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ON LINKED FIELDS

ENZO R. GENTILE

Introduction

In these notes we present an exposition of results in the algebraic theory of quadratic forms
in the context of the so called linked fields. There are many properties that make this kind of
fields a very interesting object to deal with. The notion and the name of linked fields is due to
R. Elman and T.Y. Lam [EL 3] but the idea of linkage was known to algebraists of the thirties,
for instance A.A. Albert [A 1]and E. Witt [W]. To start with, we recall the notion of a quaternion
algebra. Given a, b € K. where K denotes a field of characteristic # 2 and K* ::= K\ {0}, we
associate to this pair the four dimensional K-algebra with basis:
1,i,j,k,and multiplication table
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We denote it by (a,b)k or simply (a,b) and this is the quaternion algebra associated to a,b.
Clearly (a,b) and (b,a) are K-isomorphic.

0.1. Example: M2 (K) : = the algebra of 2 x 2 -matrices over K is a quaternion algebra
which can be described by (1,a) forany a € K°
In fact we can choose 1,1, j , k as follows:

This is (up to isomorphism) the only quaternion algebra over K which is not a division
algebra.

A quaternion algebra (a,b) over K is a central simple algebra and therefore it determines a
class [a,b] in the Brauer group B(K) of K. A natural question to ask is :

When form the totality of classes of quaternion algebras a subgroup of B (K) ?

This is clearly equivalent to ask:

When is, the tensor product of two quaternion algebras, similar to a quaternion algebra?
In symbols, similar means to have an algebra isomorphism

(a,b) ® (c,d) =(e, ) ® M, (K)
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It is well known that the tensor product of two quaternion algebras (a,b), (c,d) is similar to
a quaternion algebra if both algebras admit a "'common slot " i.e. there exist x,y,z € K*such
that (a,b) = (x,y) and (c,d) = (x,y).

If this is the case we have

(a,b) ® (c,d) = (x,y,2) ® My(K).

That the common slot property is also necessary was proved by Pfister [Pf], later by
Elman-Lam [E - L 2] and also in a posthumous paper by A. A. Albert [A 2] by using the theory
of algebras.

A field is linked if any pair of quaternion algebras admit representations with a common
slot. Or equivalently, when the classes of quaternion algebras in the Brauer group of K form a
subgroup. .

It follows easily from the classical Wedderburn’s theorem that the tensor product of two
quaternion algebras is either a division algebra or similar to a quaternion algebra.

Therefore a field K is linked if and only if the tensor product of two quaternion algebras
never is a division algebra.

Let us say that linked fields abund. In fact, any algebraic extension of the rational field and
any of its completions are linked fields. These are facts, of course, of a purely arithmetic nature.

Linked fields are interesting fields to be studied in the context of the Witt ring W(K) of
regular quadratic forms over K. Recall that in W(K) we have the distinguished ideal, denoted by
IK (or simply I) of all (classes of) even dimensional regular quadratic forms. We also have the

powers of this ideal, namely I"K. Every I°K is generated as an abelian group by the
2"-dimensional n-fold Pfister forms

n
<ap...,>>:= O<l,a;>
i=1
and give rise to a filtration of W (K) :

W(K) DIK o PK o> ...oI"'K o...

Let us mention in passing that the common feeling among specialists in quadratic forms is
that the quotients

I'K : = I'K/I™'K
should provide the invariants needed to characterize isometry classes of quadratic forms over
K. But so far there are not many important results in this direction.
Anelement q € I'K can be represented by a sum "in W (K) "

q=<a;>.7,+...+<a>.7T,

where 7;aren - Pfister formsand a; € K*.
In a linked field K we have a representation of q which is actually "an isometry":

gs<a>.7,L...1l<a>.71,

(The reader has noticed our abuse of notation in using the same symbol to denote a quadratic
form and its class in W (K), O.K.).
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This is the so called "simple decomposition" of q, a fundamental result due to Elman-Lam.
In this notes we intend to give another proof of this results which avoids the use of the Arason -
Pfister Hauptsatz. -

In terms of the quotients I' K we can also mention the very useful property of linked fields
that any element of I'K can be repesented in I' K by an n - fold Pfister form i.e. for any q el'K
there is an n-fold Pfister form ¢ such that

qE<p (I‘HIK).

