
(~ 

Revisla de la 
Uni6n Matem4tica Argentina 
Vol. 3S 1990. 

. POLYNOMIALS WITH A GIVEN GALOIS GROUP 

AUGUSTO NOBILE 

RespetuosQmente dedicado a la memoria del Profesor Julio Rey Pastor. 

Introduction 
The present note is motivated by the following considerations. An open problem in the 

theory of singularities asks: is any germ (V,O) of complex analytic hypersurface topologically 
equivalent to an algebraic germ? This means: if V. is defined, near 0 e C r+l, by a convergent 
power series f (XI" •• , X r' x) (which, by Weierstrass Preparation Theorem may be assumed to 
be a monic polynomial in x) can we find a polynomial p (XI' ••• , xr' x) such that the hypersurface 
W: p - 0 is, near the origin, homeomorphic to V, via a homeomorphism which extends to one 
of neighborhoods of the origins? If V is smooth the solution is very simple, and if V has, at 0, 
an isolated singularity, the problem was solved (in the formal case and in a stronger form, namely 
that (V,O) and (W,O) are isomorphic gelID of varieties) by P. Samuel ([S]). His technique is to 
show that if f = g mod (XI' ••• ,Xr, x t, c large enough (depending on f only), then the local 
rings C [[XI' ••• , Xr, x]] I (t) and C [[XI , ••• ,Xr ' xl] I (g) are isomorphic. Thus, a high order 
truncation of f will work; This becomes false if V does not have an isolated singularity at the 
origin (consider e.g., X2 - x~ and X2 - x~ + X22, c arbitrarily large). For the generalizalition of 
Samuel's result to non-embedded isolated singularities, see [AI]. For a partial solution to the 
quoted general problem, see [N], here the problem is solved in case there is a lineal' projection 
of V on C' such that the branch locus is algebraic (a condition always satisfied if 1'-2), as a 
consequence of a more general theorem on Zariski saturations of certain local rings. The 
techniques used in [N] are not purely algebraic. 

To attack the posed problem, one is tempted to follow Samuel's approach, not simply 
replacing f by any algebraic series p close to f in the (XI' ••• , Xr ,x) -adic topology, but by choosing 
one satisfying some extra requirements. Essentially, this is what is done in [AI] and [N]. In the 
present note we obtain, in a purely algebraic way, a little result in this direction. Recall that if 
(V,O) is the germ defined by 

(1) f - xn + al xn.1 + ... + Rn, ai e C { XI" •• ,xr } , 

then one defines its monodromy group (relative to the projection (XI" •• ,xr' x) -+ (XI" .. ,X f) 
e Cr). One considers the natuml action ofnl(U - tl, P) (where U is a suitable neighborhood of 
o e C', tl is the discriminant of the projection n: V -+ U· and P e U - tl) on the fiber 
n·1 (P); when the points of this fiber are ordered in a certain way this gives us a homomorphism 
n l, (U - A, P) -+ Sn (the symmetric group) whose image is, by definition, the monodromy group. 
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It is well known that this group can be identified to the Galois group Cj (K,f) of the polynomial 
f E K [x], K being the fraction field of C{XI'''''Xr }. Thus we may define, purely algebraically, 
Cj (K,f) to be the monodromy group of f. 

Now, if (using the notation of the beginning) V and Ware homeomorphic, via a 
homeomorphism commuting with the projections on the hyperplane x - D, then certainly the 
monodromy groups must be isomorphic. In Section 2 we shall prove that iff (as in (1» is given, 
then we may find h - xn + bl xn-I + .... + bn defining an algebraic germ of hypersurface, having 
the same monodromy group as f, moreover bj can be taken arbitrarily close to aj in the (xl, ... ,xr ) 

-adic topology, for all i. Perhaps a refinement of the methods would yield better result'). This 
theorem is a consequence of another result (Theorem 1) that says, essentially, that the Galois 
group of a polynomial can be "controlled" by certain equations and inequalities involving the 
coefficients of the polynomial, plus some auxiliary variables; a result that might have some 
independent interest. The result on monodromy groups will follow easily, using Artin's 
Approximation Theorem ([AI], Th.l.lD). Again it seems reasonable to ask whether one can get 
a more "economical" description of the Galois group, by using fewer auxiliary variables_ 

