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REMARKS ON ESTIMATES FOR THE GREEN FUNCTION
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Introduction

The main purpose of this paper is to give a comprehensive motivation, with most of
the key ideas used in the recent work by Garroni and Menaldi [10], on the construction of
the Green function G(z,t,£,) for an integro-differential initial boundary value problem,

when the differential operator is a second-order parabolic operator not in divergence form

al‘P(zl t) + Ao‘P(I, t) + D‘P(zv t)a

d
Agp(z,t) = — Z at'j(zit)aizj¢(z1t)’

f,5=1
d
D‘P(z’t) = Za;(z,t)aﬁp(z,t) + aO(za t)‘P(za t)’
=1
where 9,07 and O, denote the partial derivatives in ¢, z; and z;,z;, respectively. The
boundary operator has only Hoélder continuous coefficients
d
By(z,t) = 3 _bi(z,t)87¢(z,t) + bo(z, t)e(z, 1),
=1

and the integral operator is

Ip(a,t) = [ [p(z +2(2,t:0),8) - ¢z, 1Bz, £, O(C),
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where the Radon measure 7(() is singular when v = 0. .

Integro-differential operator of this type arise in control (or game) problems with state
processes modelled by a diffusion with jumps. Some fundamental studies on this subject
can be found in Bensoussan and Lions [3], Gikhman and Skorokhod [12], Komatsu [15],
Lepeltier and Marchal [16], Stroock [18], among others. ,

The diffusion processes with jumps and reflected on the boundary have been studied
in Anulova [1,2], Chaleyat-Maurel et al. [5], Menaldi and Robin [17] under regularity
hypotheses on the coefficients.

The Green function is constructed as a solution of the Volterra integral equation
t
G(z,t,¢&, T) = Go(z’ 4,§,7)+ /' ds -/ﬂ Go(l‘, t,3,¥, )(I - D)G(yv s,€,7)dy,

where Gy is the Green function for the initial boundary value problem associated with
Ao, B as constructed in Garroni and Solonnikov [11]. The solution G is expressed in the

form of a series

G(:l:, t,¢, T) = f: Gk(z, t, {1 T)’

k=0
where G, is the iterated kernel

Gulz,t,6,m) = [ ds [ Gola,t,0, )0 = D)Gu-s(y, € .

As far as we know the Green function has been constructed for differential problem
(e.g. Eidel'man [7], Friedman [9), Ir'in et al [13], Ladyzhenskay et al. [14]), only re-
cently some attention has been addressed to integro-differential problems (cf. Garroni and
Menaldi [10]). Usually in these problems the starting point is the green function and/or
the fundamental solutions for simple problems (e.g. constant coefficients).

The most delicate point of this construction is the exact evaluation of punctual and

integral estimates for the iterate kernel G;. There, the exponential heat-kernel
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exp(—
or a suitable transformation of it, plays an essential role.

Let us point out to this respect that the heat-kernel used to estimate Go disappears

during the iterations, due to the presence of the nonlocal integral operator I. This suggests

\./\./\,/'\_/\./\/\/v'\/&./\./

NI NS P NG N AN N N N N N N

e e N ~—

~—7

NN



GREEN FUNCTION 209
the use of convenient function spaces in which the integral operator work and to which the
iterate kernel G belongs.

The paper is organized as follows. In Section 1 we give an explicit calculation of the
fundamental solution associated with the integro-differential operator
13,
Owp(z,t) — 'é' 285"10(1vt) - A[S’(:"' +7,t) - ‘P(zst)]a
i=1
where A and « are constants. Then, in Section 2 we point out the essential properties that

will allow us to build the fundamental solution for an integral operator of the type

Io(@,t) = [fo(@+7(0)1) - oz Dln(d0),
x(E) = /E x(d¢) < co.

However, in Section 3 we study the Green functions for Dirichlet and Neumann boundary
conditions. We notice there that even for the simplest case (i.e. Wiener and Poisson pro-
cesses) only estimates up to the first derivatives of the kernel are obtained. To end this
motivation, in Section 4 we present a quick connection with the probabilistic counterpart.
Next, in Section 5 we state the assumptions and the main results relative to the Green
function for parabolic second order integro-differential operator with oblique boundary
conditions on a bounded domain. Finally, in Section 6 we state the main results corre-

sponding to the asymptotic-elliptic case.

1. Wiener and Poisson processes

Let us consider two particular Markov-Feller processes in the space ®", (w(t),t > 0) and
(p(t),t = 0). The first is a standard Wiener process on the canonical space C([0, o), R")
and the second is standard Poisson process on the canonical space D([0, c0), R"). Denote
by P the probability measure on product sample space C([0, ), R") x'b([O, 00), R") which
makes the processes independent each of other. ,

Recall that D(]0,00),R") (resp. C([0,00,R")) denotes the space of right continuous
functions w from [0, 00) into R* having left-hand limits (resp. continuous functions). No-
tice that any function in D([0, 00), R") is locally bounded and has at most countable many

points of discontinuity. The space C([0,00), R") (resp. D([0,0), R")) endowed with the
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local uniform convergence (resp. with the Skorokhod topology) becomes a complete sepa-
rable metric space.

If we denote by E{-} the mathematical expectation w.r.t. the canonical probability

measure P we have
E{f(z +w(t))} = /w- To(z —y, t)f(y)dy, t >0,z € R"

2
(1.1) To(z,t) = (2nt)~2 exp(—l'%-), t>0,zeR

and -
t
E{f(z+p(t))} = "“Z( ) —f(z+ky), t>0,z € R"
where A > 0, ¥ € R" are the cha.ra.ctenstlc parameters of the Poisson process.
Because the processes are independent,
E{f(z+w(t) +p(t))} = 3 E{f(z +w(t) + p(t))Ip(t) = kv} x
k=0

xP{p(t) = k7) = ([, Toe + 7 - v, ) w)ey)e™ 47,

This proves that the transition density function corresponding to the Feller-Markov process
(w(t) +p(t),t 2 0) is
(1.2) I(z,t) = c"\'z Qo Po(z+k7,t), t>0,z€R"
k=0

However, as soon as we pretend to repeat this simple computations for some small variants
of the standard Wiener and Poisson processes we get troubles. For instance, replace
(w(t),t 2 0) by a standard reflected Wiener process in a half-space, or add a stopping
time at the exist of a domain , or allow (p(t),t > 0) to have a Levy measure different
from the Dirac measure, or even think how to deal with a general jump diffusion process.

From this, we have at least an explicit expression for the transition density functions
of a simple jumps diffusion process, namely, a standard Wiener-Poisson process.

The equivalent analytic counterpart will give us some more information.

Denote by A the Laplacian operator, in R by I the following jump operator.

(1.3) Ip(z) = Ap(z +7) = (z)], A>0,7€R™
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GREEN FUNCTION 211

It is clear that A and T ‘are the infinitesimal generators of the above Wiener and Poisson -

processes.

The function I'(z,t) given l:)y (1.2) solves the equation

(1.4) (& =3A-I)I'=6 in " x (—00,+00),
F'=0 in " x (—o0,0], '

where § is the Dirac measure at the origin in " x [0,00). Thus, the function I' isa
fundamental solution relative to the operator 9; — —A I.

In order to solve this problem, we may use the fact that I‘o, gwen by (1.1), satisfies the

equation

(1.5) (8 —1A)To =6 in R™ x (—00,+00),
To=0 in " x (=o0,0].

A classic argument is to propose

(1.6) I'= I‘0+F0*F )

where * denotes the convolution in ®* x [0, 00), ie..
' .

