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. ASYMPTOTIC DISTRIBUTION AND STRONG ORDER OF CONVERGENCE

OF ROBUST NONPARAMETRIC REGRESSION ESTIMATES
GRACIELA BOENTE - RICARDO FRAIMAN

Summary
In this paper, strong order of convergence and the finite dimensional asymptotic
distribution of nearest neighbor and of nearest neighbor with kernel regression
estimates is obtained when the response variables are bounded. These results
are applied for deriving the asymptotic normality and orders of convergence for
robust nonparametric regression estimates.

. 1. Introduction

Let (X,Y), (X1,Y1),...,(Xn,Yn) be independent, identically distributed random
vectors, Y € R,X € RP . As is well known, nonparametric estimators of the regression
function r(z) = E(Y|X = z) can be written as rn(z) = Y1 Whi(z)Y; , where
Whi(z) = Wai(z, X1,...,Xa) is a probability weight function, i.e., Whi(z) 2 0 and
Yicy Wai(z) =1.

Nearest neighbor methods were introduced by Cover (1968) and the
weights are defined as follows. Rank the (X;,Y;), 1 < i < n , according to increas-
ing values of ||X; —z|| and obtain a vector of indices (Ry,...,R;) where Xp; is the
ith nearest neighbor of z among Xi,...,X, . Let {vni, ¢ > 1} be a sequence of real
numbers such that v 2 Va2 > ... 204y 20, v,y =0 ¢>n,and E:;l vpi = 1, then
War,(z) = vgi . The consistency properties of r,(z) for different choices of the vector
(vn1s---,Vnn) were studied by Cover (1968), Stone (1977), Devroye (1978) and (1981).
Devroye (1982) gives necessary and sufficient conditions for pointwise convergence.

Nearest neighbor with kernel methods were introduced for density estimation by
Rosenblatt (1979) and by Mack and Rosenblatt (1979) and adapted to regression mod-
els by Collomb (1980). The weight function can be written as Wyi(z) = K((X; —
z)/Hp)] Y51 K((Xj —z)/H,) where Hp = Hp(z) = || Xg, —z||, k = kn is a sequence
of integers and K : RP — R is a nonnegative integrable function. Mack (1981) derived
the asymptotic normality of nearest ncighbor with kernel estimates for kernels supported
on the unit ball; in particular, the asymptotic distribution of uniform k-nearest neighbor
estimates, defined by vpi =1/k for 1 <i<k wvyi=0 i>k,is derived.

The first reference for kernel estimates are Nadaraya (1964) and Watson’s (1964)
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papers. Further developping was done, for instance, by Devroye and Wagner (1980 a)
and b)), Spiegelman and Sacks (1980), Grebliki, Krzyzak and Pawlak (1984) and Gyorfi
(1981).In this case, Wyi(z) = K((X; — z)/h)/ 21_1 K((X; —z)/h) with h=h, a
sequence of nonnegative real numbers.

In Boente and Fraiman (1989) a robust location functional was introduced and strongly}

consistent, robust nonparametric estimates of the regression function were obtained by
applying nonparametric distribution estimates to the functional equation.
Let ¥ be a bounded, strictly increasing real function, denote by F(y|X = z) a

regular version of the conditional distribution function of Y|X = z and define g(z) as
the solution of

(1.1) | / ¥((y - 9(2))/s(2)) dF (y]X = z) =

where s(z) is any robust scale measure, for instance, s(z) = MAD(z) = med(]Y —
m(z)||X = z) where m(z) = med(Y|X = z) is the median of the conditional distribu-
tional function. If F' is symmetric around r(z) and ¥ is odd g(z) = r(z) .

The robust nonparametric estimate is defined as the unique solution g,(z) of

n
(1.2) Y Wai(2) U((Y; - gn(2))/sn(z)) = 0
i=1
where the scale measure is, for instance s,(z) = med(|Y — m,(z)||X = z) and the
medians are evaluated corresponding to the conditional empirical distribution function;

n
(1.3) Fa(ylX =2) =) Wai(z) 1a(Y:)
=1
where A = (—o0o,y] and I4 denotes the indicator function of the set A . More
generally, any robust estimator consistent to s(z) can be used.

In Section 2 strong order of consistency are obtained. In Section 3 the. asymptotic
normality of both, linear and robust, estimates is stated. The bias of the robust estimate
is the same as for its linear relative and the relationship between the asymptotic variances
is the same as for the usual robust location estimates. In Section 4, proofs are given.

