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ASYMPTOTIC DISTRIBUTION AND STRONG ORDER OF CONVERGENCE 

OF ROBUST NONPARAMETRIC REGRESSION ESTIMATES 

GRACIELA BOENTE - RICARDO FRAIMAN 

Summary 
In this paper, strong order of convergence and the finite dimensional asymptotic 
distribution of nearest neighbor and of nearest neighbor with kernel regression 
estimates is obtained when the response variables are bounded. These results 
are applied for deriving the asymptotic normality and orders of convergence for 
robust nonparametric regression estimates. 

, 1. Introduction 
Let (X, Y), (Xl, Yi), ... , (Xn' Yn) be independent, identically distributed random 

vectors, Y E R, X E RP . As is well known, nonparametric estimators of the regression 
function rex) = E(YIX = x) can be written as rn(X) = 2:7=1 Wni(X)Yi , where 
Wni(X) = Wni(X, Xl, ... , Xn) is a probability weight function, i.e., Wni(X) 2: 0 and 
E?.l Wni(X) = 1 . 

Nearest neighbor methods were introduced by Cover (1968) and the 
weights are defined as follows. Rank the (Xi, Yi), 1 ~ i ~ n , according to increas
ing values of IIXi - xII and obtain a vector of indices (Rt. ... , Rn) where XRi is the 
ith nearest neighbor of x among Xl"'" Xn . Let {Vni' i 2: I} be a sequence of real 
numbers such that Vnl ::;::: Vn2 ::;::: ... ::;::: Vnn ::;::: 0, Vni = 0 i > n ,and 2::':.1 Vni = 1 , then 
Wnll;(x) = Vni . The consistency properties of rn(x) for different choices of the vector 
(vnI. ... ,vnn) were studied by Cover (1968), Stone (1977), Devroye (1978) and (1981). 
Devroye (1982) gives necessary and sufficient conditions for pointwise convergence. 

Nearest neighbor with kernel methods were introduced for density estimation by 
Rosenblatt (1979) and by Mack and Rosenblatt (1979) and adapted to regression mod
els by Collomb (1980). The weight function can be written as Wni(X) = J«(Xi -
x)llIn)1 2:7=1 J«(Xj - x)1 lIn) where lIn = lIn(x) = IIXRt - xII, k = kn is a sequence 
of integers and J( : RP -+ R is a nonnegative integrable function. Mack (1981) derived 
the asymptotic normality of nearest neighbor with kernel estimates for kernels supported 
on the unit ball; in particular, the asymptotic distribution of uniform k-nearest neighbor 
estimates, defined by Vni = 11k for 1 ~ i ~ k Vni = 0 i > k , is derived. 

The first reference for kernel estimates are Nadaraya (1964) and Watson's (1964) 
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papers. Further developping was done, for instance, by Devroye and Wagner (1980 a) 
and b», Spi<:gelman and Sacks (1980), Grebliki, Krzyzak and Pawlak (1984) and Gyorfi 
(1981).In this case, Wni(X) = I«(Xi - x)/h)/ L:j=l K«Xj - x)/h) with h = hn a 
sequence of nonnegative real numbers. 

In Boente and Fraiman (1989) a robust location functional was introduced and strongly. 
consistent, robust nonparametric estimates of the regression function were obtained by 
applying nonparametric distribution estimates to the functional equation. 

Let 111 be a bounded, strictly increasing real function, denote by F(yIX = x) a 
regular version of the conditional distribution function of YIX = x and define g(x) as 
the solution of 

(1.1) J 1l1«y - g(x»/s(x»dF(yIX = x) = 0 

where s(x) is any robust scale measure, for instance, s(x) = MADc(x) = med(IY
m(x)IIX = x) where m(x) = med(YIX = x) is the median of the conditional distribu
tional function. If F is symmetric around r(x) and 111 is odd g(x) = r(x) . 

The robust nonparametric estimate is defined as the unique solution gn(x) of 
n 

(1.2) L Wni(X) 1l1«Y; - 9n(X»/Sn(x» = 0 
i=l 

where the scale measure is, for instance s .. (x) = med(IY - mn(x)IIX = x) and the 
medians are evaluated corresponding to the conditional empirical distribution function; 

n 

(1.3) Fn(ylX = x) = L Wni(X) IA(Y;) 
i=l 

where A = (-00, y) and IA denotes the indicator function of the set A. More 
generally, any robust estimator consistent to s(x) can be used. 

