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PARTIAL ORDER AND OPTIMAL CONTROL 

EMILIO O. ROXIN 

Abstract. In optimal control, a given process is considered and the goal is to control this 
process in such a way that celtain function (the "cost" function) is optimized at the end-time. For 
some problems the process is assumed to go on forever; these are called "infinite horizon 
problems" and in that case, the measure of success depends on the asymptotic behavoir of the 
cost function. This leads to an ordering of preference for selecting controls, which can be defined 
in different ways; such possible orderings may lead to a partial order. In this paper partial order 
relations are studied in the context of infinite horizon control problems. 

I. Sets with a partial order 

Given a set S - {x , y , z , ... } , a partial order (p .0 .) on it is a relation denoted by < , 
defined for some pairs x, YES , such that: 
a) x < x for every x (reflexive); 
b) x < y and y < x imply x - y (antisymmetric), 
c) x < y and y < z imply x < z (transitive). 

Consider, for example, the set of functions of a real variable, defined in the interval [0,00) , 
on which additional constraints may be imposed (for example to be continuous, or L-integrable 
etc.). The simplest way to define a p.o. on ~his set is: 

(1) x < y if x(t) ~ y(t) for every t E [0,00). 

In the case of L-integrable functions, one should consider this last inequality as a .e . 
It is easy to check that this definition satisfies the above conditions for a p .0 • 

A partially ordered set is a "lattice" if for any two elements x, y of S there is a least upper 
bound (l .u .b .) and a greatest lower bound (g .I .b .) , i .e . two elements u, v such that v < x 
< u and v < y < u, and for any u' ,v' with the same properties, v' < v • u < U· • 

The above mentioned functions. with the p .0 • given by (I). constitute a "lattice". Indeed. 
while not every two functions x. yare related in this p .0 •• there is a least upper bound and a 
greatest lower bound for x and y. given by 

I .u .b . (x • y) - u, where u(t) - max (x(t) ,y(t». 
g .1 .b . (x ,y) - v. where v(t) - min (x(t) • y(t» . 
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If the functions of S are assumed continuous, then these I .u .b . and g. I .b. will also be 
continuous. If the functions are assumed to be only L-integrable, then the same will be true, 
considering the definitions of u and v as defined a .e . If, on the other hand, the functions of 
S are required to be differentiable, than the I .u .b . and g .I .b . will not be elements of S, which 
then will not be a lattice. 

An element a of a partially ordered set S is greatest (smallest), if 
for any xeS, x < a (x > a) .. 

An element a of a partially ordered set S is maximal (minimal), if 
x > a (x < a) implies x - a. 

As standard references for the definitions of partial order, the reader is referred to [1], [2], 
[3]. . 

II. Asymptotic equivalence 

Assume that the elementS of S are the absolutely continuous functions of a real variable 
defined on [0,00). Assume that we are interested in ordering them according to their behavoir 
for large t. A suitable definition will then be: 

(2) x < y if there exists a T such that for all t ~ T ,x(t) ~ y(t). 

This definition satisfies conditions (a) and (c) above, but not (b). It defines, therefore, a 
"quasi-ordering" [3]. To get a p.o. we should consider the set S of equivalence classes on S, 
where 

(3) x _ y if x < y and y < x. 

Or, equivalenty, x _ y if 3 T such that for all t ~ T, x(t) - y(t). 
Two functions x(t) and yet) which satisfy (3) will be defined to be "infinite time equivalent". 
It is interesting to notice that it is possible that a pointwise convergent sequence xn ~ x has 

) 

) 

) 

) 

) 

) 

) 

) 

all its members xn belonging to the same equivalence class, but the limit it does not belong to ) 
the same class. A counterexample is : 

Xn(t) - 0 for 
- t - n for 
-I for 

O~t~n, 
n~t~n+I, 

t~n+1. 

Obviously, x (t) - 0 for all t, while the equivalence class is characterized by x(t) - 1 for 
large t. 

In this quasi-ordering, the equivalence classes could be described as the "tails" of the 
functions in the class (their behavoir in M ~ t ~ 00, with M -+ 00) • 

(4) 

Similarly, in the same class offunctions, a quasi-order can be defined by 

x < y if there is an E > 0 such that for 0 ~ t ~ E, 
x(t) ~ y(t). 

In this case the equivalence classes are defined by 

x _ y if 3 e > 0 such that for all t E [0, E] , 

x(t) - y(t). 
These equivalence classes can be described as the "germs" of the functions at t ... 0 . 

) 

) 

) 

) 

') 

) 
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A somewhat different p .0 • is obtained by defining 

(5) x < y if, given £ > 0, 3 T such that t > T implies 
x(t) ~ yet) + £. 

Equivalently, x < y iflim sup (x(t) - y(t» ~ 0 for n -+ 00 • 

The corresponding equivalence relation is given by 

x _y iflim [x(t) - yet)] - 0 for n -+ 00. 

Two such functions x _ y will be said to be asymptotically equivalent. 
Coming back to the p .0 . defined by (2) above, consider two functions x, y which are not 
comparable (with respect to that p .0 .) . In this case, given any number T, there is some t ~ T 
such that x(t) > y (t) . Hence it is possible to construct a sequence tn -+ 00 such that for all 
n, x(tn) > y(tn). Similarly, there is another sequence tn' -+ 00 such that x(tn') < y(tn'). If 
the objective is to minimze x(t) atthe end time of the process, then either x or y is preferable, 
depending on the timet at which the process ends. . 