2. Strong convergence rates

In Boente and Fraiman (1989) the unicity of solution of the equation (1. 1), the weak
continuity of the functional defined through (1.1) and strong consistency of gn(z) was
obtained under:
Hl. ¥ : R — R is a strictly increasing, bounded and continuous function such that
lim,_....oo\ll(t) =a>0 and lim;..._ooll'(t) =b<0.
H2. There exists a sequence {c, : n > 1} of real numbers such that ¢, >0, c,log n —
0,nc, 00 as n— oo, for which mazi<jcnWhaj(z,X1,...,X5) < ¢p as. for almost
all z(Py) .
113. Tlxere exists a random variable K, and a real number ¢ > 0 verifying
E:GI,,R Whi(z, X1,...,Xa) = 0 as n — oo as. supy(cpKy) < ¢ a.s. for almost all

z(Px) .

i
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In order to obtain strong convergence rates for the robust estimators of the regression
function we will need some additional regularity conditions.
H4. The vector X has a density f continuous and positive at z .
H5. F(y|X = z) is symmetric around g(z) .

H6. F(y|X = z) is continuous as a function of y and Lipschitz in z uniformly in y,
i.e., there exists 6 >0 and ¢ >0 such that ||u—z||<é= |F(y|X =z) - F(y|X =
u)| < cllu—z| forall y.

H7. There exists ¢ > 0 such that  P(87! Eielnﬂx Whi(z) < ¢) = 1 where 6, =
(calog n)!/% .

H8. There exists ag > 0 such that ag < c}.+§n?ilog n forall n.

Remark 2.1. As noted in Boente and Fraiman (1989) kernel weights do not verify
H2. However, the strong consistency of gn(z) can be obtained from Theorem 2 of
Greblicki, Krzyzak and Pawlak [13] if K and h, satisfy the following assumptions:

i) hn = 0 and nhl/logn — co0 as n— oco.

ii) There exist positive constants, r, c1, c3, c3, and a bounded Borel function H
decreasing on (0,+00) such that ¢ H(||z||) < K(z) < c2 H(||z]), c3 Ijz<r(z) < K(2)
and t4H(t) -0 as t— 0.

Assumption H7 is fulfilled for any k¥ — NN weight function, in particular for the
k-nearest neighbor with kernel if there exist positive constants ¢; and ¢z such that

(2.1) e c I“‘"Sl(u) <K(u)<e I“‘“SI(u)
A nearest ngighbor satisfies H7 if ;! 2 ik, Uni is bounded.
Lemma 2.1. Under H2 to H{ and H6 to H8 we have that

07" sup | Fu(y1X = 2) = F4IX = ) =0(1) as

The proof may be found in section 4.

Theorem 2.3 of Boente and Fraiman (1989) together with Lemma 2.1 implies the
following result.

Theorem 2.1. If 9 is odd, continuously dzﬂ'erentzable with derivative ' positive
and bounded, H1 to H8 imply that

O;I(g,,(z) —-g(z)) = 0(1) a.s.

Remark 2.2. The conclusion of Theorem 2.1 also holds for kernel weights under H4,
H5 and H6 provided that the sequence {h, : n > 1} and the kernel K satisfy the
conditions given in Remark 2.1 and the following additional conditions: h,0;! < A < 00
for all n where 8, = (logn/nh3)!/? and t4+2H(t) is bounded.
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3. Asymptotic Distribution

Finally, we will show how to derive the asymptotic distribution of the robust regression
estimates by reducing the problem to obtain the asymptotic distribution of the “classical”

nonparametric regression estimates for bounded variables. We will need the following
additional assumption on the function .

HY. The function ¢ is twice continuously differentiable with second derivative "

verifying that there exist positive constants ¢, M and € such that |¢"(t)| < c|t]~(2+9)
for |t|> M.

H10. E{¢'[(Y - g(z))/s(z)]|X =z} #0.
We will denote by ,(t) = oy(t/0) .

Lemma 3.1. Under H1, H5 and HY, if there exists a real constant ¢ > 0 and a

sequence of positive numbers {cn : n > 1} such that ¢ E[Y 1, W3(z, Xa,...,X,)] <
¢, we have that

(3.1) &Y Wail2)lWou i = 9(2)) - Yo(¥i — 9(2))] = 0

=1

in probability for any sequence on = on(z) such that on(z) — o(z) = 0 > 0 in
probability.