In Section 2 strong order of consistency are obtained. In Section 3 the. asymptotic 
normality of both, linear and robust, estimates is stated. The bias of the robust estimate 
is the same as for its linear relative and the relationship between the asymptotic variances 
is the same as for the usual robust location estimates. In Section 4, proofs are given. 

2. Strong convergence rates 
In Boente and Fraiman (1989) the unicity of solution of the equation (1.1), the weak 

continuity of the functional defined through (1.1) and strong consistency of gn(X) was 
obtained under: 
HI. 1l1: R -+ R is a strictly increasing, bounded and continuous function such that 
1imt .... +oo1l1(t) = a> 0 and limt .... _oo1l1(t) = b < 0 . 
H2. There exists a sequence {cn : n ~ I} of real numbers such that Cn ~ 0, cnlog n -+ 

0, nCn -+ 00 as n -+ 00, for which maxl::;j::; .. Wnj(x'Xl. ... 'Xn):5 Cn a.s. for almost 
all x(Px). 
II3. There exists a random variable Kn and a real number c > 0 verifying 
L:iEI Wni(X,Xl. ... ,Xn) -+ 0 as n -+ 00 a.s. supn(cnKn):5 C a.s. for almost all 

nRA:n 

x(Px) . 
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In order to obtain strong convergence rates for the robust estimators of the regression 
function we will need some additional regularity conditions. 
H4. The vector X has a density f continuous and positive at x. 
H5. F(yIX = x) is symmetric around g(x). 
H6. F(yIX = x) is continuous as a function of y and Lipschitz in x uniformly in y, 
i.e., there exists 6> 0 and c> 0 such that lIu - xII < 6 => IF(yIX = x) - F(yIX = 
u)1 ~ cllu - xII for all y. 
H7. There exists c > 0 such that p(9;;1 EiEl R W .. i(X) ~ c) = 1 where 9 .. = 

n oCn 

(c .. log n )1/2 . 

1I8. There exists ao > 0 such that ao < c!+inilog n for all n. 

Remark 2.1. As noted in Boente and Fraiman (1989) kernel weights do not verify 
H2. However, the strong consistency of g .. (x) can be obtained from Theorem 2 of 
Greblicki, Krzyzak and Pawlak [13] if ]( and h.. satisfy the following assumptions: 
i) h .. -+ 0 and nh~/log n -+ 00 as n -+ 00 • 

ii) There exist positive constants, r, Cl, Cl, ca, and a bounded Borel function H 
decreasing on (0, +(0) such that Cl H(lIxln ~ ]«x) ~ C2 H(lIxll) , C3 IlIzIISr(x) ~ ]«x) 
and td H(t) -+ 0 as t-+ 00 • 

Assumption H7 is fulfilled for any k - N N weight function, in particular for the 
k-nearest neighbor with kernel if there exist positive constants Cl and C2 such that 

(2.1) 

A nearest n~ighbor satisfies H7 if 9;;1 Ei>kn u .. i is bounded. 

Lemma 2.1. Under H! to H,.f and H6 to H8 we have that 

9;;1 sup IF .. (yIX = x) - F(yIX = x)1 = 0(1) a.s. 

" 
The proof may be found in section 4. 

Theorem 2.3 of Boente and Fraiman (1989) together with Lemma 2.1 implies the 
following result. 

Theorem 2.1. If tP is odd, continuously differentiable with derivative til positive 
and bounded, Hl to H8 imply that 

Remark 2.2. The conclusion of Theorem 2.1 also holds for kernel weights under H4, 
H5 and H6 provided that the sequence {h.. : n ~ 1} and the kernel ]( satisfy the 
conditions given in Remark 2.1 and the following additional conditions: h .. 9;;1 ~ A ~ 00 

for all n where 9 .. = (logn/nh~)1/2 and td+2H(t) is bounded. 
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3. Asymptotic Distribution 

) 

) 

Finally, we will show how to derive the asymptotic distribution of the robust regression 
estimates by reducing the problem to obtain the asymptotic distribution of the "classical" 
nonparametric regression estimates for bounded variables. We will need the following ) 
additional assumption on the function .,p. ) 

R9. The function .,p is twice continuously differentiable with second derivative .,p" 
verifying that there exist positive constants c, M and f such that 1.,p"(t)1 5 c Itl-(2+£) 
for It I ~ M. 
RIO. EN/I(Y - g(x))Js(x)lIX = x} -::J o. ) 

We will denote by .,ptT(t) = O'.,p(tJO') . 