From this one can prove easily that the quotient group 1*Kis isomorphic to the subgroup
of B (K) of all classes represented by quaternion algebras. The word linked is due also to Elman
- Lam and was used originally to express a sort of linkage of n - fold Pfister forms .

Namely, letforn € N,n > 1, ¢,, @, be n - fold Pfister forms.

It is said that ¢, and ¢, arelinked if there exists an ( n - 1) - fold Pfister form 7
such that

Pi=T.7;

with 7;,, i :=1,2, 1-fold Pfister forms .

Elman-Lam defined a field to be linked if forany n € N, n > 1, any pair of n - fold
Pfister forms are linked.

In general linked fields behave so well that specialists first check properties in this kind of
fields . Some also say that linked fields are the "easy" fields. This is partially justified since two
main problems in the algebraic theory of quadratic forms are answered positively for linked
fields . Those twe problems are the conjecture that the u-invariant is a power of 2 and the famous
Pfister problem about whether forms in I’K of Clifford invariant 1 are elements in I’K. In 1981
the russian mathematician A. S. Merkujev solved Pfister’s conjecture. In fact, Merkurjev proved
that the Clifford invariant map c: PK/PK = Br, (K) is an isomorphism, which amounts to
proving Pfister’s conjecture and furthermore the long standing problem about Br;, (K) being
generated by the classes of quaternion algebras. In 1988, again Markurjev constructed various
non real fields with u - invariant equal 6 and in 1989 proved the existence of fields u - invariant
equal 2 n, for all natural n .

However, what can be said about the ring structure of W(K) of a linked field?

This paper is expository in nature and most results are well-known to the people working
in the field, and can be found mostly in papers by Eiman-Lam and Elman. However, proofs given
here are to some extend easier and more revealing of the structure of linked fields.

We assume the reader acquainted with the basic facts on Witt rings as can be found in Lam’s
book [L] and Lorentz [LO].

1. Quaternion algebras. (See Lam [L], O’Meara [O’M]). . -
Let ab € K'. we associate with the pair a,b the 4-dimensional K-algebra (quaternion
algebra), q.a. defined by abasis 1,1, j, k , and multiplication table:
iZ=a ji=b, i.j=-j.i=k
l.x =x.1 =x, Vx
(As usual we identify a.1 with a, for all a € K.)
It is denoted by,
(a,b)x or simply (a,b).
This algebra is central (i.e. its center is K .1 = K) and simple (i.e. it has only 2 two-sided
ideals).
Notice that in general there are many ways to represent (a,b)k. For instance
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(a,b)g = (a.x*,b.y*) forall x,y € K * .
The matrix algebra My(K) is a quaternion algebra represented by (1,x) forany x € K'. We

shall see that it is (up to isomorphism) the unique split quaternion algebra, i.e. non-division
quaternion algebra.

Let z € (a,b)g, z =xo+ x,.i +Xx,.j+x;.k,x; € K.

Denote with z the conjugate of z:

Z:i=Xg-X,.i-%X5.j+x3.k.
We have on (a,b)k the quadratic map, the norm of (a,b ) K :
N(2) :-z.i-x(z,- a.xf - b.x§+ ab.x§
. The norm is a 2-Pfister form and as usual we write
Ngw =N=<1,-a,-b,ab> = <<-a,-b>>.
For instance if (a,b) = (1,x) = M,(K) the norm form is the hyperbolic form

<l,-1,-x,x> = <<1,-1>>.