Proof. For each fixed = we define

Hi(u) = Yo41(u) = o (u), Ii(u) = Yg-t(u) — Yo(u),,

n
JH) = c'? > Wailz, X1,..., Xo) Hi(Yi — g()),
=1

TH(t) = JH() - E(J}),

Ir @)= Wailz, X1,..., Xa) L(Yi — g(2)) ,

i=1

Ja(t) = J7(t) - E(J7 (1)) -

The proof will be complete if we show

(3.2) limlim supy_,oP( sup I'j,;"(t)| >e)=0
n 0<i<d
(3.3) limlim supy_o sup |EJ}(t)]=0
n 0<t<d

and the analogons result with J}() replaced by J7(t).

e

N
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(3.3) follows easily from H1 and the dominated convergence theorem.

In order to show (3.2) it is enough to prove that the sequence J*(t) of random
variables on the space C[0,1] of continuous function on [0,1] is tight. According to
Theorem 12.3 of Billingsley (1968) it suffices to verify that:

(i) the sequence {J+(0)} is tight,

(ii) there exist constants 7 >0 and a > 1 and a nondecreasing continuous function F
on [0,1] such that

E(|TF (t2) = TH(80)I") < (F(t2) = F(t1))
holds for all 0 <t; <t2 and n large enough.
Since J¥(0) =0, (i) follows

E((T (t2) - TH())) < P E[Y_ Wai(a)(Hu(Y; — 9(2)) = Hy (Vi — 9(2)))’]

i=1
As in Lemma A of Fraiman (1980), we have that for ¢; > t;
|Hep(u) = Hy, (u)] < F(t2) - F(t1)
where F(t) = |blt — c*(0 +t)~1, c* is a positive constant and b is given in H1; which

implies that E(J7}(t2) — J(t1))? < c(F(t2) — F(t1))? .
Finally, a simjlar argument shows that the same result hold for J;(t).

Remark 3.1. If H4 holds and the kernel K : R — R is bounded and verifies that
J1K(u)ldu < oo, ||u||?K(u) = 0 as [ju]| = oo the related kernel weights and nearest
neighbor with kernel weights satisfy that c;1E(3 1, W2(z, X1,...,Xn)) is bounded
with ¢g! = nhd or ¢! =k, respectively.

If H2 holds this condition is verified and so we may also apply Lemma 3.1 to the
nearest neighbor weight.

Theorem 3.1. Given zj,...,%p € R verifying H10, the assumptions of Lemma
3.1 and such that gn(z;) — g(:i), sa(zi) — s(zi) 1 < i < p in probability, we have
that {czl/z(gn(z,») —g(z;)) 1 <1 < p} has the same asymptotic distribution as

{s(0)R(i, g(a), s e/ Y Wai(wi)2} 1< i<p)
j=1
where X(z,t,a) = [¢'((y—t)/o)dF(y|X ==z) and ZJ': = Y(Y; — g(zi))/s(zi)) .

We will now derive an explicit form for the asymptotic distribution of the robust non-
parametric regression estimates related to kernel nearest neighbor and nearest neighbor
with kernel weights, under the following assumptions:

N1. The kernel K : R? — R is bounded, nonnegative, 0 < [K(u)du < oo and
lull®K(u) = 0 as |u]| = oo .

N2. There exists 0 < 8 < 0o such that k,n/(#+2) 5 8 as n — o0
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N3. There exists a continuous, symmetric distribution function Fp such that the con-
ditional distribution F(y|X = u) = Fo((y — g(u))/s(u)) with g and s satisfying for

T=T1y.-04Tp:

a) g verifies a Lipschitz condition of order one, and there exist lime—o(g(z + eu) —
9(@)/e=d'(z,u).

b) s verifies a Lipschitz condition of order 1/2, i.e., |s(u) — s(z)| < cllu — z||*/? for
some ¢>0,and limeo(s(z + eu) — s(z))/e}/2 = 0.

Note that without loss of generality we may assume that the scale function of
F(y|X = u) is s(u) = MAD(u).

