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REMARKS ON ESTIIdA TES FOR THE GREEN FUNCTION 

JOSE LUIS MENALDI 

Introduction 

The main purpose of this paper is to give a comprehensive motivation, with most of 

the key ideas used in the recent work by Garroni and Menaldi [10], on the construction of 

the Green function G( x, t, e, T) for an integro-differential initial boundary value problem, 

when the differential operator is a second-order parabolic operator not in divergence form 

ocr.p(x, t) + Aor.p(x, t) + Dr.p(x, t), 
Ii 

Aor.p(x, t) = - ~ 4ij(X, t)oijr.p(x, t), 
i';=1 

Ii 

Dr.p(x,t) = ~ 4i(X, t)Qir.p(x, t) + ao(x, t)r.p(x, t), 
i=1 

where Oh/Jf and Of; denote the partial derivatives int, Xi and Xi,Xj, respectively. The 

boundary operator has only Holder continuous coefficients 

Ii 

Br.p(x, t) = ~ bi(x, t)Qir.p(x, t) + bo(x, t)r.p(x, t), 
i=l 

and the integral operator is 
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where the Radon measure 71"( () is singular when '1 = o. 
Integro-differential operator of this type arise in control (or game f problems with ~tate 

processes modelled by a diffusion with jumps. Some fundamental studies on this subject 

can be found in Bensoussan and Lions [3], Gikhman and Skorokhod [12], Komatsu [15], 

Lepeltier and Marchal [16], Stroock [18], among others. 

The diffusion processes with jumps and reflected on the boundary have been studied 

in Anulova [1,2], Chaleyat-Maurel et al. [5], Menaldi and Robin [17] under regularity 

hypotheses on the coefficients. 

The Green function is constructed as a solution of the Volterra integral equation 

G(x, t, e, T) = Go(x, t,e, T) + l' £is 10 Go(x, t, 8, y, )(1 - D)G(y,8, e, T)dy, 

where Go is the Green function for the initial boundary value problem associated with 

Ao, B as constructed in Garroni and Solonnikov [ll]. The solution G is expressed in the 

form of a series 
00 

G(X,t,e,T) = LGk(X,t,e,T), 
k=O 

where G k is the iterated kernel 

As far as we know the Green function has been constructed for differential problem 

(e.g. Eidel'man [7], Friedman [9], Ir'in et al [13], Ladyzhenskay et al. [14]), only re­

cently some attention has been addressed to integro-differential problems (cf. Garroni and 

Menaldi [10]). Usually in these problems the starting point is the green function and/or 

the fundamental solutions for simple problems (e.g. constant coefficients). 

The most delicate point of this construction is the exact evaluation of punctual and 

integral estimates far the iterate kernel Gk • There, the exponential heat-kernel 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

\ 
) 

) 

Ix el2 
exp( ----), ) 

t-T 
) 

or a suitable transformation of it, plays an essential role. ) 

Let us point out to this respect that the heat-kernel used to estimate Go disappears 

during the iterations, due to the presence of the. nonlocal integral operator I. This suggests 
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the use of convenient function spaces in which the integral operator work and to which the 

iterate kernel G" belongs. 

The paper is organized as (ollows. In Section 1 we give an explicit calculation of the 

fundamental solution associated with the integro-diiFerential operator 

1" . 
o,cp(x, t) - 2 E Oijcp(x, t) - A[cp(X + 'Y, t) - cp(x, t)], 

i=l 

where oX and 'Y are constants. Then, in Section 2 we point out the essential properties that 

will allow us to build the fundamental solution for an integral operator of the type 

lcp(x,t) = k[cp(x +'Y«(),t) - cp(x,t)]lI'(d(), 

lI'(E) = k lI'(d() < 00. 

However, in Section 3 we study the Green functions for Dirichlet and Neumann boundary 

conditions. We notice there that even for the simplest case (i.e. Wiener and .Poisson pro­

cesses) only estimates up to the first derivatives of the kernel are obtained. To end this 

motivation, in Section 4 we present a quick CQnnection with the probabilistic counterpart. 