Lemma 3.1. Under Hl, H5 and H9, if there exists a real constant c > 0 and a ) 
sequence of positive numbers {en : n ~ I} such that c;;l EIEi=l W~;(X,Xl' ... ,Xn)] 5 
c , we have that 

n 

(3.1) c~/2 L Wn;(x)[.,ptTn(Y; - g(x)) - .,ptT(Y; - g(x))]-t 0 
;=1 

in probability for any sequence Un = O'n(X) such that O'n{X) -t O'(x) = 0' > 0 in 
probability. ) 

Proof. For each fixed x we define 

n 

J;t(t) = c;I/2 L: Wn;(x, Xt. ... , Xn)lIt(Y; - g(x)), 
;=1 

);t(t) = J;t(t) - E(J;t(t)) , 

n 

J;;(t) = c;I/2 L Wn;(X,Xl, ... ,Xn) It(Y; - g(x)) , 
;=1 

);;(t) = J;;(t) - E(J;;(t)) . 

The proof will be complete if we show 

(3.2) limlim sUPd_OP( sup 1);t(t)1 > f) = 0 
n OStSd 

(3.3) lim lim sUPd_O sup IE J;t(t)1 = 0 
n 0StSd 

and the analogo1\s result with J;[(t) replaced by J;;(t). 

) 

) 

) 

\ 
J 
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(3.3) follows easily f~om HI and the dominated convergence theorem. 

In order to show (3.2) it is enough to prove that the sequence J;t(t} of random 
variables on the space C[O, 1] of continuous function on [0,1] is tight. According to 
Theorem 12.3 of Billingsley (1968) it suffices to verify that: 

(i) the sequence O;t(O)} is tight, 
(ii) there exist constants "y > 0 and a> 1 and a nondecreasing continuous function F 
on [0,1] such that 

holds for all 0 ~ tl < t2 and n large enough. 

Since J;t(O) = 0 , (i) follows 
,. 

E«i:(t2} - J:(tl»2} ~ c;1 E[L W;i(z}(H'2(l'i - g(z» - H'1 (l'i - g(z)))2] 
i=l 

As in Lemma A of Fraiman (1980), we have that for t2 > tl 

where F(t) = Iblt - c*(O' + t}-l , c* is a positive constant and b is given in III; which 
implies that E(i;t(t2} - J;t(t1»2 ~ C(F(t2} - F(t1»2 . 

Finally, a similar argument shows that the same result hold for J;(t}. 

Remark 3.1. If H4 holds and the kernel K : R" - R is bounded and verifies that 
f IK(u}ldu < 00, lIuW'I«u} - 0 as lIull - 00 the related kernel weights and nearest 
neighbor with kernel weights satisfy thatc;l E(Ei=l W;j(z, X}, ... , Xn»is bounded 
with c;l = nh~ or c;l = kn respectively. 

If H2 holds this condition is verified and so we may also apply Lemma 3.1 to the 
nearest neighbor weight. 

Theorem 3.1. Given Xl, ... , Zp E Rd verifying HID, the assumptions of Lemma 
8.1 and such that gn(Xi} - g(Xj), Sn(Zi} - S(Xi} 1 ~ i ~ p in probability, we have 
that {c;1/2(gn(Xj} - 9(Zi» 1 ~ i ~ p} has the same asymptotic distribution as 

n 

{S(Xi)[X(Xi,9(Xi},'S(Xi))]-lc;1/2 LWni(xi}Z; 1 ~ i ~ p} 
i=l 

where X(x, t, O'} = f 'I/J'«y - t}/O'}dF(yIX = x} and Z; = 'I/J(Y; - 9(Zi»/S(Zi» . 