The most striking and important elementary result about quaternion algebras is that a class

of algebraic isomorphism of g.a is uniquely determined by a class of isometry of norm maps.
That is

(Q) (a’ b) = (C, d) « N(a,b)zN(C.d)

where =: denotes isomorphism of K-algebras
: denotes isometry of quadratic spaces

It is easy to see that the quaternion algebra (a,b) is a division algebra if and only if the
quadratic form N, is anisotropic (i.e. N (z) = 0 if and only if z = 0). Moreover, a Pfister form
is isotropic if and only if it is hyperbolic. It follows from these observations and from (Q) that
there is (up to isomorphism) a unique q.a. which is not a division algebra, namely the matrix
algebra M, (K) , whose norm form is the hyperbolic 2-fold Pfister form. An important problem
is to study the structure of the tensor product of quaternion algebras. Recent work by Amitsur,
Tignol, Rowen show very unsuspected results. If we recall a well-known isomorphism

u

(a,b) ® (a,c) = (a,b.c) ®M,(K)

we see that the tensor product of q.a. is easy to determine if both algebras (a,b) and (c,d)
admit a "common slot".

That is, there exist
X, Y,z € K suchthat (a,b) :—:'(x, y) , (c,d) = (x,2)

The existence of a common slot can be better analyzed by means of the quadratic space
structure. Let (a,b)° denote the space of pure quaternions, i.e. those quaternions

e N e e N N
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Z= Xg+ X; .1+ X,5.j+x3.kwithxy=0.
Then z € (a, b)° & 22 =-N (2).

So,if z € (a, b)° and c = N (z) # 0 we have that the quadratic form < - a, -b, ab >
represents ¢, that is <- a, -b,ab>=<c,d, cd> for sonie d € K". If we choose

ip € (a,b)° with ¢ = -N (ig) = i2, jo € (ab)° with
ig L jo.,ko=1lp.jowegetthebasis 1,iqg,jo,ko of (a,b) such that
(a,b) = (-c,-d) if -d = N(jo).

In conclusion given aq.a. (a,b ) x we have (a ,b) ¢ = (c, d) ¢ if and only if c is a value in
K’ represented by the "pure" form < - a, - b, a b >. The next proposition is clearly a corollary
of our dicussion.

1.1. Proposition. Let (a,b), (c,d) be q.a. over K. Then these admit a representation with a
common slot if and only. if the quadratic form

<a,b, -ab, -c, -d, cd >
is isotropic.

We can digress at this point to recall a classical result by A.A. Albert [A1] where he considers
the case of Proposition 1.1. for two quaternion algebras over the rational field. His Theorem 1
states that "by finding a single solution of a solvable diophantine equation we may represent any
pair of generalized quaternion division algebras in the canonical form

a) - A =(eijij), i*=14ae j = be, ji=-ij
b) B =(ELJI1J)), P=2aE, J* =cE JI = -1,

with e and E respectively the module (identities) of A and B, where a,b and ¢ are
multiplication constants expressed in terms of the original multiplication constants of A and B
and the above solution, and where without loss of generality, a,b,c may be taken to be product
of distinct rational primes".

If we assume that originally A and B were givenby A=(a,,b,), B=(a,, b,) the above
diophantine equation refers to solving equations of the following sort:

X+ b, X -abX: - 2,X: -b,X2 =0,

that is , to find a zero of the quadratic form <a,, b, -a;b,, -a;,-b; >.
To solve it he invokes Meyer’s Theorem : An indefinite regular form f over Qinn 25

variables is isotropic, (A. Meyer,(1881), Zur Theorie der indefiniten quadratischen Formen. J.
reine angew. Math. 108, 125-139).

.1.2 Exercise. Let A and B be quaternion algebras as above a) and b). Prove that A and B
are isomorphic if and only if b and c are congruent modulo the norm of the quadratic extension

Q (Va),ie.
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c= (xf - x%a) .b, forsome x,, x, € Q.