Next, in Section 5 we state the assumptions and the main results relative to the Green 

function for parabolic second order integro-difFerentialoperator with oblique boundary 

conditions on a bounded domain. Finally, in Section 6 we state the main results corre­

sponding to the asymptotic-elliptic case. 

1. Wiener and Poisson processes 

Let us consider two particular Markov-Feller processes in the space ~n, (w(t), t ~ D) anQ 

(p(t), t ~ D). The first is a standard Wiener process on the canonical space C([D, 00 ),lRn) 

and the second is standard Poisson process on the canonical space D([D, 00), lRn). Denote 

by P the probability measure on product sample space C([D, 00), ~n) x'D([D, 00), ~") which 

makes the processes independent each of other. 

Recall that D(!D, 00), lRn) (resp. C([D, 00, ~n» denotes the space of right continuous 

functions w from [D,oo) into lRn having left-hand limits (resp. continuous functions). No­

tice that any function in D([O, 00), ~n) is locally bounded and has. at most countable many 

points of discontinuity. The space C(!O,oo),lRn) (resp. D([O,oo),~n»endowed with the 
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local uniform convergenc~ (resp. with the Skorokhod topology) becomes a completesepa­

rable metric space. 

H we denote by E{·} the mathematical expectation w.r.t. the canonical probability 

measure P we have 

E{f(x+w(t))} = Jrtnro(x-y, t)f(y)dy, t>o,xelRn 

Ixl2 
(1.1) ro(x, t) = (27rt)-i exp( -2't), t > 0, x e lR 

and 
o 00 (At)'" 

E{f(x + p(t))} = e-'\c ~ """k! f(x + k-y), t > 0, x e lRn 

where ..\ > 0, -y e lRn are the characteristic parameters of the Poisson process. 

Because the processes are independent, 

00 

E{f(x + wet) + pet))} = L E{f(x + wet) + p(t))lp(t) = k-y} x 
10=0 

00 (At)'" 
xP{p(t) = k-y} = L( f ro(x + k-y - y, t)f(y)dy)e-,\llT. 

10=0 JRN • 

This proves that the transition density function corresponding to the Feller-Markov process 

(w(t) + pet), t ~ 0) is 

However, as soon as we pretend to repeat this simple computations for some small variants 

of the standard Wiener and Poisson processes we get troubles. For instance, replace 

(w(t),t ~ 0) by a standard reflected Wiener process in a half-space, or add a stopping 

time at the exist of a domain n, or allow (p(t), t ~ 0) to have a Levy measure different 

from the Dirac measure,. or even think how to deal with a general jump diffusion process. 

From this, we have at least an explicit expression for the transition density functions 

of a simple jumps diffusion process, namely, a standard Wiener-Poisson process. 

The equivalent, analytic counterpart will give us some more information. 

Denote by Do the Laplacian operator, in lRn by I the following jump operator 
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It is clear that !~ and i are the infinitesimal generators of the abov~ Wiener and Poisson 

processes. 

The function r(x,t) given by (1.2) solves the equation 

(1.4) (81-!~-I)r=D in lRnx(-oo,+oo), 

r = 0 in lRn x (-00,0], 

where D is the Dirac measure at the origin in lRn x [0,00). Thus, the function r is' a 

fundamental solution relative to the op~rator 81 - !~ - I, 

In order to solve this problem, we may use the fact that r o, given by (1.1), satisfies the 

equation 

(1.5) (81-i~)ro=D in lRnx(-oo,+oo), 

ro = 0 in lRn x (-00, OJ. 

A classic argument is to propose 

where * denotes the convolution in )'R" ,x lO, 00), i.e. 