Section 1 
Throughout this section, K denotes an infinite field. We shall delll with Galois groupsCj (K,f) 

over K of monic polynomials f (x) - x" + al X,,-I + ... + 3n E K [x] without multiple roots, where 
n is relatively prime to the characteristic exponent ofK (i.e., max (1, ch(K»). As usual, this means 
the Galois group of K' over K, where K' is the splitting field of f; this is K' - K (aI' ... ,a,,), 
where a l , .•• ,an are the roots of f . We assume they are in L, an algebraically closed field 
containing K, fixed once and for all. If the roots are ordered, then Cj (K,f) gets identified to a 
subgroup G of Sn , the permutations of {I , ... , n}; if the order of the roots is changed, we obtain 
a subgroup G' c Sn, conjugate to G. We are interested in the set C of conjugacy classes of 
subgroups of Sn' the symbol [G] will denote the class of the group G. 

Mo~ic polynomials of degree n over K are parametrized by Kn, via a - (al" .. , 3,,), f. 
- xn + l; aj xn-,. Polynomials without multiple roots will be called separable (some books use a 
differenl1hrminology). We want to show the following result. • 

Theorem 1. Fix a conjugacy class 'Y E C, let S y - {a E KO : f. is separable and q (K,f.) 
x - 'Y. Then, S y is the image of a Zariski locally closed set '11'y C K2,,+2, via the projection on 
thefirst n coordinates. Moreover, 'J1ly is the difference of two hypersurfaces, defined by equations 
with coefficients in Z. 

In the course of the proof we shall see more precisely which equations they are. This will 
be imp0l1ant for applications in Section 2. 

Theorem 1 will be a consequence of some known results on actual constructions of Galois 
groups, which appear in Postnikov's book [PI]. We shall review this work (to my knowledge, 
this has not been translated from the Russian, the partial translations [P2] and [P3] of the book 
do not contain that part). 

Essentially, in [Pal the following is done. Fix a subgroup G of So ,G - {e - UI'''''U.}. Take 
elements VI ' ... , vm is So ' which represent all the right cosets of G. We shall introduce a 
polynomial P in variables AI' ... ,Au, CI, ..• ,Co' T, Z, called the determining polynomial ofG 
(often we shall use vector notation for the variables: X - (XI, ... ,Xo), etc.). Note first that there is 
a natural action on the right of Sn on polynomials involving XI, ... ,Xo : if <p '= <p (XI' ... ,X,,) then 
for v in So' <P. - <p (XV(I)' ... , X.(,,» (we must write (vw)(i) - w (v(i» ). We shall also write 
<P. - <p (X.D), or 'IjI' (Cv) (if the action is on the C 's) etc. The index notation will be reserved 
for the action on the X's only. 

To construct P, consider the auxiliary vllrillbles X - (XI, ... ,Xn) and the polynomial 
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This polynomial, evidently with integral coefficients, is invariant under the action of Sn on X, 
hence it can be written as 

(1.3) P - P (AI,' .. , An' CI , ... , Cn ' T ,Z) , 

where (-11 Aj -j-th elementary symmetric function in XI,,,,,Xo (these are again indeterminates). 
Again P has integral coefficients. This is called the determining polynomial of G (indeed, its 
roots (in Z [X,C,T]) are'<PVi (X,C,T), i-l, ... ,m and the stabilizer of <PVi under Sn is Vii GVi ' so it 
determines G up to conjugacy). This polynomial was constructed by fixing G and VI , ... ,vm• 

With G fixed, the choice of the representatives vi of the cosets of G does not matter, while if our 
G is replaced by its conjugate G' - w- I Gw, we SII, the new P' that results satisfies: 

0.4) P' (A,C,T,Z) .. P (A ,Cw ,T ,Z) , 

as a straightforward calculation shows. Also we nave: 

0.5) <p' (X, C, T) .. <Pw (X, Cw, T) , 

where <P' is analogous to (1.1), using G' rather than G. 
The following facts are proved in [PI]. Take a - (ai' ... ,a..) E KO, such that the polynomial 

f. has distinct roots (0.1 •••• ,n..) in L, elements c i ' ... ,cn in K, all distinct, and t E K such that 

(1.6) <P Vi (X, C, t) *- <P Vj (X, c, t), if i *- j . 