(Tox F)z,t) = [ ds [ Tolz—y,t - )F(y,s)dy.

o Rn

In (1.6), the function F is unknowﬁ and so is I'. We compute

(at—-l-A)I‘=6+F, ie. F=1IT

‘which together with (1.6) provide an integral equatxon of Volterra. type for the functlon T,

namely
(1.7) T=To+Te*IT.
Similarly, we ‘compute
(8,—%A—I)F=6—II‘0+F-—II‘O*F

to get the equation
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(1.8) F =+ ITo*F.
To solve (1.7) and (1.8) we set

I = To+Di+...+Tc+...,

Fk.'.] = Po*IPk, k=0,1,...

1l

and
F = Fo+Fi+...+F+...,
F = II‘O) Fk+i=Ir0*Fk’ k=0117-
Computing
2,
T'y = tIT,, I‘g=ﬁ1’ Toy..., T = TCTI T,
: LI . .
I'o(z) = Y (1)(-1)p(z +i7)A*
=0
Hence

(1.9) I(z,t) = ZE(( ))( 1)""( ) To(z +i7,1),

=0 i=0
which reproduces (1.2).
This calculation does not go further but, it gives us a way of approaching the problem
by studying the structure of the function I in formula (1.2).

2. Essential Properties
Let us recall some properties of the fundamental solution ['g(z,t) given by (1.1). To

the purpose, we consider the function
-5 |=[?
(2.1) e(z,t,r,c)=t"12 exp(—cT), Vt,r,c >0,z € R".
Based on the elementary inequality for any r,c,& > 0 there exists ¢ > 0 such that
(2.2) |z|"e(z,t,7,c) < Ce(z,t,0,c—¢), Vt >0,z € R",
i

we obtain for any ¢ =0, 1,2, 3,4 and some Co, co > 0,
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(2.3) |Vilo(z,t)| < Coe(z,t,n +i,c0), VE > 0,z € R™,

where Vi represents all the derivatives in z of the i-order. Also, we can replace V2% by 8i,
i.e. two differentations in z is equivalent to one differentation in t. Moreover, by means of

expressions of the type
1 .
To(z,t) — To(z', ) = /0 (z - ') - VTo(z + 6(z — z'),1)d6

and
ITo(z,t) = To(z', )| < (ITo(, )] + ITo(z’, 1)1)*~*ITo(2, ) = o', )|

for 0 < a < 1, we deduce for any i = 0,1,2 and some My, fno >0

(2.4) |VTo(z, ) - ViTo(", #)] < Mo(lz — 2|2 + |t - ]°/7)x
x[e(z,t,n +i+ a,mq) +e(z',t',n +1i 4+ a,mp)], Vt,t' >0, z,z' € R",

where actually either z = z/ or t = t’. Again V? can be replaced by 0;.
We would like to generalize the analytic computation of the fundamental solution
T'(z,t). So, let us look at each term of the series (1.9),

Cala,#) = Z(( ))( -1) k- (A8 t) *===To(z + 1, 1)

j=0
This function has several singular points, namely z = —jv, t =0for j =0,1,...,k. Then
we cannot expect to have bounds in term of the function e(z,t,r,¢c) given by (2.1). Since
the propagation of singularities is only in the variable z, we should seek for properties

which are not pointwise in the variable z. For instance,

i /\k k k ; .
19°0u(e, 1 < 57 3§19t + im0

gives two estimates

(2A)

(2.5) |VTi(z,t)| < T=LCot= 255, Wt > 0,z € R",

. k
(2.6) /33 VT t)ldz < (2;\,) ot~ V> 0,z € R",
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where : =0,1,2,3,4 and
Ko=Co /m exp(—coln|*)dn.

and Cy, ¢o are the same constants of (2.3). Notice the change of variable tn = z used to

obtain (2.6). Similarly from (2.4) we obtain the estimates

(2>‘)"

(2.7) |V'I";,(z t) = ViTi(z' t')l < Mo(Jz — 2| + |t - #/|*/?x
O S s W73 t’>0 z,z’' € R",
L 19Tt = ,8) = VT’ = 3,00y < B NGl - 217 41t - #1077

x (1252 4 == vt > 0,2,2" € R,

where
No=My [ exp(~molnl*)dn

and Mo, mg are the same constants of (2.4). Notice that the integration is ®" help us to
cancel a singularity of the type t—%

Now, consider an integral operator of the form
(2:9) (@) = [ fo(z +2(0) - p(@n(d0),
where 7 is a finite measure on E and 7(z) is measurable, i.e.
(2.10) #n(E) < o0
We should study how the estimates (2.5),...,(2.8) changes when an integral operator of the
form (2.9) is used. To that purpose, let us denote by C(v,2k), K(¢,2k), M(p,2k) and

N(p,2k) the infimum of the multiplicative constants that can be used in the left-hand side

of the estimates (2.5),...,(2.8) when ¢ replaces V'T';. For instance C(y, k) is the infimum
of all constants C > 0 satisfying

le(z,t)] < CtF, Vi >0,z € R".

It is clear that from (2.5),..., (2.8) we have

. k . k
C(V'Th, 2k — i) < 2AL (2’\) BN o K(ViTw2k—i) < (.22') Ko,
k . k
M(VTy,2k — i) < (2’\) Mo, N(VT. 2k —i)< (2:) A N

N
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Notice that n and a are fixed.
In order to find a fundamental solution for the operator 8; — A — I, where I is now

given by (2.9), we may solve the Volterra equation
T=Tg+ToxIT

for the unknown I'. To that end, we should evaluate the iterate terms
Tiy1 =Tox IT.

For instance

t
Ti(e,t)= [ ds [ To(e =yt = )dy [[[Toly +7(¢), ) = Tolw )n(0)
we exchange the order of the integrals in ®" and F to obtain
t
Te,t) = [ ds [ [Fo(z +%(¢),1) = To(a, )(de),
after using the equality
To(z + 2,t) = ./an To(z —y,t — 8)To(y + 2,8)dy.

This is

Fl(z, t) = tIro(I, t)
For k > 2, we use the fact that I and * commute,

I‘o*II‘,, = I(I‘O*I‘,‘).

Then
t
(To*Ty)(z,t) = /0 sds fm To(z — y,t — s)dy /E[I‘o(y +7(€), 8) = To(y, 8)}m(d¢)

which gives

2
Pz(ﬂ:, t) = 22—'[21-‘0(23, t)

and in general

tk
(2.11) Tu(z,t) = 5I*To(2,1) ¥t >0,z € B,
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where I* denotes the k-iteration (power) of the integral operator I defined by (2.9).
On the other hand, it is easy to check that

C(Ip,j) < 2x(E)C(p,5),
K(Ip,j) < 27(E)K(p,j),
M(Ip,j) < 2m(E)M(y,J),
N(Ip,j) < 2x(E)N(p,j), Vi

IA

Hence, we deduce

C(ViTy, 2k —i) < [2"(E)]k0(vr i),
K(V'Ty, 2k —i) < [2"(E)]k1{(v'ro i),
M(VTy,2k —i) < MM(V‘FO,—i),
N(VTy, 2k —i) < [2"(E)] ER2N N(VTo, —i),

which proves, for instance, the convergence of the series

D(s,t) = 3 Tu(z,)
: k=0

and the estimates

C(VT,—i) < exp(2r(E))C(VTq—1)
K(V'T,—i) < exp(2n(E))K(V'To,—i)

and similarly for M(V'T, —i), N(V'T,—i). Notice that A = n(E) when = is a Dirac
measure.