(ro*F)(x,t) = r ds { ro(x - y,t - s)F(y,s)dy. Jo J.R.n 

In (1.6), the function F is unknown and so is r. We compute 

(81 - ~~)r = D + F, i.e. F = IT 

which together with (1.6) provide an integral equation of Volterra type for th~frinction r, 
namely 

(1. 7) r = r 0 + r 0 * IT . 

Similarly, we compute 

to get the equation 

1 
(81 - -~ - I)r = D - Iro + F - ITo*F 

2 
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To' solve (1.7) and (1.~) we set 

and 

F = Iro, Flc+l = Iro * FA" k = 0,1, ... 

Computing 

t 2 
r1 = tIro, r2 = 2!I2ro, ... , 

" " . I"cp(x) = L(i)(-l)"-'cp(x + i;)>''' 
;=0 

Hence 

co 10 (k) .(>.t)" 
(1.9) rex, t) = t;t.;( i )( -l)"-'T!ro(x + h', t), 

which reproduces (1.2). 

This calculation does not go further but, it gives us a way of approaching the problem 

by studying the structure of the function r in formula (1.2). 

2. Essential Properties 

Let us recall some properties of the fundamental solution ro(x, t) given by (1.1). To 

the purpose, we consider the function 

(2.1) e(x, t, r, c) = rf exp( -cl=f), "'It, r, c > 0, x E )R". 
t 

Based on the elementary inequality for any r, c, e: > 0 there exists c > 0 such that 

(2.2) Ixlre(x,t;r,c) ~ Ce(x,t,O,c-e:), \It> O,X E )R", 

we obtain for any i = 0, 1,2,3,4 and some Co, Co > 0, 
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(2.3) IV'~fo(x,t)l:5 Coe(x,t,n + i,co), \:It> O,x E lRn , 

where V'~ represents all the derivatives in x of the i-order. Also, we can replace V';i by A:, 
i.e. two differentations in x is equivalent to one diiferentation in t. Moreover, by means of 

expressions of the type 

fo(x, t) - fo(x', t) = fo\x"': x') . V'fo(x + 8(x - x'), t)d8 

and 

Ifo(x, t) - fo{x', t)1 :5 (Ifo{x, t)1 + Ifo(x', t)l)l-"lfo(x, t) - fo(x', t)I", 

for 0 < Q < 1, we deduce for any i = 0,1,2 and some Mo, mo > 0 

(2.4) IV'ifo(x, t) - '\7ifo(x', t')1 :5 Mo(lx - x'I" + It - t'I,,/2)X 

x[e{x, t, n + i + Q, mo) + e(x', t', n + i + Q, mo)], 'Vt, t' > 0, x, x' E lRn , 

where actually either x = x' or t = t'. Again '\72 can be replaced by OJ. 

We would like to generalize the analytic computation of the fundamental solution 

f(x, t). So, let us look at each term of the series (1.9), 

This function has several singular points, namely x = -j-y, t = 0 for j = 0,1, ... , k. Then 

we cannot expect to have bounds in term of the function e{x, t, r, c) given by (2.1). Since 

the propagation of singularities is only in the variable x, we should seek for properties 

which are not pointwise in the variable x. For instance, 

. ,X1e Ie (k) . 
IV"fle{x, t)1 :5 k! foe i )tIeIV''fo{x + j-y, t)1 

gives two estimates 

( ) I i ( I (2,X)1e !W:2!. 
2.5 V'fkx,t) :5kf""cor 2 , 'Vt>O,xElRn , 
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where i = 0, 1,2,3,4 and 

Ko = Co Jr exp( -coII712)dl7' 

and Co, Co are the same constants of (2.3). Notice the change of variable tTl = x used to 

obtain (2.6). Similarly from (2.4) we obtain the estimates 

)k . 
(2.7) IVirk(X, t) - Virk(X', t')1 ::; (2:! Mo(lx - x'Jo + It·- t'lo/2 x 

x(t- nt,*,,,-2k + t'- nt. t,,,-2», "It, t' > 0, X, x' E ~n, . 

f IVirk(x -1/, t) - ViI\(x' - y, t')ldy ::; (2k),t No(lx - x'ia + It - t'la/2) JRn . 
x(t-'t",-2k +t,_'t\-2.), Vt,t' > O,X,X' E ~n, 

where 

and M o, rno are the same constants of (2.4). Notice that t.he integration is ~n help us to 

cancel a singularity of the type rf. 