Let 

(1.7) g (Z) - Pea, c, t, Z) - Pea, c, t, Z) 

The roots of g will be <PVi (a , c ,t), i .. I, ... ,m. Then, 
(a) If q (K,f.) is a subgroup of G, then the root <p( a, c ,t ) of g is in K (this root cOl1'esponds 

to the Vi representing the coset G, say VI" e). 
(b) If g(Z) does not have multiple roots and one of its roo-ts (say, <P V j (a, c, t ) ) is in K, then 

q (K,f) C Vj-I GVj. 
(c) Let Go , ... ,Gq be fixed subgroups of Sn' P()t ... ,Pq their determining polynomials, let 

a E KO (as above) be given, also fix an infinite subset Be K. Then, we may choose 
elements c i ' ... , cn' t in B, such that Pi (a ,c, t, Z) is separable for all i (in [Pd only the 
case q = 0 is treated, but the method of proof yields this more general result). -, 

Now we may prove Theorem 1. Fix a group G such that [G] = 'Y; let GI, ... , Gq be all its 
maximal proper subgroups. ConstlUct the determining polynomials (cf. (1.3» of G,G I' •.• ,Gq, 
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say Po- P, p., .•. , Pq respectively. Let E, Do, ... ,Oq be the discriminants of x" + A. xn .• + . 
. . +An ,Po, ... ,Pq respectively (the latter regarded as polynomials in Z, thus E E Z [A] , 
Dj E Z [A,C,T], for al1 i). Let 

q 
(1.8) Q - n. (Ci - Cj). lJ .Pj •• n OJ (A, C, T) . E (A) . 

1<.1 19:5J 1-0 

Then, I claim that the locally closed set 'HIy in K2n+2 defined by 

(i) P - 0 , (ii) Q ~ 0, 

can be taken as the set 'HIy of Theorem 1. Let us check that if M - (a,c,t,z) E 'HI." then f. has 
[q (K, f)] -1 . First of all, (ii) implies E ~ 0 at M, hence f. is separable, let al , .•. ,an be its 
roots. Using this ordering, q - q (K,f.) c Sn. Also (ii) implies Do ~ 0 at M, hence P (a ,c, t ,Z) 
is separable. We are assuming that Z is a root of this, hence Z - CPVi (a, c , t) for some i. Write, 
to simplify, Vi - v. Then I claim: q- v·1 Gv. Note first that Gj- v·1 Gj v, j - 1, ... ,q, are all 
the maximal subgroups of G' . Use G', Gj , ... , G~ to construc determining polynomials 
P' - Po, ... , P~ respectively. We have, by (1.4), 

(1.9) PJ (A, C, T, Z) - Pj (A, Cy,T :Z) , al1 j ; 

ahlOz-cpy(a,c,t) - cp'(a,c .• ,t)(cf.(1.5».Itfol1owsthatz-cp'(a,c .I,t)isarootofP'(a,c .I,t,Z). 
By (b) above (it is clear thatVOo ~ 0 at (a,c,t) implies that this polynVomial is separable), q c G'. 
Now I claim that q ct G1 j = 1, ... ,e, which proves that G - G'. In fact, were q c G'j, then 
by (a) cp' (a, Cv.I' t) should be a root of P'{(a, Cv.l,t , Z), hence by (1.9) Pj (a, c, t, z) - 0, 
contradicting the fact that Q ( a ,c ,t ,z) - O. 

To finish, we should see that the projection maps Wy onto S y. So, let a E KO be such that 
fa is separable and [q (K, f.)] - 1. By (c) above we get (e,t) such that Pj (a, c ,t, Z) is separable, 
j - 0, ... ,q. Order the roots ai' ... , all of fa' let G' - q (K, fa) C So. This G'is conjugate to G, 
then G' - v· l Gv, v - Vj, for a suitable i. Working as in the first part, it is easy to see that 
Z - cp' (a ,c .1' t) is such that (a,c,t,z) satisfies (i) and (ii), i.e., it is a point of Wy. This proves 
that the proje~tion Wy-+ S y is surjective, concluding the proof of Theorem 1. 

Section 2 
Here we deal primarily with polynomials with coefficients in certain rings. Precisely. let R 

be the henselization of an algebra of finite type over a field or an excellent discrete valuation ring 
at a prim~ ideal, moreover we assume that R is an infinite, integrally closed integral domain. 