We will now derive an explicit form for the asymptotic distribution of the robust non
parametric regression estimates related to kernel nearest neighbor and nearest neighbor 
with kernel weights, under the following assumptions: 

Nl. The kernel ]( : Rd - R is bounded, nonnegative, 0 < f K(u)du < 00 and 
lIulld](u) _ 0 as lIull- 00 • 

N2. There exists 0 ~ fJ < 00 sllch that hnn1/(d+2) - fJ as n - 00 • 
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N3. There exists a continuous, symmetric distribution function Fo such thCl:t the con
ditional distribution F(yIX = u) = Fo«Y - g(u»/s(u» with 9 and s satisfying for 
x=x}, ... ,xp: 

a) 9 verifies a Lipschitz condition of order one, and there exist lim(_o(g(x + fU) -
g(x»/f. = g'(x,u). 

b) s verifies a Lipschitz condition of order 1/2, i.e., Is(u) - s(x)1 < cllu - x1l1/ 2 for 
some c> 0 , and lim(_o(s(x + tu) - s(x»/t1/ 2 = 0 . 

Note that without loss of generality we may assume that the scale function of 
F(yIX = u) is s(u) = MADc(u). 
N4. The kernel K is twice continuously differentiable and verifies: 

a) 0 < JIKl(U)ldu < 00; J ](~(u)du < 00 and lIulldK 1(u) - 0 as lIull- 00 where 

Kl(U) = E1=1 ~(u)Uj . 
b) II u liP+} ](2(U) - 0 as lIull - 00 where K2(U) = Ei,j a~:.fuj (U)UiUj and 

U=(Ul, ... ,Ud)· 

N5. There exists 0:5 fJ :5 00 such that k!nm-~ - fJ • 

Let VnI ~ ... ~ Vnn ~ 0, E:':I Vni = 1 denote by Cn = E:':1 V;i . 

N6. limn_oo VnI = 0 and there exists a sequence of positive integers kn such that 
kn - 00, kn/n - 0 as n - 00 and knVnl is bounded and Ej>kn Vnj - 0 as 
n-oo. 

N7. Vnl/c:!2 - 0 as' n - 00 • 

N8. limn_ oo c;I Ej>kn Vnj = 0 and limn_ oo C;1/2(kn/n)l/d = 0 . 

Asymptotic distribution for kernel estimates. 

Proposition 3.1. Let x}, .•. , xp be points in Jld verifying H4, HO, HlO and N9, 
and assume H1, N1, N2 and that W is odd. Then, if Sn(Xi) - S(Xi) in probability 
forI :5 i :5 p , we have that {(n h~)1/2(gn(X;) - g(x;))}f=1 converges in distribution to 

) 

) 

) 

) 

) 

) 

) 

) 

) 
) 

) 

) 
a vector of independent normal variables, the ith element of this vector having mean b1,; = 
fJd/2+l J g'(x;, u) K(u) du/(JI«u) du) and variance O'i,; J W2( u)dFo( u)/ (J W'( u)dFo( u»21 ) 
with O'i,; = s2(x;) J ](2(u)du/[f(x;)(J ]«u)du)21,where gn(x) is given in (1.2) with 

Wn;(x) = K«X; - x)/hn)/ Ej=I K«Xj .:.. x)/hn ) • 

Note that the asymptotic bias for the robust estimate is the same as for the linear 
kernel estimates of the refession function. A sufficient condition for the convergence of 
sn(x) is that the set Fo (1/4) is a single point. 

In order to prove Proposition 3.1 we will use the following Lemma which is an easy 
modification of Theorem 2 of Schuster (1972) and which gives the asymptotic distribution 
of the Nadaraya-Watson estimates. 

., 
Lemma 3.2. Let (Xi, Zi) 1:5 i :5 n be i.i.d. mndom vectors Xi E Rd, Zj E RP 

with IZ!I:5 M for 1:5 j:5 p, Zi = (Zf, ... ,Zf). Denote by F(j)(zIX = u) 
the conditional distribution of zflX1 = u and by rj(u) = E(ZfIX1 = u), o}(u) = 

E«Z{- rj(xj)?IX1 = tt), ltj(tt) = E(Z{ ZflX1 = ttl . Let us suppose that: 

" 

; 

) 

) 

) 