Now, consider an integral operator of the form 

where 7r is a finite measure on E and-y(z) is measurable, i.e. 

(2.10) 7r(E) < 00 
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We should study how the estimates (2.5), ... ,(2.8) changes when an integral operator of the ) 

form (2.9) is used. To that purpose, let us denote by C(<p,2k),K(<p,2k),M(<p,2k) and ) 

N(<p, 2k) the infimum of the multiplicative constants that can be used in the left-hand side ) 

of the estimates (2.5), ... ,(2.8) when <p replaces Virk. For instance C(I{J, k) is the infimum 

of all constants C > ° satisfying 

It is clear that from (2.5), ... , (2.8) we have 

C(virk, 2k - i) ::;(2:r Co, 

.lI1(Vi rAa 2k _ i) ::; (2~)k Mo, 

T."("ir 2k . ') (2,\)k T." ~\ v k, • - t ::; "'k!' ~\ 0, 
) 

) 

) 

) 

) 
/ 
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Notice that n and Q are fixed. 

In order to find a fundamental solution for the operator 8t - !~ - I, where I is now 

given by (2.9), we may solve the Volterra equation 

for the unknown r. To that end, we should evaluate the iterate terms 

For instance 

r 1(x,t) = "ds f ro(x-y,t-s)dy f[ro(Y+"Y«(),s)-ro(y,S»)1T«(), h k. h 

we exchange the order of the integrals in !Rn and E to obtain 

after using the equality 

ro(x+z,t)= f ro(x-y,t-s)ro(y+z,s)dy. JRn 
This is 

r 1(x, t) = tIro(x, t). 

For k 2: 2, we use the fact that I and * commute, 

Then 

which gives 

and in general 
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where lie denotes the k-i"teration (power) of the integral operator I defined by (2.9). 

On the other hand, it is easy to check that 

C(lcp,j) $ 21r(E)C(cp,j), 

K(lcp,j) $ 21r( E)K( cp, j), 

M(lcp,j) $ 21r(E)M(cp,j), 

N(lcp,j) $ 21r(E)N(cp,j), Vj 

Hence, we deduce 

C(Vir le,2k - i) $ [21r(E»)1e c(vir _.) 
k! 0, I, 

K(virle,2k - i) $ [21r(E»)1e K(vir _ ') 
k! 0, I, 

M(virle,2k - i) $ [27r(E») Ie M(vir _ ') 
k! "0, I, 

N(virle,2k - i) $ [27r(E»)1e N(Vir _ ') 
k! 0, I, 

which proves, for instance, the convergence of the series 

and the estimates 

co 

r(z, t) = E rle(Z, t) 
/cao 

c(vir, -i) $ exp(21r(E»C(viro - i) 

K(vir, -i) $ exp(21r(E»K(viro, -i) 
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and similarly for M(Vir, -i), N(Vir, -i). Notice that A = 1r(E) when 1r is a Dirac ) 

measure. ) 

Until now, we have construct a fundamental solution for the operator a, - !.6. - [, 
with the I given by (2.9). Estimates of the type (2,5), ... , (2.8) still hold true, with A 

replaced by 1r(E),' However, we have not seen precise use of the estimate (2.7), (2.8) for ) 

i = 0,1,2. Thia is because they are consequence of (2.5), (2.6) for i = 1,2,3,4. Remark ) 

that V2i can be replaced by a;. We will see the utility of (2.7), (2.8) as soon as we pretend ) 

to use this approach for variable coefficients in the integrci-differential operator. At least ) 

) 

) 

) 

) 
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for the integral operator I, it will be necessary to include the case of variable coefficients 

'Y = 'Y(x, t, z) in (2.9) if we want to consider bounded domain. An assumption of the type 

x +'Y(x,t,() E n, 'Ix E n,t > 0,( E E 

is necessary to localize the integral operator I to a region n of ~n. 