Until now, we have construct a fundamental solution for the operator 8, — ;A — I,
with the I given by (2.9). Estimates of the type (2.5), ..., (2.8) still hold true, with A
replaced by w(E).: However, we have not seen precise use of the estimate (2.7), (2.8) for
i = 0,1,2. This is because they are consequence of (2.5), (2.6) for ¢ = 1,2,3,4. Remark
that V¥ can be replaced by 8i. We will see the utility of (2.7), (2.8) as soon as we pretend

to use this approach for variable coefficients in the integro-differential operator. At least
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for the integral operator I, it will be necessary to include the case of variable coefficients

v = (z,t,z) in (2.9) if we want to consider bounded domain. An assumption of the type
z+4(z,t,0) e, VzeQ,t>0,(€E

is necessary to localize the integral operator I to a region  of ®".

Remark that the way in which I'(z,t) converges to § as ¢ goes to zero has not been
yet specified. We may consider the conve;'gence to take place in the Schwartz distribution
sense of D'(R"), i.e.

(2.12) /3Q T(z,8)p(z)ds — p(0) s t =0

for any test function ¢.

3. Dirichlet and Neumann problems
In a half-space R} = R"~! x (0,00) let us consider the integro-differential operator

8, — 3A — I, where I is given by (2.9) with the coefficient v(() satisfying
(3.1) (¢) = (m({)s--- »1a(€))s 1(¢) 20, V(€ E.

Under this conditions, the integral operator I is meaningful for function defined only on
R3

The Green function G(&, zn,t,€n),z = (£,2,) in R}, t,£x > 0 solves the equation

(3.2) (8. — 1A - IG(F,2n,t,€n) = 8(2)6(zn — €n)6(t) in RY,E>0
G(-,-t,&) =0 for t <O,

where again § denotes the Dirac measure at the origin, and a boundary condition, either

the Dirichlet boundary condition
(3.3) G(*,n,,€n) =0 as z,— 0
or the Neumann boundary condition

(3'4) a"G(',.'E,l, "En) —0 as T, — 0.
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Notice that the Qperatof 1A + I is acting on the first variable, i.e. z = (%,z,), and 9,
means the pa.rtia’l derivative w.r.t. the variable z,. The variable £, is only a parameter
for the equation. When necessary, we will denote the Green functions GP and GV for
Dirichlet and Neumann boundary conditions, respectively.

An usual.way of constructing the Green function is to express it as the sum of a
fundamental solution plus something else. To do so, it is necessary to find the so-called
Poisson function. The Poisson function P(%,zn,t),z = (&,z.) in R",t > 0, solves the

equation .

N

(8.5) (8: —3A —1I) P (3,2,,t)=0 in RZ, ¢ >0,
P(-,t)=0 for t <0 '

and either the Dirichlet boundary condition
(3.6) PP(z,z,,t) — 8(Z)8(t) as z, — 0

or the Neumann boundary condition

(3.7) =0,PN(%,z,,t) — 8(£)6(t) as z, =0

Again, we will distinguish PP and PV when necessary. Because the equation (3.5) has

constant coefficients, it is clear that
PP =-g,PV
and that one should have
GN() €)= PN as €, — 0.

Let us recall this procedure for the Laplacian operator. The reflection principle allow
us to construct directly the Green function for the differential operator 8, — %A in R}
with Neumann boundary conditions. That principle states that a one dimensional Wiener
process starting from zero, has the same probability of becoming positive as becoming
negative. Analytically, that means that the fundamental solution is a even function, as

easily checked from the explicit expression (1.1). This amounts to show that
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(3.8) G{)v(-'is Tn,y t, £n) = ro(ia Tn — Emt) + I‘O(Ey Tn + £m t)v
where ['o(Z,zn,t) = To(z,t) given by (1.1), satisfies the properties

(3.9) (8 — 3A)GY (5, 2n, t,£n) = 6(2)8(zn — £a)5(2) in R}, >0
G(I)v('v'ytsfn) =0 for t <0,

OnGY (- Zny "1 €n) = 0 as z, — 0.
Then
(3.i0) PN(%,Tn,t) = 2To(ZF, Zp,t)
and
(3.11) PP(Z,zn,t) = 22,27 To(Z, 20, t).

Notice that # € R, z,, £n,t > 0.

In order to obtain the Green function for the Dirichlet boundary conditions, we notice

that
(al - %A)PO("E»In + gmt) =0 in §R:—’t > 0.

Hence, the function
(3'12) G(?(i’ Tn,y t’ ﬁn) = I‘O(iy Tp — Em t) - I‘O(i, Tny Em t)
satisfies the equation

(3.13) (ag - %A)G{;’(é’:,xn,t,fn) = 6(5)6(1" - E")s(t) in R:_,t >0
G(I))(”'st’fn) =0 for t< 0,

G(?(-,:L‘m '7£n) —0as z,—0.

The Green function Go(Z,z,,t,&,) for Dirichlet as well as for Neumann boundary
conditions possesses singularities similar to those of the fundamental solution Do(z,?).

For any 1 = 0,1,2,3,4 and some Cp,cp > 0

(3.14) |ViGo(& — &, za,t,6n)| < Co e(z — £,t,1 + 1, o),
Vt, Zn,€n >0, € € R,
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where e(:,-,+,") is the function (21),z =(Z,za), € = (€,€,), and again Vg‘ can be réplaced
by 8. Estimates similar to (2.4) also hold for Go. In view of (3.10) and (3.11) we deduce
the corresponding estimates for the Poisson function.

Actually to prove the estimate (3.14) for the Green function, we notice that
[Zn + €nl 2 |Zn = €nl, V20,62 >0

and the equalities (3.8), (3.12) together with the estimates (2.3) for ['o(z, ), give (3.14).
- Notice that

(3.18) GP(%,2n,t,6) >0, VEER, 2, 20,26, >0,
and
(3'16) G{)v(ir Tny ty En) 2 Po(-'i, Ty — fﬂat)r Vi € Rn—l’ Tn,y fmt > 0

To construct the Green function G(%, za,t,£s) corresponding to the integro-differential
operator 8 — 3A — I, with I being given by (2.9) under the assumptions (2.10) and (3.1),

we propose
(317) G+ 2ms6n) = GolrsZms s n) + [ Galrs2asss ) # F(, Ay, n)dA,
where F is an unknown function and * denotes the convolution in the Z,¢ variables, i.e.
Go(#,,t,) % F(3, 1, ") = /'ds/ ColE — G-+t — 8, YF(§, -, 3, -)d§.
1 1% o Rn—l LR k] LR s
This gives the following Volterra type equation for the unknown Green Function G,
(3.18) G(-,Zn,1€n) = Go(:,n,€n) + /: Gol*y Ty, A) ¥ IG(-, A, -, €0)dA,
i.e.

(3.19) G=Go+ G+ +Gx+---, and for k=0,1,...,
G mrihn) = [ Golar, )+ IGK( Ay, E)dA.

For the sake of simplicity, we consider the one dimensional case, n = 1, ¢ = z,, { = {,.

Then, the iterate G takes the form

AN N S —? ~— ~— ~— -

A
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(3:20) Guas(,t,6) = [ ds [ Gzt = 8,1 Gly, 3, E)dy

Our purpose is to show the convergence of the series (3.19). Notice that an explicit
expression like (2.11) does not hold true now. However, the technique can be used.