) 
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a} at each Zi, 1 ~ i ~ p, rj is Lipschitz and 

b} u~ and ljt are continuous in a neighborhood of Xi, '1 ~ i ~ p. 
Assume that Xl, ... , Xp verify H4,' the kernel I< verifies Nl and that we are given 

sequences (hin)neN 1 ~ i ~ p verifying N2 with {3 = {3i, for 1 ~ i ~ p. 
Then {(n htn)I/2(r~(xi) - ri(xi))}f=1 is asymptotically distributed as a vector of 

independent normal variables, the ith variable having mean 

variance uL = UHZi) J I<2(u)du/[f(xi)(J I«u)du)2] where 

Ei=1 zjI<((Xj - xi)/hin)/ Ek=1 I<((Xk - Xi)/hin) . 

Asymptotic distribution of nearest neighbor with kernel estimates. 

Proposition 3.2. Let XI ... xp be points in Rd verifying H4, H9, HI0 and N3 and 
assume HI, Nl, N4, N5 and that \II is odd. 

Denote by gn(z) the solution of (1.2) with Wni(X) = I<((Xi - x)/ Hn)/ 
Ei=1 J«(Xj-z)/ Hn) Hn = Hn(x) . Then if Sn(Xi) -+ S(Xi) in probability for 1 ~ i ~ 

p we have that {k!/2 (gn (Xi) - 9(Xi)) }f=1 converges in distribution to a vector of indepen
dent normal variables with the ith variable having mean b1,i(J(Xi».(lti))I/2 and variance 
ui,;!(xi».(vd J \112 ( u)dFo( u)/(J \11'( u)dFo( u))2 
where ).(Vi) is the Lebesgue measure of the unit ball and bl,i and u~,i are given 
in Proposition 3.1. 

The proof of Proposition 3.2 will be obtained from the following Lemma which gives 
the asymptotic distribution of the classical nearest neighbor with kernel regression esti
mate. 

Lemma 3.3. Let (Xi, Zi) 1 ~ i ~ n , be i.i.d. random vectors Xi E Rd Zi = 
(Zl, ... ,zn E W, IZ!I ~ M . Let ri(u), uHu) and lij(u) be as in Lemma 3.2. 
Assume that ZI ••• Zp verify H4, and that NI, N4 and N5 are fulfilled, then we have 

that {k!/2(r:a(Xi) - ri(zi))}~=l is asymptotically distributed as a vector of independent 
normal variables with the ith coordinate having mean b2,i(J(Xi».(VdP/2 and variance 
Ul;!(Zi».(Vi) where ~,i and Uli are given in Lemma 3.2 with {3i = {3 for all i and 

r:a(Xi) = Ei=1 zjI<((Xj - Xi)/ lIn (Xi))/ Ei=1 I<((Xj - Xi)/ Hn(Xi)) . 

Asymptotic distribution for nearest weights. 

Proposition 3.3. Let Zit ... , xp be points in Rd verifying H9, HI 0, N3.and 
assume III, N6, N7, N8 and that \II is odd. Denote by gn(x) the solution of (1.2) with 
Wnlli(X) = Uni. Then if Sn(Xi) -+ S(Xi) in probability for 1 ~ i ~ p , we have that 

{c!'2(gn(xil-g(Xi)}f=1 converges in distribution to a normal zero mean vector with inde
pendent coordinates, the ith variable having val'iance s2(Xi) J \112(u)dFo(u)/(J \II'(u)dFo(u»)2.1 
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The proof of Proposition 3.3 can be obtained in a similar way as that of Proposition 
3.1 using the consistency of g .. (x) obtained in Boente and Fraiman (1989) and the 
following Lemma. 

Lemma 3.4. Let (Xi, Zi), 1 ::;; i ::;; n be i.i.d. random vectors Xi E ~ Zi = 
(Zl, ... , Zf) E R' Iztl::;; M . Let ri(U), O"~(u) and tij(U) be as in Lemma 9.2 and 
r~(xi) = ~i=l W .. j(Xi)Z; with W .. Rj(Xi) = v .. j Rj = Rj(Xi). Then under N6, N1 

and N8 we have that {C;1/2(r~(xi) - ri(xi)}f=l is asymptotically distributed as a vector 
of independent normal variables zero mean and the ith variable has variance Ur(Xi). 