N4. The kernel K is twice continuously dlﬁ'erentnable and verifies:

a) 0 < [|Ky(u)ldu < oo; [ K3(u)du < 0o and ||ul|?K1(u) = 0 as |ju|| = co where
Ky(u) = Thoy S (u)u; -

b) [lullP*'Kz(u) = 0 as |lu]]| = co where Ka(u) = ¥;; 554 au'au (u)uju; and
u= (uls yud)

N5. There exists 0 < 8 < oo such that lci i BN B.
Let va1 > ... 2 vpn 20, 30 vni =1 denote by cu = 31, v2; .

N6. limp—oovn1 = 0 and there exists a sequence of positive integers k, such that

kn — o0, ky/fn =4 0 as n — oo and kyv, is bounded and 2j>kn vg; — 0 as
n—00.

N7. v,.1/c3./2—»0 as n — 00 .

N8. liMaoo€5? ok, vnj = 0 and limpsco 5 /% (ka/n)H/d =

Asymptotic distribution for kernel estimates.

Proposition 3.1. Let z;,...,z, be points in R verifying H{, H9, H10 and N8,
‘and assume H1, N1, N2 and that VU is odd. Then, if sn(z;) — s(z;) in probability

for 1< i< p, we have that {(nh8)/?(ga(z;) — g(zi))}!_, converges in distribution to
a vector of independent normal variables, the ith element of this vector having mean by ; =

B! [ g'(zi,u) K (u)du/( [ K(u)du) and variance o?; [V (u)dFo(u)/(f ¥ (u)dFo(u))2 l

with “%,i = s%(z;) [ K*(u)du/[f(zi)([ K (u) du)?) ,where gn(z) is given in (1.2) with
Wai(z) = K((Xi — 2)/hn)] L=y K(X; = z)/hn) .
Note that the asymptotic bias for the robust estimate is the same as for the linear

kernel estimates of the re¥ression function. A sufficient condition for the convergence of
sn(z) is that the set Fy'(1/4) is a single point.

In order to prove Proposition 3.1 we will use the following Lemma which is an easy
modification of Theorem 2 of Schuster (1972) and which gives the asymptotic distribution
of the Nadaraya-Watson estimates.

Lemma 3.2. Let (X;,Z;) 1<i<n beiid random vectors X; € R, Z; e RP
with |Z}| < M for 1 <j<p, Zi=(2Z},...,27) . Denote by FU(2]X = u)
the conditional distribution of Zj|X1 =u and by rj(u) = E(Z{|X1 = u), a?(u) =
E((Z{ —ri(z;))? X1 =), by (u) = (ZJ ZYX) = u) . Let us suppose that:

R N N S ST N
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a) at each z;, 1 <i < p,rj is Lipschitz and
lim(rj(zi + eu) —rj(zi))/e = ri(zi )

b) a? and ¢j; are continuous in a neighborhood of z;, 1 <i<p.

Assume that z1,...,zp verify Hf, the kernel K wverifies N1 and that we are given
sequences (hin)nen 1 <i < p verifying N2 with f = fi, for1 <i<p.

Then {(n h%)V2(ri(z:) — ri(z:))}eo, is asymptotically distributed as a vector of
independent normal variables, the ith variable having mean

bri =68 [ (o) K auf [ K(u)du and

variance o3, = o?(zi) [ K2 (u)du/[f(zi)([ K(u)du)?] where (z) =
Yie1 ZEK (X5 = 2i) [ hin)] L=y K(Xk — i)/ hin) -

Asymptotic distribution of nearest neighbor with kernel estimates.

Proposition 3.2. Let ...z, be points in R% verifying H{, H9, H10 and N3 and
assume H1, N1, N4, N5 and that ¥ is odd.

Denote by gn(z) the solution of (1.2) with Wyi(z) = K((Xi — z)/Ha)/
Z;-'=1 K((Xj—z)/Hs) Hn= Hg(z). Then if sq(zi) — (i) in probability for 1 <i <
p we have that {k,‘.’z(g,.(z,-) —g(z:))}e., converges in distribution to a vector of indepen-
dent normal variables with the ith variable having mean bl,.‘(f(a:.-)z\(V,'))l/2 and variance
o2 f(zi)AV1) [ W2 (u)dFo(u)/(J W' (u)dFo(u))®
where A(V;) is the Lebesque measure of the unit ball and by; and af,'- are given
in Proposition 3.1.

The proof of Proposition 3.2 will be obtained from the following Lemma which gives

the asymptotic distribution of the classical nearest neighbor with kernel regression esti-
mate.