Let R ~ the completion of R at a proper ideal M of R, and F(resp. K) the field of fractions 
of R (resp. R). We fix an algebraic closure L of K. Given polynomials f E K [x] (resp. h E F [x]) 
of degree n without multiple roots, we may regard the Galois group q (K,f) (resp. q (F, h» as a 
subgroup of SIl, by considering its roots, as in Section 1. This subgroup is determined up to inner 
automorphism (depending on the ordering of the roots). We keep the notation of Section 1, and 
we have: 

Theorem 2. Given a separable polynomial 

(2.1) f (x) - x" + al x"· 1 + ... + a,. E' R [x] , 

(whith n relatively prime to the characteristic e.\ponent of K) and a positive integer c, then 
there is a separable polynomial 
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(2.2) h (x) - XU + bl X,,·I + ... + b" E R [x] , 

such that bj == aj (mod '.M c ) (where '.M is the maximal ideal o/R) with 
[q (K, f)] ... [q (K, h)] - [q(F, h)]. 

Before proving the theorem, note that we have the following immediate 

115 

Corollary 1. Fix a conjugacy class "/ of subgroups O/SIl, let Py'" {(al"'I\~I) - a E RIl: fa is 
separable and [q (K, fa ) ] - "/ }. Consider R with the '.M -adic topology and RI with the product 
topology. 

Then, Py 11 RO is dense in Py. 

The following special case haC) geomeuic interest. Ass\IIme R is the henselization of the 
polynomial ring k [XI' ••• , x,.] at (XI' ••• , x,) (k a field). Then,R - k [[XI •••• , x,.]] (formal power 
series) and R is the set of power series, algebraic over k [XI ,: •• , x,]. Given f as in Theorem 2, 
the group q (K, f) may be called the monodromy group of f. In the Introduction it is explained 
how this corresponds ~o the classical concept. It is also well-known that, under the present 
assumptions, h (of Theorem 2) will be algebraic, i.e., after a change of variables in 
k [[XI' ••• , x, ,X ]], the ideal (h) will be generated by a polynomial. 

Thus, we have: . 

Corollary 2. Given f e k [[XI' •••• x~]] [xl as in (2.1). and an integer c > O. then we can 
find an algeb,.aic h as in (2.2). with aj == bj (mod (XI' •••• x,.) c) , i-I, ... ,n, preserving the 
monodromy gl"Oup off. 

In more geometric terms, we may say that it is possible to arbitrarily approximate 
('.M-adically) any algebroid singularity by an algebraic one, preserving its monodromy group 
(here we are dealing, of course, with singularities of hypersurfaces). 

Now we'prove Theorem 2. By ordering the roots 0.1" •• , an of our polynomial f, the Galois 
group q (K, f) gets identified to a subgroup G of Su' Let G I , .•• ,Gq be the maximal proper 
subroups of G. Consider the conditions (i) and (ii) in the proof of Theorem 1, where the 
polYRomials P and Q are constructed using G, G I , •.• , Gq• Using (c) of Section 1, applied with 
B -R, we get elements c l, ... , cn' t in R, such that each P j (the determining polynomial of 
Gj),i-O, ... ,q, with Po-P, is separable. Hence,Dj(a,c,t) - O(a11 j),E(a) - 0 (fisseparableJ 
and Ci - Cj - 0, i < j. Theo.. by (b) of Section 1, there is a root z E K of P (a ,c ,t, Z). But sinceR 
is integrally closed, z E R. This z cannot be a root of Pi (a, c, t ,Z), i > 0: by (b), G (K, f) would 
be contained in a conjugate of Gi, and for cardinality reasons it could not be isomorphic to G. 
Thus, (a, c, t, z) E W y ."/ - [G] (the set of Theorem 1). Using Artin's Approximation Theorem 
([All, Th.1.l0) we may find, forany positive integerd, a solution (b,c',t',z') ofP - 0, with enu'ies 
in R, congruent to (a ,c ,t ,z) modulo d. But the inequality Q (a, c, t, z) * 0 means Q (a, c, t, 
z) == 0 mod'.M 6, ~ large enough. If we tuke d - max (c, ~), then the point (b,c',t',z') E 'Wy 
and h - fb has Galois group (over K) isomorphic to G. 

Now, if we use F as our base field, the conditions of Theorem 1 relative to "/ are again 
P - 0, Q * 0 (the same polynomials as before). Since the entries in (b,c' ,to ,z') are in ReF. 
again Theorem I tells us that [q (F. h )] = "/. 

This completes the proof of Theorem 2. 

Remark. Since C {xl' .... x,} is hensel ian, it is clear that the result announced ~n the 
Introduction is a special case of Corollary 2. ' 
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