Let us defined the space of continuous functions ¢(z,t,€), z,t,£ in (0, 00) satisfying
(recall n =1) '

(3.21) |¢(z,t,6)| < Cot~3+*, Vz,1,¢,

3:22) [ le(et)ldy+ [ lo(,t,Oldy < Kot", Va,t,6,

for some constants Co, Ko > 0. Denote by Sy, k = —1,0,..., such a space and by
C(p,2k), K(p,2k) the infimum of constants Co, Ko that make (3.21), (3.22) to be sat-
isfied. It is easy to check that

(3.23) C(Ip,k) < 2n(E)C(¢, k), Vo,k,
K(Ip, k) < 2x(E)K(p, k), Vo,k,

and that G belongs to So. To show that G belongs to Sx we proceed as follows:

£ '
/(,2 ds ‘/0 Go(ﬂ’,t -8, y)IGk(ys s,{)dy +

t 00 ’
+ Jods [ Golest = ) u)IGuw s, Oy = T+ 11,

G’H’l(x» t, f)

7|

I\

& .
 C(Go,0)K(IGy, k) /o *(t — s)hskds,
|11

IN

- t

K(Go,0)C(IGy, k) A (t — s)~dskds
2

and by means of the changes of variables s = t6 we get

1|

IN

1
=3+ 0(Gy, 0) K (1G4, k) /o *(1-6)"36*do

A

1
[II] < -3+ K (G, 0)C(IG, k) /L 9-3++ag,
2
which give

(3.24) |Giri(e,t, )] S C(Grsa, b + 1t~ H+E4,
C(Gis1, 2k +2) < -2k-ma.x{C(Go, 0)K(IGx, 2k), K(Go,0)C(IG4, 2k)}
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Similarly, if we integra.te‘in z or § then
(3.25) K(Ghyr,2k +2) < %K(Go, 0)K(IGh, 2k).
Combining (3.23), ..., (3.25) we deduce

C(Gr41,2k +2) + K(Gi41,2k+2) <
< 7[C(Gu,2k) + K(Gi,2k)], Vk,
where
r = 47 (E)[G(Go,0) + K(Go,0)],
i.e.
r*
"k_':v

It is clear that the until now, we know that the series (3.18) converges. Moreover each

(3.28) C(Gi41,2k +2) + K(Gr41,2k +2) < Vk=0,1,...
term Gy belongs to the space S, and estimate (3.26) holds. However, no convergence

of the derivative has been yet established. The above procedure go through for the first

derivative in z,’the difference is that (3.26) becomes
(3-27) C(VGk+1,2k + 1) + K(VGk+1,2k + 1) S Qody ... ak,Vk,
where
1
.. ay = 4n(E)[C(VGo, —1) + K(VGo,-1)] /o (1 - 6)~}g*dp.

This ensure also the convergence of the first derivative in z.

4. Stochastic Representation
Let (w(t),t = 0) and (p(¢,:),t = 0) be a standard Brownian motion on the canonical

space C([0,0), R") and a Poisson (random) measure with Levy measure m(-) gives by
(4.1) m(4) ==({¢ € E:v(¢) € 4}),

where 7 is a finite measure on E and v(() is measurable. The Poisson measure (p(t,-),t >

0) defines a Markov-Feller process with paths in D([0, c0), R"). Denote by P the probability

measure on the product sample spaces C([0,00(,R") x D([0,0), R") which makes the

standard Wiener process (w(t),t > 0) independent of the Poisson measure (p(t,-),t > 0).
Setting

R N

RN

N ~—

N N
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(42) (@) =z +u@)+ [ [1(O)dp(s,0), 20

we have constructed a Markov-Feller process (X (t),t > 0) with right continuous (having
left limits) paths under the probability measure P on D([0, o), "), where P is the image
probability measure of P through X(-) and X(t) = w(t), i.e. the identity mapping.

This Markov-Feller process (X (t),t < 0) has the transition density fux;ction

(4.3) P(X(t) € B|X(s)=1z) = ]B I(z -y, t — s)dy,
Vz € R*,0< s < t,B € B(R"),

where I'(z, t) is the fundamental solution of Section 2, i.e.

(4.4) Tz, = 3> 21 To(z, 1),
k=0 """ .

with Ty(z,t) being the Gauss kernel (1.1) and I* the k-iteration of the integral operator
(48) To(@) = [ fio(z +7(0)) - e(@)In(do).

The associated semigroup, (®(t),t > 0) is given by
(47) L=3A+1,

where A is the Laplacian.

In order to interpret the Dirichlet problem in ®7, we consider the stopping time
(4.8) 7 =inf{t > 0: X(t) g R}}.

The new Markov-Feller process (X2(t),t > 0) obtained by stopping X(t) at the time T,
i.e.
X(t) f 0<t<
(4.9) xP(ry={ X #O0stsT
X(t) if t>,
gives a semigroup

(4.10) #2(t)f(z) = E{f(X(t AT))|X(0) = 2.

The infinitesimal generator still being (4.7) but the transition density function is the Green

function with Dirichlet boundary condition, i.e.
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(411) B2W)f(2) = [ [0 = 5,20 = ¥ t) = T(E = 20 + v DA W),

where z = (£,2,),y = (£, ya). Remark that we have assumed (3.1), i.e. 74(¢) > 0.
For the Neumann boundary conditions, we need to construct another process (X =
N(t),t 2 0) as follows:

(4.12) XN(t) = X(t) fori=1,2,...,n—1
XN(t) = Xu(®) + sup{[Ka(s)]" : 0S s S 1)

This is a reflected Poisson-Wiener process. The transition density function is given by

(4.13) P(XN(t) € | XN(s) = z) = /B [C(E = &, 20 — Y, t — $)+
+F(i — 4, Tn + Yn,t — 3)]dy’ Vz G %1)0 <s<t,
Be B(m;‘)v’t = (iv EN)yy = (gayn)'

The probability measure P associated with either (X™(t),t > 0) or (X2(¢),t > 0) is

actually defined on D([0,00),R%}). The infinitesimal generator still being (4.7), but it is

clear that the domain of the infinitesimal generator contains the boundary conditions.
For example, we refer to the books of Dynkin [6], Ethier and Kurtz [8], among others,

for a background on Markov-Feller processes.

5. General Results

Let £ be a bounded open subset of R? having smooth boundary 0. Consider the
integral operator '

(5:1) Tp(z,t) = [ folz +7(2,1,0,) = (e, 1Bz, On(dC),

where 7(-) is a o-finite measure on the measurable space (E, £), and the differential oper-

ators

d
(5.2) Dy(z,t) = Za;(z,t)aﬁp(z,t) + ao(z, t)p(z, 1),

i=1

(5.3) Aop(z,t) = - i a;i(2,1) (<, 1),

iJ=1
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‘ .
(5.4) By(z,t) = Zb,-(z,t)a,-’go(z, t) + bo(r,t)(p(z,t),

=1

225

where 0f = 0; and 0, = 0;; dc;.note the first and the second partial derivatives with respect

to the first variable z; and z;,z;.