4. Proofs 

Proof of Lemma 2.1. Denote by A .. = fllXRln - xII < c5} with t .. = [clc .. ] . 
As t .. -+ 00, t .. in -+ 0 , by Lemma 4 of Devroye (1982) we have ~~=1 P(A~) < 00 . 
Therefore, in order to prove Lemma 2.1 it is enough to show that there exists Ao > 0 
such that 

00 

LP(O;1 sup 1F .. (yIX = x) - F(yIX = x) > Ao n A .. ) < 00 . 
.. =1' -

Let M = [0;1] , by H6 we may choose y" E R 1::;; k ::;; m such that (k - l)IM :5 
F(y"IX = x) < kIM. Thus 

P(O;1 sup 1F .. (yIX = x) - F(yIX = x)l> Ao n A .. ) , 
< p(O;1 max IF .. (y"IX = x) - F(y"IX = x)1 > (Ao -1) n A .. ) . - '~"~M 

Denote by r,,(x) = F(y"IX = x) . By H6 we have h(XRJ - r,,(x)1 < cllXRi - xII for 
1 :5 i ::;; t.. in A.. and therefore as 

" 
F .. (y"IX = x) - F(y"IX = x) = L W"i(X)(I(-oo,nj(l'i) - r,,(Xi» 

i=l 

" + L W .. i(x)(r,,(Xi) - r,,(x» 
i=l 

by H7 it suffices to show that there exist Al > 0 and A2 > 0 such that 

00 

(4.1) LP(O;lllXRln - xII> AI) < 00 
.. =1 

(4.2) 

\ 
) 

) 

) 

) 

) 

) 

) 

) 

) 

1 
) 

) 

) 

) 

) 

) 

) 
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From Wagner (1973), f .. (x) = l .. /(nIlXRtn - xlld).(Vl) - f(x)' completely as n - 00 

where ),(Vt) stands for the Lebesgue measure of the unit ball. By H8 (l .. /n)l/dO;;1 is 
bounded and therefore (4.1) follows. 

Finally, from Bernstein's inequality we have .. 
M max P(O;11 L: W .. i(X)(I(~oo IIkl(l'i) - rk(Xi)1 > A2) 

l~k~M i=1 ' 
::; 20;1 exp( -A~0!/4c .. ) ::; 20;ln -A~/4 ::; 2aol~/dn-(AV4-1/d) . 

As en - 0 , (4.2) follows for A2 large enough. 

Proof of Theorem 3.1. 
Denote by ). .. (x,t,u) = 2::=1 W .. i(X)IlI(Yi-t)/U) and by 1 .. (x,t,u) = 2::=1 W .. i(X) 

1lI'«Y; - t}/u) . The mean value theorem entails 

o = C;;1/2 ). .. (x,g .. (x), s .. (x ))s .. (x) = C;;1/2). .. (x, g(x)., s .. (x»s .. (x)-
1/2. ~ (4.3) c; (g .. (x) - g(x))).,,(x,{ .. (x),s .. (x)) 

where { .. (x) = (1- O .. )g .. (x) + O .. g(x) with 0 < 0 .. = O .. (x) < 1 . 

As VI is bounded and uniformly continuous we have 
1(Xi,{ .. (Xi),S .. (Xi)) -1(Xi,9(Xi),S(Xi)) in probability, for all 1::; i::; p. 

Lemma 3.1 of Boente and Fraiman (1989), implies that 1 .. (Zi, { .. (Xi), S .. (Xi)) -
A(Xi,{ .. (Xi),S .. (Xi)) - 0 a.s. for 1 ::; i ::; p and therefore X .. (Xi,{ .. (Xi),S .. (Xi))
X(Xi,9(Xi),S(Xi)) in probability. Finally, the conclusion of Theorem 3.1 follows from 
(4.3) and Lemma. 3.1. 

Proof of Proposition 3.1. From Nl, N2, N3, N4 and Theorem 2.1 of Boente 
and Fraiman (1989) we obtain that 9 .. (Xi) converges to 9(Xi) almost everywhere for 
1 ::; i ::; p. Applying Lemma 3.2 to Z; = 1lI«Yj - 9(Xi))/S(Xi)) we obtain that 

(nh~)1/2 2:7=1 W .. ;(x)Z; converges to a vector of independent normal variables, the ith
variable having mean b1iJIlI'(u)dFo(u)/S(Xi) and variance uLJIlI2(u)dFo(u)/S2(Xi) 
since ri(xi) = 0 Ur<Xi) = JIlI2(u)dFo(tt) and r~(xi,tt) = 9'(Xi,U) JIlI'(t)dFo(t)/S(Xi) . 
Remark 3.1 and Lemma 3.1 complete the proof. 

