = 6(&0) = §(v. - y/t)/t ,
0" y y

since y, = y - Vyt. Similarly, integrating by parts,

t
[0_ de 8y, v EN0(E) = [0, V0 - 80r)I/v, -

[s(y) - G(Vy - y/t)/t]/vy ,

when vy # 0. Hence, we obtain

-z 1
£, (x,v,t) = 8(e/m)-{€ G(Vy - y/t) afo/avz + §(y) Bfo/svz -
1
-t 6(Vy - y/t) afo/sz -
1 .. '

_ (Vz/vy) [8(y) - T d(vy - y/t)] afo/avy (23)
where the first and third terms cancel. Since ¢ = -en.f, ,
this confirms eq.(11), deduced using physical arguments. For
vy-= 0, the integration over time gives

lfl(f(,vx,o,vz,t) = &(e/m)[8(y) af /ov, - 8'(y) tv, afo/avy] ,

which is equivalent to eq.(12). Therefore, the percussion ap-
proach can also be regarded as a special case of integration
along trajectories. It must be observed, however, that the
fields act at y=0. Hence, the motion of the particles is
exactly field free for y#0 and not as a consequence of a 1i-
near approximation.

8. CONCLUSIONS

We obtained the space-time polarization responée of.plasmas
for electromagnetic excitations from physical considerations,
without Fourier transforms. The given'one dimensional response
tensor includes the possibility of beams in the plasma. For ap
plications to specific problems, of course, we must sum the po
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larization responses of the different species of plasma parti-
cles and the contributions of beams, if any. Plasma electro-
dynamical problems require the solution of integro-differential
equations like eq.(20). Considering the complexity and subtle-
ties of the inversion of Fourier transforms, necessary to cal-
culate Green's tensors for plasmas, particularly in problems
with more than one dimension,([6]) a direct attack of eq. (20) by
numerical or other approximation methods may be also helpful

or complementary in some problems. We may also note that when

a limited period of time is under study, there is an advantage
in proceeding in this fashion. In the Fourier method, the full
extent of the frequency spectrum should be used in the inver-
sion when the temporal behaviour is desired without serious
distortion. In practice, only asymptotic, t + o, representa-
tions of the Green's functions are usually calculated, which
are valuable for stability studies but are not sufficient for

a complete X, t description.

The calculation of the three dimensional response tensor for
‘quasi-electrostatic excitations of plasmas in external mag-
netic fields seems to be a tractable problem. The percussion
approach looks promiéing as well for the study of non linear
.electrostatic responses in the X, t description.
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