Lemma 3.3. Let (X;,Z;) 1<i<n, be i.i.d. random vectors X; € R Z; =
(2},...,2%) € R?, |Z]| < M . Let ri(u), o}(u) and ¢;j(u) be as in Lemma 3.2.
Assume that z1...zp verify H{, and that N1, N§ and N5 are fulfilled, then we have
that {lc,l,/ 2(?:;(:::;) —ri(z:))}o, is asymptotically distributed as a vector of independent
normal variables with the ith coordinate having mean bz,,'[f(:l:.')z\(Vl)]l/2 and variance
ag',-f(a:.'))\(Vl) where by; and "%,n‘ are given in Lemma 3.2 with f; = forall i and

(@) = Ljay ZHK((X; — )/ Ha(2:))] Loy K(Xj — i)/ Ha(zi)) -
Asymptotic distribution for nearest weights..

Proposition 3.3. Let zi,...,zp be points in R%  verifying H9, H10, N3 and
assume H1, N6, N7, N8 and that ¥ is odd. Denote by ga(z) the solution of (1.2) with
Wan,(z) = vai . Then if sp(zi) — s(zi) in probability for 1 < i < p, we have that
{c},/z(g"(zg)—g(x;) P_, converges in distribution to a normal zero mean vector with inde-
pendent coordinates, the ith variable having variance s*(z;) [ U2(u)dFo(u)/([ ¥'(u)dFy(u))® |
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The proof of Proposition 3.3 can be obtained in a similar way as that of Proposition

3.1 using the consistency of gn(z) obtained in Boente and Fraiman (1989) and the
following Lemma.

Lemma 3.4. Let (X;,Z;), 1 <i<n beiid random vectors Xi€eR Z; =
(2},...,2%) e R |2 < M. Let ri(u),0}(u) and &j(u) be as in Lemma 3.2 and
ma(@i) = 5oy Wai(2)Z}  with War;(2i) = vaj R; = Rj(zi) . Then under N6, N7

and N8 we have that {c, Y 2(1’5,(3,-) —ri(zi)}o, is asymptotically distributed as a vector
of independent normal variables zero mean and the ith variable has variance o¥(z;) .

" 4. Proofs

Proof of Lemma 2.1. Denote by A, = {IXR,, — 2|l < 8} with ¢, = [c/c,,] .
As £, = 00, £y/n — 0, by Lemma 4 of Devroye (1982) we have 3 27 P(AS) < .

Therefore, in order to prove Lemma 2.1 it is enough to show that there exists A >0
such that

o0
D P(07 sup |Fa(ylX = 2) — F(y|X = 2) > Ao N As) < oo .
v a0

n=1

Let M = [0;7], by H6 we may choose yx € R 1 <k <m such that (k-1)/M <
F(yi]X =z) < k/M . Thus

P(67" sup |Fa(y|X = z) — F(y|X = z)| > Ao N Ay)
¥y

S P67 max |Fa(yelX = 2) = F(ilX = 2)| > (A0 —1) N Ay).

Denote by rk(z) = F(y&|X = z) . By H6 we have |ri(Xp,) — ri(z)| < c||Xg;, = z|| for
1<:< ¢, in A, and therefore as ‘

| Fa(elX =2)— F(yelX =z) =) Wai(2)(L(= 00,4, (Yi) = ri(X5))

i=1
+ 3 Wai(2)(re(X:) = ra(2))
=1

by H7 it suffices to show that there exist A; >0 and Az > 0 such that

n=1

- .
(4.1) Y P\ XR,, — zll > A1) < 00

[ ]

“2) 'glo;x max, P07 ZW,..'(:::)(I(_OO,M(Y.-) - rk(X;))! > Az) <

=1 ’

S

N~
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From Wa.gner (1973), f,,(a:) =Lu/(n||XR,, — z||9A(V4) — (z) completely as n — oo
where A(V1) stands for the Lebesgue measure of the unit ball. By H8 (£,/n)'/40; =1 s
bounded and therefore (4.1) follows.

Finally, from Bernstein’s inequality we have
n
M 335, PO D Wi @) e (1) — (X0 > A2)
=
< 2071 exp(—A2602 [4c,) < 29;171_‘43/4 < 2a51c,l./dn"(‘4;/4_1/‘1) .
As ¢, — 0, (4.2) follows for A, large enough.