The assumptions on the coefficients are as follows. For some exponent 0 < a < 1 we

have:

(A.1) the functions v(z,t,(),B8(z,t,() are continuous
for (z,t) in § x[0,1] and £ — measurable in ¢, and

there exist, a £ — measurable function 7,(¢)
and a constant Co > 0 satisfying for every
z,z' in Q,t,¢ in [0,1]

0<h@tOlS w0, [ w(O)n(dl) = Co,

V(2,8,€) = (', ¢, O < ()l = '|* + |t = ¢|°/%),

18(z,,¢) = B(z", ¢, )| < |z = 2'|* + |t — ¢'|*/2,
0<B(z,t,() <1

(A.2) the function 9(z,t,() is continuously differentiable

in z and there is a constant Cp > 0 satisfying
for every z,z’ R%,t,¢' in [0,1],¢ in E,

le = 2| < Col(z = 2') + #(3(2,1,¢) = 7(a",1, )],
Ir(z,t,¢) = 1", #, Q)| < Co(lz — 2’| + [t — ¢),

(A.3) for any (z,t,{) Qx[0,1] x E such that,
ﬂ(mvty C) # 0, the segment [2,2 + 7(zvtvC)]

is included in Q,

(A.4) there exist constants Cp > cp > 0 satisfying for

every z,z' mQtt in [0,1],
Zla'(x )l + E laij(z,8)] < Co ,

i=0 i,j=1
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d ' d
Y lai(z,t) — ai(e’, )| + 3 laij(z, 1) — ai(a,t)] <
. =0 ij=1
< Co(lz — 2| + |t = t1°/?),
d
3 aii(, t)6ik; 2 col€P,VE = (&, ... La) € R,
1,5=1
(A.5) there exist constants Cp > € > 0 satisfying
for every z,z’ in 9Q,t,¢ in [0,1],
d
Z |b;($,t)| < 007
i:;O )
3 bz, t) — bi(a", )| < Co(lz — 2| + |t = ¢,
:'=i0
S iz, t)ni(z) 2 co,
=1
where | - | denotes the appropriate Euclidian norm either on ® or ®¢ and n(z) = (ny(z),

...,nq(z)) is the outward unit normal to the boundary 0Q at the point z.
Notice that condition (A.2) implies that the change of variables X = z4 + ty(z,t,() is
a diffeomorphism of class C! in R¢ for any fixed ¢,¢' in [0,1],¢ in E. Assumption (A.3)

states that the integral operator I involves only the values of ¢ on 2, moreover

(5:8) Lp(a,t) = [ d8 [ +(2,8,) V(e +83(z,, O, 1)B(a,t, )m(dC),

where Vi denotes the gradient of ¢ with respect to z. Clearly, hypothesis (A. 1) ensures
the meaning of the integral operator (5.1), (5.5) for all Lipschitz functions ¢(z,t) in z.

Let us denote by G, or G5(Q x [0, 1}, R") when necessary, k >0, n > 1, 0 < a < 1, the
space of all continuous functions ¢(z,t,£,7) defined for z, in Q CR?and 0< r <t <1,
with values in R®" and such that the following define (5.6),..., (5.16) are finite.

(5.6) C(p,k) =inf{c > 0: |p(z,t,£,7)| < C(t — )", Vz,1,6,7},

(5.7) K(p, k) =inf{K >0: /n (lo(z,t, &, 7)| + lo(z, £, €, 7)|]dz <
< I{(t - S)l+§, V$1t1§,r}1

(5'8) M(‘Pv kv a) = MI(SO’ k1 a) + M2(‘Pv kv a)v

'If b; are only IISlder continuous then a singularity on the boundary dQ occurs for the second derivatives.

~— —r N N N N

RN
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(5.9) Mi(p,k,e) =inf{M; 2 0: |p(z,1,6,7) — ¢(=, ¢, 7)| <
< Myle - &'l + |t = ¢1)[(t = ) HEEA

At — T)-1+L—_gﬂ; Vz,z',t, ¢, ¢, T}

(5.10) M;(p,k,a) =inf{M; 2 0: |p(z,t,,7) - o(z, 1,6, 7| <
< My(jE — €1 + I — €13)(E — )R

e yaked=a
A(t - T,) b ? ’ Vz7t’ E’ £I’ T‘I T’}’

(5'11) N(‘P’ k’a) = Nl(‘Pa k’a) + N2(“’i kv"):

(5:12) Ny(p, k@) =inf{N; 20: [ [lp(z,t,2,7) = ol& sz
+|‘P(zv t,¢, T) - QO(Z, t'a E, T)”dz <
< Ny(Je = 2| + |t — #|B)[(t = 7) A

/\(t' -— T)-1+L;A) Vza zla ts t" E’ T}’

(5.13) Ny(p,k,a) =inf{N; >0: /0 (2.t 2,7) — @(=, 1, 2, )|+
+o(z,t,6,7) — (2,1, €, 7)dz <
< Ny(lg - €1° + Ir = 7 = 1) A
At =7y 52 Yz, 6,8, 7,7,

(5'14) R(‘P' ka a) = Rl(‘Pi k1 a) + R2(¢v ks a)’

(5:15) Rilipkyo) = inf{(Ry 20 [ Ip(Z,4,67) ~ w(Z1,67)]
J(2,2"dz < Rin®(t —7)™*" 7, VZ,Z',t,¢,7 and n > 0},

(5.18) Ro(p,k,0) = inf{Ry 2 0: [ li(=,t,2,7) = (2,1, 2')7)]
Jo(2,2")dz < Rym?(t — 7)"+'5%, Vz,t,2,2',7 and n > 0},

where the change of variables Z(z) and Z'(z) are diffeomorphisms of class C!'in ®¢, and

the Jacobian

det(VZ)| A |det(V2')| if |Z - 2|<nand Z,Z' €,
(5.17) J,,(Z,Z'):{l e( )l/\| e( )I 1 ] l_nan €
0

otherwise,
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det(-) means the determinant of a d x d matrix, VZ, V2’ stand for the matrices of the
first partial derivatives of Z(z), Z'(z) with respect to the variable z, and A,V denote the
minimum, maximum (resp.) between two real numbers.

Let ¢(z,t,£,7) be a Heat kernel type function, i.e. a continuous function defined for

z,6in Q C R? and 0 < 7 < ¢t <1, and such that for every z,z',t,t, £ &, 7,7 we have
(5.18) lp(z,t,€,7)| < A(t — 7)™+ exp[-Alz — €1°(t = 7)),

(5.19) |@(z,t,&,7) — @(z',t',&,7)] < O(lz — 2'|* + |t — ¢|#)x
x{(t — 7) " exp[—f|z — €2t — 7) 7]V

V(t — 7)) expl-6) — €17(' — 7)),

(5.20) |o(z,t,€,7) — @(z, £, €, )| < O(I€ — £1° + | — 7'|¥)x

x{(t — )"+ exp[—8|z — €)%t — 7) 'V

V(t — 7)1+ expl-6)z — £t - )7V},

for some constants A>A>0,0>60>0,0<a<1,k>0.
(5.21) C(p,k) <A, K(p,k) < 2nfAr,

Then ¢(z,t,y,s) belongs to the Green space G%, i.e. the infima (5.6),...,(5.16) are finite.

Moreover, we have the relation:
(5.22) M(p,k,a) <O, N(p,k,a)<2ri0s 1,
(5.23) R(p,k,a) < 2x%00-%.
For a given function ¢ in G¥, we denote by [¢]x,o the minimum of the values C(yp, k),
K(p, k), M(p,k,a), N(p,k,a), R(p, k,a) defined by (5.6),..., (5.16). It is clear that []sq

provides a norm for G¥, which becomes a Banach space. Notice that from any sequence of

functions {¢n,n = 1,2,...} in G¥ such that
C(pn, k) < Co and M(pp, k,a) < Mo, Yn=1,2,...

we can extract an uniformly convergence subsequence on z,{ belonging to Qand 0 <
7, t <1, t =7 > ¢, for any fixed ¢ > 0. Then G has a compact inclusion on the Frechet

space C° of all continuous functions ¢(z,t,&,7) is z,£ belonging to 2, 0 < 7 <t < 1.