Proof of Lemma 3.3. Let ht .. = k .. /(n !(Xi».(Vl)) . Loftsgaarden and Quesen
berry (1965) showed that ht .. / H:(Xi) - 1 in probability; Moore and Yackel (1977) 
established that 

(nH:(xi))-1 tI«(X; - xi)/Hn(xil- !(Xi) J I«u)du 
;=1 

in probability, therefore as: 

(k!/2(r!(Xl) - rl(zI)), ... , k!/2(~(xp) - rp(xp)) .. 
= (k!/2(nht .. )-1 L:(Z} - rl(xd)I«(X; - xl)/H .. (xd), ... , 

;=1 .. 
k!/2(nh~ .. )-1 L:(Zr - rp(xp)) I«(Xj - Xp)/ II .. (Xp))) diag ().i, ... , ).;)" 

j;=1 
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with (~f)-1 = (Hn(Xi)/hin)d(n H~(Xi»-1 E J=1 ]((x; - Xi)/ Hn(Xi» it is enough to see 
that 

n 

Sn = {k!/2(n htn)-1 ~)Z; - ri(xi» ]((X; - Xi)/ Hn(Xi))}f=l 
j=l 

is asymptotically normally distributed with covariances 0 and the ith coordinate with 
mean 

hi = ~.i(J(Xi)~(Vl»-I/d !(Xi) J ](u) du 

and variance i7f = 0'~.d(xi)~(Vl)!2(xi)(J J(u) du)2 . 
A second order Taylor expansion gives Sn = Snl + Sn2 + Sn3 with Sn; = 

(S~~) , ... , S!:h and 

n 

s~il = k!/2(nhtn)-1 EJ((X; - xi)/hin)(Z; - ri(Xi» 
;=1 

n 

S~iJ = k:!2 Vin(n htn)-l El(I((Xj - Xi)/hin(Z; - ri(Xi» 
;=1 
n 

s~1 = k!/2 V;;(n htn)-l E ](2 «X; - Xi)/e~i»(Z; - ri(Xi» 
;=1 

where min(hin, lIn (Xi» $ e~i) $ max(hin,I1n(Xi», and Vi .. = (hin/ lIn (x;}) - 1. 
- - - - 2 2 By Lemma 3.2. Snl~N(b,E) with b=(b1! ... ,bp ) and E=diag(u1'''''Up ), 

and w stands for weak convergence. Therefore it is enough to show that S .. 2 and Bn3 
-+ 

converge to 0 in probability. 

Moore and Yackel (1977) have shown that k!/2 « hin/ 1I n( Xi»d - 1) is asymptotically 
normally distributed, thus it suffices to see that, for all 1 $ i $ p : 

and 

n 

(a) (n htn)-1 E ](1 «Xj - Xi)/hin)(Z; - Ti(Xi» --+ 0 in probability 
;=1 

n 

(b) (n htn)-l L: J(2«Xj - Xi)/e!)(Z; - Ti(Xi» is bounded in probability. 
;=1 

By Tchebischev's inequality (a) follows easily from Bochner's theorem since Ti and 0'; 
are continuous at Xi. 

(b) may be obtained from N4(b) in a similar way as in Theorem 5 from Boente and 
Fraiman (1991) since Z; are bounded. 

Proof of Proposition 3.2. If ](uz) 2: ](z) for z E Rd u E [0,1] the 
convergence of gn(Xi) to g(Xj) follows from Collomb (1980). It J( verifies (2.1) this 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 
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result follows from Theorem 3.1 of Boente and Fraiman (1989). If not, a direct proof 
can be given using Theorem 2.2 of Boente and Fraiman (1989) and establishing that 
Fn(YIX = Xi) -+ F(yIX = Xi) a.s. by a second order Taylor's expansion as in Lemma 
3.3. 