Remark that the way in which rex, t) converges to 8 as t goes to zero has not been 

yet specified. We may consider the convergence to take place in the Schwartz distribution 

sense of v'(~n), i.e. 

(2.12) iR" rex, t}p(x )ds -+ ",,(0) as t -+ 0 

for any test function !po 

3. Dirichlet and Neumann problems 

In a half-space ~+ = !Rn-l x (0,00) let us consider the integro-differential operator 

at - t~ - I, where I is given by (2.9) with the coefficient 'Y(O satisfying 

Under this conditions, the integral operator I is meaningful for function defined only on 

~+ 

The Green function G(x, xn,t,en),x = (x,x n) in ~+, t,en > 0 solves the equation 

(3.2) (at - t~ - I)G(x, X n, t, en) = 6(x)6(xn - en)6(t) in ~+, t > 0 

G(·,·,t,en) = 0 for t < 0, 

where again 6 denotes the Dirac measure at the origin, and a boundary condition, either 

the Dirichlet boundary condition 

or the Neumann boundary condition 
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Notice that the operato~ lA + I is acting on the first variable, i.e. x = (x, x,,), and a" 
m~ans the parti;il derjvative w.r.t. the variable x". The variable eft is only a parameter 

for the equatio~. Whe~ necessary, we will denote the Green functions GD and GN for 

Dirichlet and Neumann boundary conditions, respectively. 

An usual. way of constructing the Green function is to express it as the sum of a 

fundamental solution plus something else. To do so, it is necessary to find the so-called 

Poisson function. The Poisson function P(x,x",t),x == (x,x,,) in lR",t > 0, solves the 

equation. 

(3.5) (at -;A - I) P (x,x",t) = 0 inlR+., t> 0, 

P(·,·,t) =0 for t<O 

and either the Dirichlet boundary condition 

(3.6) pD(x, x"' t) _ 5(x)5(t) as x,. _ 0 

or the Neumann boundary condition 

(3.7) -a"pN(X, x,., t) - 5(x)5(t) as x" - 0 

Again, we will distinguish pD and pN when necessary. Because the equation (3.5) has 

constant coefficients, it is clear that 

and that one should have 

Let us recall this procedure for the Laplacian operator. The reflection principle allow 

us to construct directly the Green function for the differential operator at - tA in lR+. 

with Neumann boundary conditions. That principle states that a one dimensional Wiener 

process starting from zero, has the same probability of becoming positive as becoming 

negative. Analytically, that means that the fundamental solution is a even function, as 

easily checked from the explicit expression (1.~). This amounts to show that 
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where ro(i, x .. , t) = ro(x,t) given by (1.1), satisfies the properties 

(3.9) (8, - iA)GS'(i, x .. , t, e .. ). = c5(i)c5{x .. - e .. )c5(t) in R+, t > 0 

GS'(-,·, t,e .. ) = 0 for t < 0, 

8 .. GS'(·,x .. ,·,e .. ) ...... 0 as x ........ O. 

Then 

and 

Notice that x E ~ .. -t, x .. , e .. , t > O. 

219 

In order to obtain the Green function for the Dirichlet boundary conditions, we notice 

that 

Hence, the function 

satisfies the equation 

(3.13) (8, - iA)Gf(x, x .. , t, e .. ) = c5(i)c5(x .. - e .. )c5(t) in R+, t > 0 

Gf(-, ., t, e .. ) = 0 for t < 0, 

Gf(·,x .. ,·,e .. ) ...... O as x ........ O. 

The Green function Go(i,x",t,e .. ) for Diri~et as well as for Neumann boundary 

conditions possesses singularities similar to those of the fundamental solution ro(x. t}. 