~
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If p(z,t,€,7) is a continuous function, defined for z,¢, inQand 0 <7 <t <1, such

that for any z,z’,t,t, &, &, 7,7,
(5.24) |p(z,t,&,7)] < po,

(5.25) |p(z,t,€,7) — (', £ 6,7)| < pallz — /1" + [t — 1)
x[(t =)~V (' - 7)1,

(5‘26) |p(1‘,t, f» T) - p(:t, ts Elv T')l S P1(|£ - E’IG + |T - Tllg)x
x[t—7)"Fv (-

then the product by the function p on the space Gk is a continuous operation, more precisely

we have

(8.27) C(p, ¢, k) < poClep, k),

(5.28) K(py, k) < poK(p, k),

(5.29) M(pyp,k,a) < poM(p, k,a) +p1C(p, k) ,
(5.30) N(pp,k,@) < poN(p,k,) + 20 K(,K)
(5.31) R(pp,k,) < poR(¢, k,a) + pr K (p, k),

for any ¢ in GX. O

Let ¥(z,t,&,7) be a function belonging to G, for some fixed 0 < a <1, a<r <2

~“

(5.32) [¥]ra < 00,

the infima (5.6),..., (5.16) are finite for ¢ = ¥ and k = r. We consider the integral

transformation

t
(5:33) To(e,t,y,9) = [ dr [ v(z,t,&,7)0(E mv, ),
for ¢ in g{;.

Under the condition (5.32), the operator T maps the space G¥ into G**+", for any k > a,

more precisely we have the estimates
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(5.34) C(Tp,k+r) < 2d+2(r_l +E)[C(¥,r)K (¢, k) + K(,7)C(yp, k)],
for 0 < k< d,
C(Te,k+r1) < ﬁ(-, )K('/M')C(%k), for k> d,

(5.35) K(To,k +r) smg,gw,am, ¥), for k>0,

(5.36) M(Tp,k+r) < 2*?(r —a)™' + (k — @)Y [C(¥,7) + K(¥,7)+
+M(,r,a) + Ni(,r,a)][C(p, k) + K(p, k + Ma(p, k,a)+
Ny(py, k,a)], for 0 < k <d-a,

M(T, 0,k +r, 2 kzd—a)[N1(¢,r,a)+K(¢,r)]x
x[C(wp, k) + Mz(cp, k, a)], for k>d-a,

aka

(5.37) N(Tp,k +r,0) < A —5INi(¥, @) + K(,r)}x
X[K(p, k) + Na(, k, a)), for k > a,

(5.38) R(Tp,k +r+a) < f(C=2, %= a)[Rl(zb,r a) + K(v,r))x

x[K (¢, k) + Ry(p, k, )], for k > a,

where B(p, q) is the Beta function, i.e.
1
(5.39) A(p.g) = [ (1-0y'6v"'d6, p,g > 0.

The operator (5.1) and (5.2) are always considered as acting on the first variable z in
. In view of the properties (5.24),...,(5.24), it is clear that the operator D maps G into
Gk-1. 1t is also possible to prove that there exists a constant C; > 0 such that

(5-40) C(Ip, k) < C1C(Vy, k) ,

(5.41) K(Ip,k) < CK(Ve,k)

(5.42) M(Ip,k) < Ci[CVp, k) + M(Vip, k),

(5.43) N(Ip,k) < Ci[K(Vp, k) + N(V, k) + R(Vip, k)],

(5'44) R(I‘Pv k) < CI[I{(V‘P» k) + R(V()aa k)]1

S~ o~
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for any k£ > 0.

Let Go(z,,£,7) be the Green function associated with the parabolic second order differ-
ential operator 8;+ Ao and the boundary operator B. As proved in Garroni and Solonnikov
[11], such a function exists and satisfies the estimates (5.18),...,(5.19) for ¢ = Go,k = 2
and ¥ = VGo,k = 1.

Theorem 1.

- Under the assumptions (A.1),...,(A.5) the Volterra integral equation
t
(5.45) G(z,t,£,7) = Go(z,t,€,7) +/ ds/ﬂGo(z,t,z,s)(I— D)G(z,s,E,7)ds
possesses one and only one solution G in the Green space G3. Moreover we have

(5'46) G(zvtvE)T) = i Gk(zatag, T)’
k=0

t
Gi(z,t,6,7) = / ds /n Gol,t,, 8)(I = D)Gi1(z, 5,&,7)dz,

where the convergence is uniform over compact subsets of the domain for G and VG.

Furthermore, G has the semigroup properties

(5.47) G(=z,t,¢,7)= /nG(z,t,z,s)G(s,z,f,f)dz,Vs € (7,1),

(5.48) /ﬂ Glz,t,&,7)p(€)dE — () as (t—7) = 0,

uniformly in z, for continuous function ¢.
also, if ag = 0,5 = 0 then
(5.49) /n Glz,t,6,7)df = 1. O

In order to estimate the second order derivatives we go back to the operator T given
by (5.33). We assume that 3 satisfies (5.18),...,(5.20) for ¢ = ¢,k = 0, instead of (5.32),

i.e. essentially ¥ = V2Gy. Also 9 satisfies the following “cancellation” properties:

(5.50) |A¢(x,t,z,r)dz|+ |/n¢(z,t,§,,-)dz| < Kot — )21,
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(5.81) | [[blety5) 9 torldslt

[ [0 t,6,7) = (a1, 6,7zl <
< No(t =)z = 27+ [t = #1774 1€ = €17+ Ir = 77,

forevery0 < r'<rt<t<t'<1, ,{in Q, a = y+¢€, 7,¢ > 0, and some suitable constants
Ko > 0, No = No(¢) > 0. Under these conditions, there exist constants C1, Ki, My, N,
and R, depending on ¥, € such that

(5.52) C(V*Te,1) < Ci[C(p,1) + K(p, 1) + M(p, 1)),
(5'53) K(VZT‘Pi 1) S KI[K(SO’ 1) + N(‘Pv 1) + R(‘Pv 1)]_)

(5.54) M(VTo,1,7) < Mi[C(p,1) + K(p,1) + M(p,1,0)+
+N(p,1,7)

(5.55) N(V?Tp,1,7) < Ni[K(p,1) + N(p,1,a) + R(p, 1, )],
(5.56) R(V'Te,1,7) < Ri[K(p,1) + N(p,1,a) + R(p,1,a)],

where M(-,-,7), N(-,+7), R(:,-,7) denote the infima (5.8), (5.11), (5.14) with v in lieu
of a,and a =7 +¢, 7,6 > 0. )

Because in the assumption (A.5) we took Lipschitz coefficients we have no singularity
on the boundary for V2Go, 8:Go as proved in Garroni and Solonnikov [11]. Thus for
$p = V2Gp or ¥ = 8,Go we have (5.18),...,(5.20) with ¢ = ¥, k = 0, as well as the
cancellation properties (5.50) , (5.51).

In view of the equation (5.45) and the fact that (I — D)G belongs to Gl, we deduce
from the estimates (5.52),...,(5.56) that

5.57) G=Go+G', G'e€G3, VG'eG?, V?G',0,G' € G,
y

for any 0 < v < a. Hence, G is indeed a “classic” Green function since G! satisfies the

equation

(5.58) 3,G'(-,,&,7) + AG'(-,+,&,7) = F,, in @ x (7,1},
G\(t,-,¢,T) =0 as t =7, in Q,
BG'(-,-,£,7)=0 in 89 x (0,1],

— N
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for any fixed €, and Fo(z,t,6,7) = (I »—?D)Go(z,t,{,‘r). From this, we can obtain the

representation formula

(5.50) u(z,t) = [ dr [ Glz,t,6, (6 TIE + [ Gl 1,6 O)ual)de,
where u is the solution of the equation ‘

(5.60) du— Au=f, in Qx(0,1],
u(-,0) =uq, in @, Bu=0, on 902 x(0,1],

in the appropriated sense according to the degree of regularity of the data f, uo.