Now the proof follows as in Prop~sition 3.1 using Lemma 3.3. 

Proof of Lemma 3.4. Denote by Sin and S2n the vectors with coordinates 

n 

sf2 = L Wnj(Xi){Zj - ri{Xj» 
j=1 

n 

s~2 = L W"j {xi)(ri (Xj) - ri{xi» 
j=1 

We will show that 

(a) c;l/2 SI,,~N{O, E) E = diag (O'HX1),'" ,O'~{xp» 

(b) c;l/2 S2" -+ 0 in probability; 

which entails the Lemma. 

We begin by proving (b). 

(4.4) 

kn 

-1/2 S(i) -1/2 '" ({X ) (» en 2" = en L...J V"j ri Rj(Zi) - ri Xi 
j=1 

+ c;I/2 L V"j{ri{XRj(Zi» - ri(xi» . 
j>kn 

As Iri(X}I:5 M. for all i,x, N8 implies that the second term on the right side of (4.4) 

converges to O. As rj is Lipschitz, the first term can be majorized by C c;l/2 II XRtn (z;)

xiII = C c;l/2 H,,(Xi) with C a positive constant. Thus the convergence in probability 
of k,,/{n H~(Xi» to I{xi) A(VJ) and N8 concludes the proof of (b). 

In order to prove (a) let a E RP, lIall = 1 , we have to show that 
a' c;l/2 E-1/2 SI,,~N(O, 1) where E-1/2 = diag «0'l(xi»-1/2) . 

Denote by /I." the random diagonal matrix in RP><P with elements 'Yi(X) = 
c;1 Ej=1 W;j{Xi)(O't(Xj) - (ri(xi) - ri(Xj»2]. We will show that: 

(i) /I." -+ E in probability . 

(ii) a' c;l/2 /1.;1/2 SI,,~N{O, 1) 

Since 

" 
'Yi{X) =O'l{xi) + c;1 L W;j(Xi)(O'[(Xj) - O'l(xi» 

j=1 
fa 

- c;l L W,;j(Xi)(rj(Xj) - rj(Xj»2 
j=1 
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(i) follows if the second and third term converge to zero in probability, but this follows 
easily from the continuity of O'i and ri, from assumption N8 and the fact that Hn(Xi) -+ 

o in probability. 
We will derive (ii) from the Berry-Essen Theorem. For each fixed i, 1::; i ::; 

p , let Vi be i.i.d. random variables with the distribution of zjlXj = {j and 

U . - -1/2,",p . -1/2(t)w, .( . t)(Vi E(Vi)) th r(, -1/2 -1/2 S IX - t) -In - cn L..ri=1 aa'Yi .. nJ Xu.. j - j en J... a cn /\n In -..-
£(~;=1 Ujn) where £(U) denotes the distribution of U . 

We have that Ujn are independent zero mean random variables for 1::; j ::; n such 
that 

n n P 

L: Var (Ujn) = L: c;1 L: ah;I({)Wln(xi,{)Var(v~i) + en 
j=1 j=1 i=1 

P n 

= L: ah;I({)c;1 L: W~j(Xi' {)E[(Z; - ri({j))2IXj = {j] + Cn 
i=1 j=1 

P 

= L:a~ +en ~ 1 
i=1 

since by N6 and N8, the covariance term Cn converges to O. On the other hand, IUjnl::; 

M c;I/2 Vln ~f=llailiil/2({) = Mn({) . Then r n = ~i=1 EIUjnl3 ::; 2Mn(O and the 

Derry-Essen theorem apply to Uj~ since C;I/2Vnl -+ 0 as n ~ 00 • Thus, there is a 
universal constant Ao such that 

Therefore 

IP(a' c;I/2 /\;1/2 SIn::; zlX = {) - 4>(z)1 ::; Ao r n ::; Ao MnW 

IP(a' c;I/2 /\;1/2 Snln ::; z) - 4>(z)1 
P 

::; Ao M c;l/2 vnlA P(L: lailii(X)-1/2 < A) 
i=l 

P 

+ 2P(L: lai!;i(X)-I/2 > A) 
i=I 

which establishes (ii) since /\n -+ ~ in probability which is positive definite and 
-1/2 c.. V .. l -+ 0 as n ~ 00 • 
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