For any i = 0,1,2,3,4 and some Co, Co > 0 

(3.14) IV~Go(i - e, x .. , t, e .. )1 $; Co e(x - e, t, n + i, co), 

Vt,x .. ,e .. > 0, x,e E ~ .. -t, 
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. 
where e(·,·,·,·) is the ~ction (2.1), x = (i, x .. ), e = (e, e .. ), and again V!' can be replaced 

by a;. Estimates similar to (2.4) also hold for Go. In view of (3.10) and (3.11) we deduce 

the corresponding estimates for the Poisson function. 

Actually to prove the estimate (3.14) for the Green function, we notice that 

and the equalities (3.8), (3.12) together with the estimates (2.3) for ro(x, t), give (3.14). 

. Notice that 

, 
(3.15) G~(i,x .. ,t,e .. » 0, 'Vi e ~ .. -l,X .. ;::: O,t,e .. > 0, 

and 

To construct the Green function G(i,xn,t,e .. ) corresponding to the integra-differential 

operator at - ia - I, with I being given by (2.9) under the assumptions (2.10) and (3.1), 

we propose 

where F is an unknown function and * denotes the convolution in the i, t variables, i.e. 

Go(i,.,t,·)*F(i,.,t,.)= f'd,s f Go(i-y,.,t-s,.)F(Y,.,s,.)dY. Jo JRn-l 

This gives the following Volterra type equation for the unknown Green Function G, 

i.e. 

(3.19) G = Go + G1 + ... + G,. + ... , and for k = 0,1, ... , 

Gk+l(" xn, ·,.en) = 1000 Goh xn"'~) * IGkh~,·, en)d~. 

For the sake'of simplicity, we consider the one dimensional case, n = 1, x = Xno e = en. 
Then, the iterate Gle takes the form 

) 

) 
) 

) 

) 

) 
'\ 
) 

\ 
) 

) 

) 
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Our purpose is to show the convergence of the series (3.19). Notice that an explicit 

expression like (2.11) does not hold true now. However, the technique can be used. 

Let us defined the space of continuous functions <p(x,t,e), x,t,e in (0,00) satisfying 

(recall n = 1) 

for some constants 0 0 , Ko > O. Denote by SIc, k = -1,0, ... , such a space and by 

0(<p,2k),K(<p,2k) the infimum of constants Oo,Ko that make (3.21), (3.22) to be sat­

isfied. It is easy to check that 

(3.23) O(I<p,k)::; 2'1r(E)0(<p,k), Y<p,k, 

K(I<p,k)::; 2'1r(E)K(<p,k), Y<p,k, 

and that Go belongs to So. To show that G" belongs to SIc we proceed as follows: 

G"+l(x,t,e) = lot ds looo Go(x,t - s,y)IG,,(y,s,e)dy + 

+ il ds looo Go(x,t - s),y)IG,,(y,s,e)dy = I + II, 
2 

III ::; O(Go,O)K(IG",k) lof(t-s)-ts"dS, 

IIII ::; K(Go,O)O(IG", k) l(t - s)-ts"ds 
2 

and by means of the changes of variables s = to we get 

1 

III ::; t-t+("+llO( Go, O)K(IG", k) f (1 - O)-t O"dO 
o . 

IIII ::; ct+("+ll]{(Go,O)O(IG",k) lo-t+kdO, 
2 

which give 



Similarly. if we integrate in:l: or e then 
. 2 

(3.25) K(G1r+l.2k+2).S iK(Go.0)K(IGAr.2k). 

Combining (3.23) •...• (3.25) we deduce 

C(GAr+1.2k + 2) + K(G1r+lt2k + 2) S 
r 

S i[C(GAr.2k)+K(GAr.2k)1. Vk. 

where 

r = 4'1f(E)[G( Go. 0) + K( Go, 0)], 

i.e. 
rAr 

(3.26) C(G'+1,2k + 2) + K(G1r+lt2k + 2) S kl' Vk = 0,1, ... 