For instance (-1,b) = (-1,c)if and only ifc = (xf + x%).b. In particular a quaternion aléebra
(a,b) is split if and only if b is a norm b = N (7 ), Q (x) for some x € Q ( Vd.

2, Linkage results.

2.1.Definitions.: Letn € N denote with Pf, (K) : = totality of n-fold Pfister form over K.
i) @, ¢, € Pf (K), n >1 are said to be linked if thereexist 7 € Pf,, (K)and
C,, 0, € Pfi(K)suchthat ¢; =7 .0, i=1,2.
ii) K is said to be n-linked if any pair of form in Pf, (K) is linked.
ili) K is said to be a linked field if it is n-linked for alln, n> 1.

2.2.Proposition. The following equivalent conditions hold
i) K is 2 - linked
ii) K is linked
iii) VneN,VqeIK,3¢e Pf,(K) suchthar q =¢ (I"").
iv)  Any 6-dimensional form of type < a,b,ab,-c,-d,-cd > over K is isotropic.

v) The classes of quaternion algebras in Br (K) form a subgroup .
Proof. )
i) =» ii). Proceed step by step using 2-linkages. v
il) = iii). WriteqeI'"Kas q=<a,> .7, + <a,>. 7T, +...+ <a> .7, with
7; € Pf, (K).

It is enough to prove the case r = 2. Let ¢ € Pf;(K) such that 7, = ¢ . <<x;>>,
Ty =@ . <<X,>>.Then t

<> . T+ <85> .T, =0.(<a;>.<<KXHNI>> + <a;> . <<X;>>)

= @ .(<a;>.<<X;>> + <a,;> . <<X>> -
<> . <KX D> + <a,y> . <<Xp>>

= Q. <<X>> . <8,,8;,> + Q. <a,>.<X,, -X|>

=<a;> . .<<X,8 >> + P .<a,> . <X,,-X>

E<X,> . <> .0.<1,-% x,> (IP*'K)

=¢.<1,-x, x,> (I™K).

iii) = iv). Let @ = <a,b,ab,-c,-d,-cd> = <<a,b>>"1 <-1> .<<c,d>>".
=<<a,b> - <<c,d>> € 1°K
and by iii) q=<<ef>> (I°K).

Assumee # -1.
If we apply the Clifford invariant ¢ : LK — Br(K) we have that

(<<a,b>>) .c(<§c.d>> = c(<<e,f>>)
that is,
[(-a,-b)].[(-c,-d)] = [(-e,f)] in Br(K).

Therefore by taking the quadratic extension K K(-e) we have

— N NS N

e
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(-a,-b)ge=z = (-¢,-d)g (v

Therefore
<<a,b>> = <<c,d>>overK(w/?e—)

This is equivalent to saying that the form q =<a, b, ab, -c, -d, -cd > goes to zero in the
morphism W(K) —» W(K (w/;) ). If q were anisotropic we could write ¢ =<1,e>.h, where
his a ternary form. But this is contradictory because by taking determinant we would get

-l=e.
Ife=-1, then <<a,b>> = <<c,d>> (mod I’K) and hence (-a, -b) = (-c, -d) therefore
<<a,b>> = <<c,d>> and clearly <a,b,ab, -c, -d, -cd > is hyperbolic.
iv) = v)isclear.
v) = i) uses the same ideas as in iii) = iv).

2.3. Exercises.
1)  Prove the equivalence of the following conditions on K.
i) K is linked.
ii)  Every 5-dimensional form represents its determinant.
iiiy  Every 6-dimensional form of discriminant 1 is isotropic.
2) Let(a,b)g ,(c,d)x be quaternion algebras. Prove that if (a,b)@ (c,d) is not a division
algebra, then (a,b), and (c,d), contain a common quadratic extension of K.

2.4. Definition. We say that an anisotropic form q € I'K has a simple decomposition (of
lengthr) if there exists an isometry

q=<a;>.¢,L...L<a>. ¢,
where a; € K and ¢, € Pf, (K).
Notice that if q € I"K has a simple decomposition then
2" | dimq.