When the coefficients of the boundary operator B are only Holder continuous, we need
some more analysis (cf. Garroni and Menaldi [10]).

These results are extended to boundary conditions of Dirichlet type, i.e. “BG = 0" is
replaced by “G = 0” on the boundary 89 x (0,1]. It is clear that any interval (0, T) may
be used in lieu of (0, 1].

6. Asymptotic Results
Let Q be a bounded open subset of ¢ having smooth boundary 9. In this section we
assume that the coefficients of the operators A and B are independent of t > 0, i.e.

d d
(6.1) Ap(z) =~ 3 aij(2)5p(z) + 3 ai(2)0p(2)—

1,5=1 =1

= [Lle(z +2(2,0) - e(=)1B(z, Om(de),

d
(8.2) By(z) =3 bi(2)d7¢(z),

i=1
where for some exponent 0 < a < 1 the assumptions are:
(B.1) the function ¥(z,(),S(z,{) are continuous for
z in  and £ — measurable in ¢, and there exist
a £ — measurable function v¢(¢) and

a constant Co > 0 satisfying for every z,z’ in Q
0< 1= Ol <20, [ 10(C)n(d0) = o,
Iv(z,¢) = 7(=", Ol < v0(Q)l — =],

18(z,¢) = B(z", Ol < |z —a']*, 0<B(2,() <1,
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(B2) the function 7(z, () is continuously differentiable
in £ and there is a constant Cy > 0 ‘
satisfying for every z,z' in , ( in E,0<0<1
|z - 2’| < Col(z, —2) + 8[¥l(z, ) — v(=", Ol »
Ir(z,¢) = (=", Q)| < Colz — '],

(B.3) for any (z,¢) in @ x E such that f(z,() #0, the
segment [z,.t. +(z,¢)] is included in Q,

(B.4) there exist constants Co > ¢ > 0 satisfying for every z,z’ in Q

d d
Y lai@) + 3 la(2)] < Co,

=1 §,5=1
d d
" Y lai(z) = ai(z) + Y laij(z) — aij()| < Colz - 2’|,
=1 1g=1
d
Y aii(2)6i; 2 colél’, Y = (6n,-- -1 €a) € B,
1,7=1

(B.5) there exist constants Co > co > 0 satisfying for

every z,z’ in 99

zd: [bi(z)] < Co, ibi(x)ni(z) > co,

i=1 i=1
d
3 Ibi(=z) — bi(z")| < Colz — =),
=1

where | - | denotes the appropriate Euclidian norm either in ® or ®¢ and n(z) = (n,(z),
...,n4(z)) is the outward unit normal to the boundary 0 at the point z.

We want to consider the following three problems:

(6.3) du+ Au= f in 2 x (0,00),
u(-,0)= in @, Bu=0 on 99 x [0, 00),

(6.4) Au,\+z\uA=;g in Q, Buy=0 on 99
and

(6.5) Aug=g in Q, Bug=0 on 9Q
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where 9; denotes the paftia.l derivative with respect to the second variable, say t, the
functions f = f(z,t), g = g(z), z in §, t in [0, 0) and the constant A > 0 are given. We
wish to know under which circumstances the problem (6.5) possesses one or more solutions

and when we have
(6.6) u(-,t) = up as t — 0o, and uy — up as A — 0.

It is clear that these questions lead to the study of the invariant measures of the homo-
geneous semigroup generated by the integro-differential operator (6.1) and the differential
boundary operator (6.2).

By means of the previous section (cf. Garroni and Menaldi [10]) we can construct the

Green function G(z,t,£),z,y in Q,t > 0 , which solves the problem

(6.7) 8,G(z,t,€)+ AG(z,t,£) = §(z — £)6(t) in Q x (0,00),
B.G(z,t,£) =0 on 9% X [0, 00),
G(z,t,&) = 6(z—¢) as t = 0,

in an appropriate sense. Such a function admits the representation
(6'8) G(-T,taf) = Go(z,t, E) + Gl(.’t,t,f), Vz,£ € Q»t >0,

where Gy is the Green function corresponding to the principal part of A (the second order
differential terms) and the boundary operator B. The function G' belongs to G3, VG!
belongs to G2 and VG, 8,G" belongs to G} for any 0 < v < a, but only locally in t, i.e.
valid on every bounded set § x [0, T}, for any fixed T > 0.

From the results in Garroni and Solonnikov [11], we deduce that for i = 0,1,2,

(6.9) 1VGo(z,t,€)] < Coft A1)~ exp(—col 2241,

(6.10) |V'Go(z,t,€) — V'Go(a', ¢/, £)| < Mo(|z — =1+t - 1+

+]E = €1)(t A 1)~ 5% exp(—mo——t)+
+(t' A 1)‘“‘3”" exp(—mo"——"—lzl ;,EIP ),

for every z,z',£,£' in §, t,t' in (0, 00) and some constants Co, co, Mo, m¢ > 0. Moreover,

Calderon and Zygmund type estimate hold, i.e. for any 1 < p < oo there exists a constant
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Cy depending only on T'o and p, but not on T > 0 such that for any measurable function
f(¢,7)20,§in Q,7 > 0 we have

(6.11) /ordt L1 [ ar [ *Gu(a,t - 7, 0)5(6, )delPdz <
<G, [ dr [ 1€,

where the hessian V? can be replaced by 8, in (6.9), (6.10), (6.11), and A denotes the
minimum between real numbers.

" Let us redefine the function spaces G¥, or G¥(Q x [0, 00), R") when necessary, k > 0, n >
1, 0 < a < 1, as the space of all continuous functions ¢(z,,£) defined for z,§ in Q,t>0,
vwith values in ", and such that the following infima (6.12),...,(6.16) are finite.

(6.12) C(p, k) =inf{C 2 0: |p(z,,6)| < C(t A 1)+5%,Va, 1,¢}

(6:13) K(p, k) = inf{K 20 [ llp(z,t,2)] + lp(z,t, O)ldz <
< K(t A 1)_1+§$ sztvg}a

(8.14) M(p,k,a)=inf{M > 0: |p(z,t,£) —p(z',',€)| <
SM(jz -2+t -t + |6 - €)%
x[(E A1) L (¢ AL TR vz, 2 1,8, 6, ')

(6.15) N(p,k,@) =inf{N 2 0: [ [lp(z,t,2) - (¥, 2)|+
+Hp(z,1,6) — 0(z, 1, )] < N(|z — 2|7 + |t — '+
HE = E1O(EA )T + (¢ AL)THET, Ve, 8,6,

(6.16) R(p,k,a) =inf{R 2 0: [ [lp(Z,t,6) - w21, )l+
Ho(z,t, Z) — (2, t, 2| Jn(Z, 2')dz <
< Rp*(tA1)™"5%, Vz,t, 2,2’ and 1 >0}

where the change of variables Z(z) and Z'(z) are diffeomorphisms of class C! in R, and

the Jacobian

(6.17) 12,2 = { | det(VZ)| A |det(VZ') if |Z—2'|<n and Z,2'€ D,
17) (2,2 =
0

otherwise.

