Revista de la Unión Matemática Argentina Vol. 35 1990.

COHOMOLOGICAL TRIVIALITY BY SPECTRAL METHODS, II

JUAN JOSE MARTINEZ

To the respected memory of Julio Rey Pastor

Abstract. The spectral sequences associated to a group extension are used to give a proof (different from a previous one) of the twins' criterion for cohomological triviality of modules over a finite group, stated in its strong form. A discussion of the conjecture extending the criterion is included.

The criterion. As usual, the Tate cohomology will be denoted by \hat{H} , while H, with upper or lower indices, will be used to represent the ordinary cohomology and homology, respectively.

The twins' criterion is, of course, the following.

Theorem (Nakayama-Tate). Let G be a finite group and A a G-module. If, for each prime p, there exists an integer r_p (depending on p) such that

$$\hat{H}^{r_{p}}(S_{p}, A) = \hat{H}^{r_{p+1}}(S_{p}, A) = 0,$$

where S_p is a Sylow p-subgroup of G, then A is cohomologically trivial.

This was proved in [6] by using the cohomology version of the Hochschild-Serre spectral sequence. The proof offered here also rests heavily on spectral techniques. Although more complicated than that in [6], it provides some support to the idea of establishing the Tannaka's conjecture by such techniques. (This will be explained later).

The proof. Borrowing from [6], it suffices to consider the case where G is a p-group, for some prime p, and to establish the following two statements, for some integer r:

- (i) If $\hat{H}^{r}(G, A) = \hat{H}^{r+1}(G, A) = 0$, then $\hat{H}^{r}(S, A) = \hat{H}^{r+1}(S, A) = 0$ for all subgroups S of G.
- (ii) If $\hat{H}^{r}(G, A) = \hat{H}^{r+1}(G, A) = 0$, then $\hat{H}^{n}(G, A) = 0$ for all integers n.

In turn, (i) reduces to show:

(i_c) If
$$H^1(G, A) = H^2(G, A) = 0$$
, then $H^2(S, A) = 0$.

(i_h) If
$$H_1(G, A) = H_2(G, A) = 0$$
, then $H_2(S, A) = 0$.

This reduction follows easily by considering dimension shifters B and C such that

$$\hat{H}^{n}(S, A) \approx \hat{H}^{n+1-r}(S, B) \text{ and } \hat{H}^{n}(S, A) \approx \hat{H}^{n-3-r}(S, C).$$

Proof of (i_c) . The periodicity of the cohomology of finite cyclic groups will be applied to the initial term of the cohomology spectral sequence of a group extension by such a factor.

)

)

)

)

)

)

)

Consider, for the moment, the situation of G any group and S a normal subgroup of G such that G/S is a finite cyclic group. Let (E(A), H(A)) be the Hochschild-Serre spectral sequence in cohomology associated to a given G-module A, so that

$$E_2^{p,q}$$
 (A) = H^p (G/S, H^q (S, A)) and Hⁿ (A) = Hⁿ (G, A).

The choice of a generator of G/S determines a cohomology class c in $H^2(G/S, \mathbb{Z})$ yielding the periodicity map

$$H^{p}(G/S, H^{q}(S, A)) \rightarrow H^{p+2}(G/S, H^{q}(S, A)), x \rightarrow x \lor c,$$

where

$$\vee$$
: H^p (G/S, H^q (S, A)) \times H^p (G/S, Z) \rightarrow H^{p+p} (G/S, H^q (S, A))

is the cup product for the usual G/S-pairing $H^{q}(S, A) \times \mathbb{Z} \to H^{q}(S, A)$ (see [9, Remark, p. 141] and [3, Exercise 6, p. 263]). The map just defined is an isomorphism for p > 0; but it only is an epimorphism for p = 0. Concerning \vee , this product can also be obtained as follows. The usual pairing $A \times \mathbb{Z} \to A$ provides the cup product $H^{q}(S, A) \times H^{q}(S, \mathbb{Z}) \to H^{q+q}(S, A)$, which regarded as a G/S-pairing induces the product

 $\cup: H^{p}(G/S, H^{q}(S, A)) \times H^{p'}(G/S, H^{q'}(S, \mathbb{Z})) \rightarrow H^{p+p'}(G/S, H^{q+q'}(S, A)).$

Since the pairing defining \cup yields, for q'=0, that defining \vee , from the uniqueness of cup products [5, Theorem 2,p.104] it follows that \cup , with q'= 0, gives \vee . Moreover, \cup is related to the product structure of the spectral sequence: if the map

:
$$E_2^{p,q}(A) \times E_2^{p',q'}(Z) \to E_2^{p+p',q+q'}(A)$$

is the product of the initial terms, then $x \cdot y = (-1)^{p \cdot q} x \cup y$ (see[4, remark following Theorem 3, p. 126] or [5, Theorem 5, p. 162] for the full statement). The preceding considerations allow to describe the periodicity map as the morphism

$$E_2^{p,q}(A) \rightarrow E_2^{p+2,q}(A), x \rightarrow x.c.$$

Finally, the differentiation rule for products shows the commutativity of the diagram

$$E_2^{p,q}(A) \rightarrow E_2^{p+2,q-1}(A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$E_2^{p+2,q}(A) \rightarrow E_2^{p+4,q-1}(A).$$

where the horizontal arrows represent the differentials.