Let ¢, ¢, € Pfy(K) and r be a non-negative integer. We say that ¢ ; ¢ , are r - linked
if there exist, 7 € Pfy (K), T; € Pfnr (K),i=1,2 such that@;=7.71i,i=1,2.

We shall need the following proposition that expresses the linkage property in terms of the
Witt index.

-

2.5. Proposition ([ EL4 ] Prop.4.4). Let ¢ and 7y be n-fold Pfister forms, and r a
non-negative integer. Let q =@ L <-1>. Then @ and*y dre r-linked if and only if the Witt
indexof qis 22

2.6. Theorem.Let n € N, n> 1, Then K is n-linked if and only ifevery ¢ € I'K has
a simple decomposition.

Proof. Before we give the proof of this theorem we prove a useful lemma due to
Shapiro-Wadsworth.
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2.7.Lemma [SW] . Let ¢ be a Pfister form, ¥ a form such that ¢ | Y. Let c € DK( ¥).
Then there exists a form Y, suchthat Yy=c@ Ly, and @ | Yo -

Proof. Recall that a Pfister form is a round form, that is it is hyperbolic or anisotropic
satisfying:

a €D (9) =><a>.0p=0.
Let B = <a;,...,a,> be such that
T=0@®B=<a>.¢pl<a>.0l...L1l<a>.0.
If c € Dy(7),thereexist t; € D(¢)uw{0},i = 1,...,m such that
C=2a t +...4+ amtm
Let & = <x,,...,Xx,> with xj = tjaj if ti#0 and x; =1 if t; =0
Then it is clear that
T=0® <x;,...,X
and moreover ¢ € D () since
c -‘golz.xi +“Z‘._00.xi
Therefore § = <c> L & and y=<c>9 Lo @ 5.
We now return to the proof of the theorem.
Letq e I"K be anisotropic and assume that q has no simple decomposition. We can choose

( with the property that it admits a representation in W(K):

q=<a>T; +...+<ar>7r , 7; € Pfa(k)

with r minimum.
Clearly is r> 1. Suppose r = 2. .
There exist ¢ € Pfy-1(K) and a,,a, € k such that

q=<a>T + <a,>T,and @ | T, i=1,2,
Since q is anisotropic <a,> 7, L <a,> 7, must be isotropic. Hence

0 =a+(-a),withae D(<a;>7,)and -a € D(<a2>72).
By applying Lemma 2.6 we can write |

g=<a>.@pl<x>.¢0l<-a>.9l<y>.9

that is,

e N~
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q=<X,y>.0Q =<X><<Xy>> .0

But this contradicts the minimality of r. So we are done if r = 2.
Assume then r>2.The form<a> 7, Ll....Ll<a>7r must be isotropic, so let

0 =a;x; +aXy+ ...+ arXr

withxi € D(7i) U {0},i=1,...,r. We can assume that all xjare #0.1In fact, let xr =
0, say, then the form :

<a;>. 71 l...1l<ar1>. Trl
has a simple decomposition, but it is isotropic, and not hyperbolic. Therefore its kernel form
admits a representation of lower length (in the number of n-fold Pfister forms needed).

Consequently q would have a lower length, a contradiction. Let then ¢ € Pfn-1(K) satisfy:
(0} | T, @ r'r 2. We can then apply Lemma 2.6 to