Proof of Theorem 3.1.

Denote by Ag(z,t,0) = S0, Wai(2)¥(y; —t)/0) and by An(z,t,0) = i1 Wai(z)
U'((Y; — t)/o) . The mean value theorem entails

0= c,Tl/z/\n.(a:,gn(x), 8n(z))sa(z) = cn 12 An(z,9(z), sn(z ))8,.(2:)—

(43) e (gn(2) = 9(2))Ra (2, £a(), 50 ()
where £a(z) = (1 — On)gn(z) + Ong(z) with 0 < by =0p(z) < 1.
As Y is bounded and uniformly continuous we have

X(a:,-,{,.(z,'),s,,( i) — /\(z,,g(z,),s(z,)) in probability, forall 1 <:i<p.
Lemma 3.1 of Boente and Fraiman (1989), implies that },.(z.,{,.(z;),s,.(z.-)) -
(ziy€a(Zi),8a(z;)) = 0 as. for 1 < i < p and therefore A,(z;,€n(z;), sn(z;)) —

(zi,9(xi), s(zi)) in probability. Finally, the conclusion of Theorem 3.1 follows from
(4.3) and Lemma 3.1.

)
X

Proof of Proposition 3.1. From N1, N2, N3, N4 and Theorem 2.1 of Boente
and Fraiman (1989) we obtain that gn(z;) converges to g(z;) almost everywhere for
1<i<p. Applymg Lemma 3.2 to Z' = Y((Y; — g(zi))/s(zi)) we obtain that
(nh3)1/2 =1 ,.,(:c)Z converges to a vector of independent normal variables, the ith-
variable having mean bl,f\Il (u)d Fo(u)/s(z:) and variance o} 3. [ W2 (u)d Fy(u)/s?(x;)
since ri(z;) =0 a (=) f\Il2 )d Fo(u) and ri(z;,u) = g'(zi,u) [ W' (t)d Fo(t)/s(z;) .
Remark 3.1 and Lemma. 3.1 complete the proof.

Proof of Lemma 38.3. Let h¢, = ka/(n f(z;) \(V4)) . Loftsgaarden and Quesen-

berry (1965) showed that A% /Hd( z;) — 1 in probability; Moore and Yackel (1977)
established that

(nH3(z))™ ZK i — i)/ Ha(z:) = f(zi) / K(u

in probability, therefore as:

(16:1/2 Ta(z1) — 1'1(31)), kvlnﬂ(?ﬁ(zr) —p(2p))
= (kY (nhd ) Z(Z} = r1(e1) K((X; = 21)/ Ha(21)), ..,
J=1

k2 (k81 Y (2P — rp(2y)) K (X = 3p)/ Halsy))) diag (AT, ..., AB)
j=1
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:vhittl (M= (H,,(a:,-)/h,j,.)d(n Hi(z;))™! E;‘.=1 K((z;j — zi)/Hn(;)) it is enough to see

Su = (B2 ) Y2 i) K((X; - 2/ Hale) Yoy
j=1

is asymptotically normally distributed with covariances 0 and the ith coordinate with
mean

B = (MR @) [ K ) du

and variance &} = o3 ;f(z)MV1)f2(zi)(f K (u) du)? .
A second order Taylor expansion gives Sp, = Sp; + Sp2 + Seas  with S, =
(8$,...,5%) and

S8 = b (nnd) Z K((X; = 2i)/hin)(Z} = ri(2))
Jj=1

583 = B Vin(n b)) 3" Ky (X = 23)/hin(Z5 = ri(z)
=1

n
S8 = B VR )Y Ka((X; - 20)/eD)(Z — i)
i=1 :
where min(hin, Ha(2:)) < €5) < max(hi, Ha(2i)), and Viy = (hin/Ha(z;)) = 1.
By Lemma 3.2. SnlgN(z, 37) with b= (31,. .. ,3,,) and Y} = diag(3?3,... ,53) ,

and w stands for weak convergence. Therefore it is enough to show that Sp2 and Sp3
converge to 0 in probability.