132

Going to the proof itself, G is assumed again to be a p-group, and S a (normal) subgroup of index p in G (this additional reduction was also used in [6]). Since integer coefficients will not appear explicitly, the letter A will be supressed in the notation of the spectral sequence.

In the commutative diagram-

 $\begin{array}{cccc} E_2^{0,1} & \rightarrow & E_2^{2,0} \\ \downarrow & & \downarrow \\ E_2^{2,1} & \rightarrow & E_2^{4,0} \end{array}$

the left-hand arrow is surjective and the right-hand arrow is injective (actually, an isomorphism). Furthermore, the differential $d_2^{0,1}$ is a monomorphism, since $E_3^{0,1} = 0$ under the assumption that $H^1 = 0$. The conclusion is that $d_2^{2,1}$ is also a monomorphism, whence $d_2^{0,2} = 0$. Therefore, $E_3^{0,2} = E_2^{0,2}$.

On the other hand, $E_4^{0,2} = E_3^{0,2}$, because $E_2^{1,0} = 0$ and hence, $E_3^{3,0} = 0$. Taking into account that $E_4^{0,2} = 0$, since $H^2 = 0$, it is proved that $E_2^{0,2} = 0$. This suffices to conclude that $H^2(S,A) = 0$ (see [6] for the details).

Proof of (i_h). It can be arranged in perfect duality with the proof of (i_c), and will be included for the convenience of the reader, which is refered to [2] for a direct treatment of the cap product. In the situation at the beginning of the previous proof, consider the morphism

$$H_n(G/S, H_n(S, A)) \rightarrow H_{n,2}(G/S, H_n(S, A)), x \rightarrow x \land c,$$

where

 \wedge : H_n (G/S, H_g (S, A)) x Hⁱ (G/S, Z) \rightarrow H_{p-i} (G/S, H_g (S, A))

is the cap product induced by the usual G/S - pairing $H_q0(S, A) \times Z \rightarrow H_q(S, A)$. For p > 2, this morphism coincides, up to sign, with the periodicity map obtained from the Tate product; in particular, it is bijective [3, Exercise 6, p. 263 (the reader is warned to save the typographical errors concerning cap product)]. Furthermore, it is injective for p=2. For uniqueness reasons (or direct verification), \land also comes from the cap product

$$\cap$$
: H_n (G/S, H_a (S, A)) x Hⁱ (G/S, Hⁱ(S, Z)) \rightarrow H_{n-i} (G/S, H_{a,i}(S, A))

corresponding to the G/S-pairing $H_q(S, A) \times H^j(S, Z) \rightarrow H_{q,j}(S, A)$ induced by the G-pairing $A \times Z \rightarrow A$ [2, Lemma 1.2.6, p. 378].

Now, let (E,H) be the Hochschild-Serre homology spectral sequence of the G-module A, so that

$$E_{p,q}^2 = H_p(G/S, H_q(S, A))$$
 and $H_n = H_n(G, A)$.

If

:
$$E_{p,q}^2 \times E_2^{i,j}(\mathbb{Z}) \rightarrow E_{p-i,q-j}^2$$

is the cap product of the initial terms [2, §1.3, pp. 378-380], then $x \cdot y = (-1)^{qi} x \cap y$ [2, Lemma 1.3.2, p.380]. Therefore, the morphism defined above coincides with

$$E_{p,q}^2 \rightarrow E_{p-2,q}^2, x \rightarrow x \cdot c.$$

The diagram

$$\begin{array}{cccc} E^2_{p,q} & \rightarrow & E^2_{p-2,\,q+1} \\ \downarrow & & \downarrow \\ E^2_{p-2,\,q} & \rightarrow & E^2_{p-4,\,q+1} \end{array}$$

is commutative, according to the differentiation formula $d_{p-i,q-j}^{r}(x \cdot y) = (-1)^{i+j} d_{p,q}^{r} x \cdot y + x \cdot d_{r}^{i,j} y \text{ (cf. [2, § 1.3, (*), p. 379]).}$ In the setting of (i_h), with the previous reductions in force, a perfect duality works as follows: In the commutative diagram

the left-hand arrow is surjective (actually, an isomorphism) and the right-hand arrow is injective. Furthemore, the differential $d_{2,0}^2$ is an epimorphism, since $E_{0,1}^3 = 0$ under the assumption that $H_1 = 0$. The conclusion is that $d_{4,0}^2$ is also an epimorphism, whence $d_{2,1}^2$. Therefore, $E_{0,2}^3 = E_{0,2}^2$

)

)

)

)

)

)

)

 $\mathcal{O}(\mathcal{O})$

))

On the other hand, $E_{0,2}^4 = E_{0,2}^3$, because $E_{1,0}^2 = 0$ and hence, $E_{3,0}^3 = 0$. Taking into account that $E_{0,2}^4 = 0$, since $H_2 = 0$, it is proved that $E_{0,2}^2 = 0$. This suffices to conclude that $H_2(S,A) = 0$ (see [6] for the details).