y: =<a,;>.7, Ll <a,>.7, andc:=a, x;+ax, # O(recallr> 2),
to have
y=<c>.9Llgand ¢ |7,.
By counting dimensions we must have
Yo=¢ ® < x,y,z>, forsome x,y,z € K
and therefore
Q=0 ® <x,y>+ @ ® <c,z>+ <a3>T3 +...+ <ar>7Tr.
But the form
0 ®<c,z>l<a>7; L ... L<ar> " 7r
is isotropic and it has length < r. So its kernel has a simple decomposition of lower length. But
this implies that q itself has a representation with less than r n-fold Pfister forms, a contradiction.
This proves the necessity in the theorem. Let us see sufficiency. Let y and  be n-fold Pfister
forms. Notice that a consequence of the existence of simple decompositions in I'K is that any
nonzero anisotropic form in I’K has dimension a multiple of 2"
Therefore clearly
ker ('L -yx")=<c>"39,
for some 3 € Pfy (K),c € K . But this implies that y’ L -7 * is isotropic. Hence y’ and
X’ represent a common value a, say. From this follows that <<a>> | ¥ and <<a>> | X Let

then 7 be a Pfister form of the highest dimension among those dividing yand ). If dim 7=2 ml
we are clearly done. Assume then that dim 7 = 2'< 2"! and write

y=1lp,xy=7lo, 7|p , T]O

for some forms p and 6. We have dim p >2""and dim 6> 2" and so
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. dim (p L-0)>2". From
pJ.;o =yl-yx=<c> .8, & € P[p(K)

it follows that p L — o D must be isotropic. Choose then e € 15( p) N D (6). By Lemma
2.6 we can write

Yy=Tl<e> ' 7Tlp’ =<e>"T1lp’
X =T L<e>"17lo’=<<e> "17lo0’.

Then ¢y L < -1> % has Witt index 2dim 7 +1 = r+ 1 and so, by Prop. 2.5, ¥ and ) have
an r+1-linkage, a contradiction. Theorem 2.6 is completely proven. This proof does not use the
Arason-Pfister Hauptsatz.

Remark. If K is a so called C,-field then I"K is linked. A simple proof of this result is
obtained by using the following known result:

Let ¥ and p be Pfister forms with p being a v-fold Pfister form. Assume that ¢ ® p’
represents ¢ € K. Then there exists a (v-1)-fold Pfister form 7 such that

YyY®p = y® <le> Or1.

3. A theorem by R. Elman.
In this section we give a simple proof of an interesting theorem by R. Elman which allows
to determine for a given field K, when is the field K (( t )) of power series over k, in one
undeterminate, a linked field.

3.1. Theorem [E]. F: = K ((t))is a linked field if and only if every 4-dimensional
quadratic form over K with determinant # 1 is isotropic. (In other words, amsotroplc
4-dimensional quadratic forms over K have determinant 1).

Proof. ( < ). Let q be a 6-dimensional form over F with discriminant 1, that is, det (q) = -1.
We can write

Q=9q,1l<t>"q;
where q; are forms over K.
Now, det q = -1 = dim (, is even. By symmetry is enough to consider the case:

dimq;=4 and dimq,=2.
Therefore

.detq, = 1= det ¢, =-1 = ¢, isotropic
or
detq,# 1 = q, is isotropic by hypothesis.
Therefore K (( t)) is a linked field.

(=) Let <a,, a, , a;, a,> be an anisotropic form over K.
The 5 - dimensional form over K ((t)),

e N S N
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<a,aya;a,t>

represents ITa; - t. Write then

Maj - t= a *+ (X + X .t .04
ay *+ (Yo + y1 -t +..0%+
a; - (7o + z, .t +...)%+
a, - (up + U . to+. i+
t - (o + L, .t o +..0)%.

The anisotropy of < a,, 8, a3, a,> implies Xg=Zy=ug =0 therefore the first four summands
contribute nothing to the first degree term and so

Mai ~t=t « lo°

which means Tlaj = 1 (mod K*?).

Remark 1. = holds for K(t).

Remark 2. We leave as an exercises (or else look in [ELW]) to prove the following
expansions of 2.1.

The following statements are all equivalent:

1) K((t)) is linked .

2) Any anisotropic 4-dimensional form over K has determinant 1.

3) Every quadrdtnc extension of K is a splitting field for every quaternion algebra over K.