Moore and Yackel (1977) have shown that k,l./ 2((h,-,, [Ha(2:))? = 1) is asymptotically
normally distributed, thus it suffices to see that, forall 1 <i<p:

(a) (nhd)! Z K1((X; = 2i)/hin)(Z} — ri(2i)) — 0 in probability
Jj=1

and

(b) (nh%)™Y Ka((X, — ;)/€,)(Z} — ri(z)) is bounded in probability.
i=1

By Tchebischev’s inequality (a) follows easily from Bochner’s theorem since ri and o}
are continuous at z; .

(b) may be obtained from N4(b) in a similar way as in Theorem 5 from Boente and
I'raiman (1991) since Z} are bounded.

Proof of Proposition 3.2. If K(uz) > K(z) for 2z € R* u € [0,1] the
convergence of gn(z) to g(z;) follows from Collomb (1980). If K verifies (2.1) this
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result follows from Theorem 3.1 of Boente and Fraiman (1989). If not, a direct proof
can be given using Theorem 2.2 of Boente and Fraiman (1989) and establishing that

Fa(ylX = z;) = F(y|X = z;) a.s. by a second order Taylor’s expansion as in Lemma
3.3.

Now the proof follows as in Proposition 3.1 using Lemma 3.3.

Proof of Lemma 3.4. Denote by S1, and S2, the vectors with coordinates

(') EW"J a:.)(Z “"t(XJ))

J—l

s = Z Whj(2i)(ri(X;) — ri(zi))

1=1
We w:ll show that
(2) cn anwN(O ) T = diag(o}(z1),...,03(zp))

(b) 5"/ S3a — 0 in probability;
which entails the Lemma.

We begin by proving (b).

o k"
G2 s = ) vai(ri( X (zp)) = Til=:))
i=1

(44) +a'? Y oni(ril Xy e) — i(=i))

i>kn

As |ri(z)] £ M for all i,z , N8 implies that the second term on the right slde of (4.4)

converges to 0. As r; is Lipschitz, the first term can be majorized by C ca' HX Ri, (z:)—

zi| =C c,.ll 2H,.(:z: ;) with C a positive constant. Thus the convergence in probability
of ka/(n Hi(z;)) to f(z;) A(V1) and N8 concludes the proof of (b).
In order to prove (a) let a € RP, |la]| =1, we have to show that
deptyig S1nwN(0,1) where 33~ 1/2 = diag ((o?(2i))~1?).
Denote by An the random diagonal matrix in RP*P with elements ~;(X).
c;! 2;9:1 (z.)[az(X )= (ri(z l) —1i(X;))?] . We will show that:
(i) Ap — 2 in probability

(i) o' &a? AZY? S N(0,1)

Since

%(X) =o; (rn)+¢=‘lz i(z)(0](X;) = o} (2:)

ij=1

— ety Whi(=i)(ri(ei) — ri( X;))?
i=1 '
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(i) follows if the second and third term converge to zero in probability, but this follows
easily from the continuity of o; and r; , from assumption N8 and the fact that H,(z;) —
0 in probability.

We will derive (ii) from the Berry-Essen Theorem. For each fixed i, 1<i<
p, let V] be iid. random variables with the distribution of Z;|X_, = § and
Uin = ca'/* T a2 (€ Wai(zi, (V] - E(V)) then £(a' &5'/% A7Y2 $11X = §) =
L(3;=1Ujn) where L(U) denotes the distribution of U .

We have that Uj, are independent zero mean random variables for 1 <j<n such
that

n n »
D Var Uim) =3 ez ol (OOWh(wi )Var(V)) + ca

=1 =1 i=1
P n
=Y a0 Y Wiz O EI(ZE — ri€))?1X; = &) + ea
1=1 j=1
P ’
= Za? +cn— 1
i=1

since by N6 and N8, the covariance term ¢, converges to 0. On the other hand, |Uj,| <
M ez v T8 laily772(6) = Ma(€) . Then T = T3, E|Ujul® < 2Ma(€) and the

Berry-Essen theorem apply to Uja since c;” 2v,,1 — 0 as n — oco. Thus, thereis a
universal constant Ag such that

IP(a’ 2™/ ATM? Sin < 21X = €) = §(2)] < Ao T < Ao Ma(€)
Therefore \

|P(a' &z ? A Spyn < 2) = 4(2)]

P
< A0 M V2 0y A P lailni(X)™V2 < 4)

=1

P
+2P() lailn(X)™V2 > 4)
i=1
which establishes (ii) since A, — 3 in probability which is positive definite and

-1
Ca /zv,,l—vo as n — 00.
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