Of course, the duality was partially masked by the notation of the differentials.

Proof of (ii). By dimension shifting, it can be assumed that r > 0, for instance. Arguing by induction on the exponent of the order of G, suppose that G is nontrivial and take a subgroup S of index p. By (i) and the inductive assumption, \hat{H}^n (S, A) = 0 for all integers n. Thus, the corresponding cohomology spectral sequence (E, H) collapses (i.e., $E_2^{p,q} = 0$ for q > 0) and provides the isomorphisms $E_2^{n,0} \approx H^n$. Since $H^r = H^{r+1} = 0$, it is clear that $E_2^{r,0} = E_2^{r+1,0} = 0$. Hence, $E_2^{n,0} = 0$ for n > 0 (periodicity), that is, \hat{H}^n (G, A) = 0 for n > 0. Take now a dimension shifter B satisfying \hat{H}^n (G, B) $\approx \hat{H}^{n+1}$ (G, A) for some integer

t > r + 2. Thus, $H_s(G, B) = H_{s+1}(G, B) = 0$ for some integer s > 0. A dual argument using the homology spectral sequence shows that $\hat{H}^n(G, B) = 0$ for n < -1. Therefore, $\hat{H}^n(G, A) = 0$ for $n \leq 0$.

Note that the proof presents (ii) as a formal consequence of (i).

Tannaka's conjecture . A natural conjecture arises from the criterion by replacing in its statement the number 1 by an odd integer i_p (supposed positive for convenience). Of course, even integers are excluded for periodicity reasons.

134

According to Uchida [11], this conjecture is due to Tannaka, who established affirmatively a weak form: fixed dimensions and all subgroups in the hypothesis. This weak form was also obtained by Onishi [7]. Furthermore, Uchida [11] proved two special cases of the conjecture:

(1) A is finitely generetated and $i_p \leq 3$ for every prime p.

(2) The Sylow subgroups of G are direct products of two cyclic groups.

The arrangement of the present proof of the criterion can easily be adapted to the conjecture by replacing the number 1 by a positive odd integer i in the statements of (i) and (ii). In that situation, (ii) still follows from (i). Therefore, it suffices to prove:

If
$$\hat{H}^r(G, A) = \hat{H}^{r+i}(G, A) = 0$$
, then $\hat{H}^r(S, A) = \hat{H}^{r+i}(S, A) = 0$,

provided that G is a p-group and S is a subgroup of index p in G.

The author believes that reductions like (i_c) and (i_h) might be established by using periodicity arguments in the spectral sequences of a group extension by a finite cyclic factor.

The study of these periodicity questions is not new. The cohomology case, for p-groups and integers mod p as coefficients, was first considered by Serre (see [10, Remark, p . 418]), and then, by Quillen-Venkov [8] and Alperin-Evens [1]. Similar results for integer coefficients were exposed by the author in an algebra seminar held at Universidad de Buenos Aires in 1971.

References

- [1] ALPERIN, J.L. and EVENS, L. Representations, resolutions and Quillen's dimension theorem, J.Pure Appl. Algebra 22 (1981), 1-9.
- [2] BIERI, R. Gruppen mit Poincaré-Dualität, Comment. Math. Helv. 47 (1972), 373-396.
- [3] CARTAN, H. and EILENBERG, S. *Homological algebra*, Princeton University Press, Princeton, 1956.
- [4] HOCHSCHILD, G. and SERRE, J-P. Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110-134.
- [5] LANG, S. Rapport sur la cohomologie des groupes, Benjamin, New York, 1967.
- [6] MARTINEZ, J.J. Cohomological triviality by spectral methods, Proc. Amer. Math. Soc. 72 (1978), 39-40.
- [7] ONISHI, H. On cohomological triviality, Proc. Math. Soc. 18 (1967), 1117-1118.
- [8] QUILLEN, D. and VENKOV, B.B. Cohomology of finite groups and elementary abelian subgroups, Topology 11 (1972), 317-318.
- [9] SERRE, J-P. Corps locaux, Hermann, Paris, 1962.
- [10] SERRE, J-P., Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413-420.
- [11] UCHIDA, K. On Tannaka's conjecture on the cohomologically trivial modules, Proc. Japan Acad. 41 (1965), 249-253.

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 1428 Buenos Aires . Argentina

1980 Mathematics subjet classification. Primary 20J06. This work was partially supported by CONICET (SAPIU).

Recibido por UMA el 16 de mayo de 1989.