Moreover if K is a formally real field the above condmons are equivalent to
4) K is an euclidean field (i.e. formally real and K/ K 2| = 2),and also equivalent to
5) K((t)) is a ED - field ( see [P-W, Th.21]).

4. A theorem by Jacob-Tignol.

The following beautiful result due to Jacob and Tignol was communicated to me by
A.Wadsworth.

4.1. Theorem Let K be a field with valuation v with value group FK and residue field K.
Suppose

ichar® ) # 2,

ii. K is not quadratically closed ,

iii.['k is not 2 - divisible.
Then the rational function field K(t) is not linked.

Proof. Picka,s € K’ withv(a) = v(s) = Qanda e K\K* ,andpick nt € K- with

v(m) & 2Tg. Letb = t + s>,

Claim: <<-a,-t >> and <<-m,-b>>are not linked.
We must prove that<-a,-t, at, nt, b, - b > is anisotropic over K(t).
_ The valuation v on K has a standard extension, also denoted by v, on F(t) with residue field
K(t) (t trascendental over K) and value group I"K(() = ['k. By passing to the henselization of K(t)
respect to v and applying Springer’s theorem, it suffices to see that
<-4, -t,dt ,b> and <I,-b> are isotropic over K(1)
“<1,-b > = <1,-(t+5%> is clearly anisotropic.
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We have <-a,t,at,b > = <a,-t,at,t + a>.To see this is anisotropic, pass to K,
over which the form becomes <<-4,-t >>, which is anisotropic by Spinger’s theorem as
<1, & > is anisotropic over K.

4.2. Application. This theorem applies to the following fields which consequently, are not
linked.

Q®;:Q,m, p#2 ; R(X,Y); C(X,Y,Z); K (X,Y), K a finite field of char (K)=#2.

4.3. Main question about non-linked fields.

If K is a non-linked field find an upper bound on the number n of quaternion algebras Dj
over K such that D, ® ... ® Dy is a division algebra.

: 5.Examples
5.1. Linked fields.

1) K, afinite field of characteristic # 2. There exists, up to isomorphism, a unique quaternion
algebra, namely: M, (K). More generally it can be proved that if K is a non-real field with at
most 8 squares classes, then the classes of quaternion algebras over K form a subgroup of Br(K).

ii) K, a p-adic field, that is, a complete field respect to a discrete valuation with finite residue
class field. These fields are exactly finite extensions of a field Qp of p-adic numbers or a finite
extension of a completion of a field k (X) of rational functions in 1 indeterminate over a finite
field k. In this situation there is, up to isomorphism, a unique non-split quaternion algebra.

iii) K, a global field, that is, a finite extension of Q or a finite extension of a field k(X) of
rational functions in one indeterminate over a finite field k. The completion of K for the various
topologies defined by absolute values in K produce a p-adic field for each ultrametric absolute
values or else R or C.

The celebrated Hasse-Minkowski theorem states that over a global field K, a quadratic form
is isotropic if and only if it is so in all completions of K.

From this theorem it follows immediately that K is a linked field.

iv) K, a function field over the complex number C of transcendence degree < 2. According
to Lang-Tsen theorem, every quadratic form of dimension greater than 4 is isotropic. Hence K
is a linked field.

v) K, a function field over R of transcendence degree < 1.

In particular, R(X) is a linked field and so is every algebraic extension of it. In other words,
R(X) is a hereditarily linked field.

Proof. Letq=<a, b, ab,-c,-d ,-cd > with coefficients in K".If K contains C then K has
transcendence degree < 1 over C and then by Lang-Tsen, q is isotropic.

In fact, let then K(i)/K be a proper quadratic extension of K. By the same argument as before
q is isotropic over K(i). If q is anisotropic we can write q=<c> * <1,1 > L < a,, a,, a5, a,>
over K with ITaj = -1. But by Lang-Tsen theorem < a,, a,, a13, a, > is isotropic over K(i).