Infinite horizon optimal control problems 

The simplest infinite horizon optimal control problem is given by a differential equation 

(6) x - f(x,u), 

representing the dynamics of the system under consideration. Here x .. x(t) in an n-vector, the 
"state", t is the time and u - u(t) is an m-vector, the "control" function. It is assumed that the 
function f(x,u) is given, and also the initial state 

(7) x(O) - Xo. 

The control function u(t) is expected to be chosen from a family of admissible controls. The 
class of admissible controls is usually defined by 

(8) u(t) measurable with values in x(t) E U. 

where the set U c Rm is assumed compact. 

(9) 

There is a "cost functional" 

Ju(T) - r fo (x(t) ,u(t» dt 
o 

associated with the process, which should be minimized in an appropriate sense. 
In (9), fo is a given scalar-valued function. 
The functions f(x,u), fo (x,u), being given, may be assumed to be as "nice" as needed. 

Usually f and fo are assumed to be C I , which insures that for every admissible control u(t) 
there exists a unique solution x(t) of (6), (7). It is also necessary to assume a growth condition 
on f(x,u) ,for example that f does not grow fasterthan linear in x, in orderto assure that solutions 
x(t) do not "escape to infinity in finite time". 

For the control u(t) , strongly restrictive conditions may no~ be imposed; indeed, for many 
simple and interesting problems the optimal control turns out to be discontinuous. 



96 B.a. ROXIN 

Deftnitlons of optimally 

Associated with each admissible control u(t) there is a ''trajectory'' x(t), solution of (6), 
(7), and a cost function 1(T). given by (9). Here, ·the pairs (x,u) - (x(t), u(t», 0 ~ to will be 
ordered according to the desirability of their cost function· 1u (T) (9). 

The following definitions of optimality appear in the literature ([4] , [5]): 
The pair (x*(t), u*Ct», 0 S t, is called 

0) Overtaking optimal if, for any admissible pair (x, u), there is a T u such that for every 
T ~ T u ,l~(T) ~ 1;,.(T). 

UO) Unifonnly overtaking optimal, if there is some To such that for every T ~ To and every 
admissible pair (x, u) ,1u(T) ~ lu.(T). 

C) Catching up optimal if, for any admissible pair (x, u) and every E> 0, there is a T .... , 
such that for every T ~ T U,£ ,lu(T) ~ 1u.(T) - E. 

UC) Uniformly catching up optimal, iff or every E> 0 there isa Te such that for every 
admissible pair (x, u) and for every T ~ T co1u(T) ~ lu*(T) - Eo 
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SO). Sporadically overtaking optimal, if for every To and any admissible pair (x,u), there is a ) 
Tu ~Tosuch that1u(TJ~1u.(TJ. 

USO) Uniformly sporadically overtaking optimal, if for every To there is some T ~ To such 
that for every admissible pair (x, u),1u(T) ~ ]u*(T). 

SC) Sporadically catching up optimal, if for every TOt every E > 0 and every admissible pair 
(x, u), there exists a Tu,£ ~ To such that1u(Tu) ~ ]u.(Tu) - E. 

USC) Uniformly sporadically catching up optimal, if for every To and every E > 0, there is a 
Te ~ To such that for every admissible pair (x, ~)1u(TJ ~ 1u.(TJ - E. 

An example 

Consider the damped oscillator with forcing cOlltrol 

(10) it - -k Xl + 6) Xl 

~ - - 6) Xl - k Xl + u, 

where I u lSI is the control. Take 

(11) X(O) - 0 

and 

(12) 

(hence there is no need to consider fo(x, u) as in (9». 

\ 
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It is elementary to see that for u - 0, the solutions of (10) are the spirals 

(13) 

which tend asymptotically to the focus (0,0). 
The cases u - 1 and u - -1 (constant, bang-bang control) can be reduced to the u-o case by 

the substitutions 

hence the corresponding solutions are again spirals converging to the foci 

. .2 2 2 2 
(x 10 , X20) - ± (CJlI(lC" + CJ.) ), kI (k + CJ.) ». 

According to the maximum principle ofPontryagin, any optimal control must be bang-bang, 
switching from u - 1 to u - -1 and back, with time intervals 7t/CJ.) between any two switches. 
With such a control, the corresponding trajectory tends asymptotically to a closed curve 
constituted by two arcs of spiral of the families described above (see figures 1 and 2). 

A solution will be optimal for the (finite) end-time T, if the switching times are adjusted in 
such a way that x\(T) is a maximum. This will happen at switching points. It is easy to see that 
any two such bang-bang solutions will periodically catch up with each other', hence neither of 
them will be optimal for all sufficiently large end-times T. In other words, this solution will not 
be overtaking optimal (definition 0) nor catching up optimal (definition C). Hence there is no 
"greatest" (nor "smallest") solution in the corresponding p .0 • defined by (2) , but such solutions 
are not comparable. Hence each of them is sporadically catching up optimal and therefore 
maximal (or minimal) in the p.o. 
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Figure I: limit cycle in x\ - x2 plane 
Figure 2: plot of x\(t) with optimal x\(T) 
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Fig.I. Limit cycle in the Xl - X2 plane. 
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Fig. 2. Plot of Xl(t) with optimal xl(T) 
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