Based on the semigroup properties
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(6.18) G(z,t+5,6) = [ G(z,t,2)G(2,5,6)ds
for every z,y in ,t,s > 0,

(6.19) w(2) = lim [ G(a,t,)0(E)de,
uniformly in z belonging to Q and for any

continuous function ¢ in Q,
(6.20) ./nG(z,t,ﬁ)df= 1, for every z in Q,t >0,

we can prove the

Theorem 6.1
Under the assumption (B.1),...,(B.5) the function G in (6.8) is such that

(6.21) G* € G2, VG' € G2, VG, 8,G' € G}, V< a,

ie. the infima C(V'G),3 — i), K(V'GY,3 — i), M(V'G",3 — i,a), N(V'G,3 — i,a),
R(ViG',3—i,a),i =0,1,and C(V?G',1), C(8,G*, 1), K(V*G*,1), K(9, G, 1), M(V?G',1,7),
M(8,,G',1,7), N(V?*G',1,7), N(8:G',1,7), R(V?G',1,7), R(8:G*,1,7), 0 < 7 < a, are
finite. The Green function (6.8) is positive, precisely, there exist two constant 0 < 7,6 <1

such that
(6.22) G(z,t,£)>n>0, Vz,£€Q,t>6>0.

If the oblique boundary condition given by the operator B are changed into homogeneous
Dirichlet boundary conditions then (6.22) holds only for z in Q, dist (z,09) > ¢ > 0, for
any e >0. O

Therefore, the solution of the para.bdlic equation (6.3) is given by -

t
(6.23) u(z,t) = [ dr [ G(z,t -7, €)f(6 )k,
according to the previous section. Then, for (6.4) we should purpose

(6.24) ux(z) = /o = e~ /n G(z,t,€)g(E)dE, A> 0.

Let us denote by
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(3;25) (fla = inf{C >0:|f(z,t) - (=t £ C(|lz — ='|* + |t — t/|*/?)
and |f(z,t)| < C, .Vz,2' € Q,¢,t' € [0, T}, ‘

(6.26) [g]a =inf{C > 0:|g(z) — g(z")| < Clz — |
and |g(z)| £ C, Vz,z’' € 0},

(627 Iflhz = ([ dt [ If(z,t)Pd),
(6:28) lgl, = (  lo(e)Pda)'

and

.' ) TAl
(©.20) Il =([ @t [ If(zt)pdz) o+
+sup{( /o'ds [1f(z.t = o)pazytr : 1<e<T),

forany t >0 and 1 < p < oo.

Theorem 6.2
Let the assumptions (B. 1),...,(B.5) hold. Then the function (6.23) and (6.24) are the

solutions of the equations (6.3) and (6.4) respectively. Either classic or weak solution,

according to the hypotheses made on f and g. Moreover, we have the following estimates:
(6.30) (T A1) *fulaz +(T A ) Vulaz < Clfloz + I flh2),

(6.31) [V2ul,r +[0:, ulyr < Co([flat + | fllT),

(6.32) [ur]a + [Vurla £ C([g)o + A9,

(6:33) [V2u,l, < Co(lgla + A~llgll),

forany 0 <y < a,t>0,12> X > 0 and some constants C,C, independent of f,T and
90

(6.34) (T AL)?[lul, Dllp + (T ADTNVu(, Dllp < Colll fllyr + 1 Fll7),

(6.35) [|V2ullp,r + 10iullpr < Mp(Ifll5.r + I fll17),
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(6.36) [lurlly + ['Vusll, < Cylllglly + A~ lglly),

(6.37) V2l < My(loll + 3"lgl),

where the constants C,, M, axe'independent of f,T and g, A; and
(6.38) nl|fllir < lu(z,T)| < T[flor, VT 21,

(6.39) nllgll < Aur(2)| < [glor YO < X<1,

for any z in § and some constant > 0 independent of f,t and g,A. O

Let us now present a result relative to the adjoint equation

(6.40) A*m=0in Q, B*m =0 on 9%,
dr =1
m > 0, ‘/nm(z) z =1,

which is actually not defined (cf. Bensoussan et al. [4]).

Theorem 6.3 A
Let assumptions (B. 1),...,(B.5) hold.. Then- there exists a unique Hdlder continuous

function m(-) in §, with exponent a, such that

(6.41) m(€) = A /0 * e Mat /n G(z,t, €)m(z)dz,
/nm(:r)dz =1, VEe,)>0.

Moreover, there exists a positive constant v such that

(6.42) m(¢§)>v >0, VEeQ,

and for every ¢t > 1, g in L}(Q), z in ,

(6:43) | [ Gl=,t,6)9(6)dt — [ 9(m(E)dk] < Cexp(=wt)lglh,
for some constant C independent of ¢, g, z. F‘urthe; more,

(6.44) m(£) = /n G(z,t,6)m(z)dz, VE€Q,t>0. O
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Theorem 6.4
Under the assumptions (B.1),...,(B.5) the limit problem (6.5) possesses a solution
unique up to an additive constant if and only if

(6.45) /ﬂ g(z)m(z)dz =0,

where m(-) is the function defined in Theorem 6.3. Moreover, the solution of problem

(6.5), satisfying (6.45) with u, instead of g, admits the representation
(6.48) uo(z) = [ dt [ G(at,€)9(6)de, Vo € &,

and

(647) uo(z) = lim [~ eMdt [ G, t,€)0()dt, vz €

Furthermore, the class of functions to which ug(-) belongs is determinate by the following

estimates according to how smooth is the data g(-),
(6.48) [uoa + [Vuoa < Clglo,

(6.49) [Vugla < Cy[glay YO <7 < a,

(8.50) [luoll, + [Vuolly < Csllglls

(6.51) [|Vuoll, < Myllgll;» V1< p < oo,

where the constants C, C.,, C,, M, are independent of g. O
Instead of the problem (6.5) we consider:

(6.52) find a function v = v(z) and a real number = such that
Av+r=g in , Bv=0 on 9Q. -

If u is an integrable function in 2 then we set
(6.53) m(u) = /n u(z)m(z)dz,

where m = m(z) is the invariant density function given in Theorem 6.3 by (6.41), (6.44).

Theorem 6.5
Let the assumptions (B.1),...,(B.5) and

.
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(6.54) f(-,t)— g in LY(R) as t = o0

hold true. Then the problem (6.52) possesses a solution (v,7) with = = m(g) and v
unique up to an additive constant, in the class of functions determinate by the estimates
(6.48),..,(6.51) for v instead of ug. Moreover, denoting by u(-,t) and u, the solutions of
problems (6.3), (6.4), we have »

(6.55) uy —m(uy) =wy — vo=v—m(v) as A =0,
and
(6.56) u(:,t) — m(u(-,t)) = w(-,t) — vo as t — 00,

where the convergence is in the topology derived from the estimates (6.48),...,(6.51) with

wy, in lieu of ug, uniformly in 0 < A <1, and
(6.57) [w(-,t)]a + [Vw(-,t)]a < Csup{[f(-,8))o: 0<s< t},
(6.58) [V?uw(:,t)]y < Cysup{[f(-,s)l0 S8 < t},

for any ¢t > 1,0 < v < a and some constants C, C,y independent of f and ¢,

(6.59) [[w-,t)ll, + IVw(, &)l + V2w ()i, <
< Co(llflly e+ sup{llfC,9)h: 0 S s < t}),

where the constant C, is independent of f and t, for any 1 <p < oco. O

The proof of all the above results can be found in Garroni and Menaldi [10).

Notice that as a consequence of the results for the parabolic problem we obtain similar
results for the elliptic equation.

The key point in the above theorems is the use of the estimates on the Green functicn to

deduce a priori estimates for the solution of the second order integro-differential equations.
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