Therefore <a, a,a3,3,> =d.<1,1>L<x,y> ,with [Taj=-1=x.y andso

q=<c><ll>l<d><l,1>1«<1,-1>,

a contradiction. Therefore q is isotropic and K is a linked field.
vi) K: =k (( X)), for the following choices of k:
a) finite field of characteristic #2 ,
b) real euclidean field (i.e. formally real and | K'/ K *2| = 2),
) C((t)) (). (Over C((t;)) ((ty)) there isa unique anisotropic form of
dimension 4, namely, < 1,t,t,,t, .t,>).
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e) a p-adic field.

5.2. Non-linked fields

a) Q(X), QX))

b)- R(X,Y), R((X)) ((Y)). ,

c) Qp (X)), p#2,the function field over the p-adic field.
d) C(X,Y,Z2).

5.3. Related properties. Formally real fields.
a) Let K be a linked field. Then any odd dimensional universal form over K is isotropic.
Proof Let q be an odd dimensional universal form of dimension > 4.Then we can write

q=1<a5<cxi>yi>lr

withr = <a>,orr=<a,b,c> . "
For r = <a> itfollowsthat gL <-a> € I°K.Now p .l <-a>isisotropic and its kernel
form has dimension a multiple of 4. This implies that

ql<-a>=2.H+q’

and from here we conclude that q is isotropic. The other case r = <a,b,c> is treated similarly.
Remark As far as we know the statement is not known for arbitrary fields.
b) Let us consider the following types of fields
1) linked fields ,
2) SAP fields (i.e. fields whose space of ordering satisfies the strong approximation
property).
3) ED fields. Property ED (effective diagonalization) is characterized by any of the
following equivalent properties
i) Kpyt (Pythagorean closure of K) is SAP
ii) K is SAP and every binary torsion form represents a totally positive element of K
iii) For every real place v : K’— G we have
a)|IG/2G1<2and i
b) if IG / 2G| = 2 then the residue class field K, of v is an euclidean field.

We have the following (in general strict) hierarchy:

Linked = ED = SAP

If K is a formally real pythagorean field then these properties are equivalent, [EL1].

The fields Q(X) and R(X,Y) are not SAP fields [Pr], therefore are notlinked fields. Moreover
Q(X)pyt is an example of a non-linked pythagorean field.

We do not know what additional property on ED gives a reciprocal implication above.

SAP fields also admit valuation theoretical characterizations. In fact a field K satisfies SAP
if and only if for every valuation v 'K — G, with formally real residue field Ky we have

IG/2Gl €2 andif IG/2Gl=2
then Ky is uniquely ordered.
We do not know whether there is an analogous result for real linked fields.
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6. Remarks

1. It is not known whether given a linked field K, then every quadratic extension is also
linked. Even for K non-real and with u(K) = 4, this is not known. In this case, if K is linked and
K(w/a) is a quadratic extension then u(K(\/a)) = 4 or 6. If equal 4 then K ( w/a) is linked.

On the other hand, odd dimensional extensions of linked fields need not be linked. For
instance, let Fy be the euclidean closure of Q. Let F be a real odd-dimensional galois extension
of Fy. Let K=F, (a). Then K ((t)) = Fy((t)) (a) is an odd dimensional (galois) extension of
the linked field Fy (( t)) . But it is not linked, because otherwise this would imply that F is
euclidean, which is not so, for F has infinite classes of squares, according to [L], Cor.3, p.219.

2. In Algebraic K-theory and quadratic forms, Invent. Math. 9,318-344 (1970), J.Milnor
defined, for every n > 0, the groups knK and morphism h, , s, '

Moreover, he proved that s, is epimorphism. Now, Elman-Lam (see Journal of Number
Theory 5, 367-378 (1973) proved that for a linked field, sn is an isomorphism, for all n.
Consequently ek is always defined, for a linked field K. It is also possible to prove that in this
case ey is injective. It is not known whether it is also surjective.

3. For the u-invariant of linked fields see [E], [G].
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