It is clear that the until now, we know that the series (3.18) converges. Moreover each 

term GAr belongs to the space S, and estimate (3.26) holds. However, no convergence 

of the derivative has been yet established. The above procedure go through for the first 

derivative in :I:,'the difference is that (3.26) becomes 

where 
filAr 

.• GAr = 4'1f(E)[C(VGo, -1) + K(VGo, -1)] Jo (1 - 9)-29 d9. 

This ensure also the convergence of the first derivative in :1:. 

4. Stochastic Representation 

Let (w(t),t 2! 0) and (P(t"),t 2! 0) be a standard Brownian motion on the canonical 

space C([o,oo),~n) and a Poisson (random) measure with Levy measure m(·) gives by 

(4.1) meA) = 'If({( E E: 1«) E A}), 

where 'If is a finite.measure on E and 1«) is measurable. The Poisson measure (p(t, .), t 2! 

0) defines a Markov-Feller process with pathsin D([O, (0), ~n). Denote by P the probability 

measure on the product sample spaces C([O,oo(,lRn) x D([O, (0), Rn) which makes the 

standard Wiener process (w(t), t 2! 0) independent of the ~oisson measure (p(t,·), t 2! 0). 

Setting 
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(4.2) X(t)=x+w(t)+ fo'k ,,«()dp(s,(), t~O 

we have cOnstructed a Markov-Feller process (X(t), t ~ 0) with right continuous (having 

left limits) paths under the probability measure P on D([O, 00), Rn), where P is the image 

probability measure of P through X(.) and X(t) = w(t), i.e. the identity mapping. 

This Markov-Feller process (X(t), t S 0) has the transition density function 

(4.3) P(X(t)eBIX(s)=x)= !sr(x-y,t-s)dy, 

'fix e Rn,O < s < t,B e B(Rn), 

where r(x, t) is the fundamental solution of Section 2, i.e. 

00 til 
(4.4) r(x,t) = E k!I"ro(x,t), 

with ro(x, t) being the Gauss kernel (1.1) and I" the k-iteration of the integral operator 

The associated semigroup, (~(t), t ~ 0) is given by 

(4.1) L = t~ +I, 

where ~ is the Laplacian. 

In order to interpret the Dirichlet problem in R+., we eonsider the stopping time 

(4.8) T = inf{t ~ 0: X(t) ¢ R+.}. 

The new Markov-Feller process (XD(t), t ~ 0) obtained by stopping X(t) at the time T, 

i.e. 

(4.9) XD(L) = {X(t) if 0 s t S T 

X(t) if t ~ T, 

gives a semigroup 

(4.10) ~D(t)f(x) = E{J(X(t 1\ T»IX(O) = x}. 

The infinitesimal generator still being (4.7) but the transition density function is the Green 

function with Dirichlet boundary condition, i.e. 
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(4~11) ~D(t)f(z) = 1. '[rei ~ y;z" - y", t) - rei - y, z" + y", t)l/(y)dy, 
, -: 

where z = (i,z,,),y = (i,y,,). Remark that we have assumed (3.1), i.e. 'Y,,«() ~O. 

For the Neumann boundary conditions, we need to construct another process (X == 

N(t), t ~ 0) as !~ows: 

- N - • (4.12) Xi (t)=Xi(t) !or.=1,2, ... ,n-l 

X~(t) = X~(t) + sup{[X,,(sW : 0 S sSt}. 

This is a reflected Poisson-Wiener process. The transition density function is given by 

(4.13) p(XN(t) E bIXN(s) = z) = k[r(i - i,x" - y", t - s)+ 

+r(i - y,z" + y",t - s»)dy, Vz E R~,O < s < t, 
B E 8(R~), x = (i, z,,), y = (y, y,,). 

The probability measure P associated with either (XN(t), t ~ 0) or (XD(t), t ~ 0) is 

actually defined on D([O, 00), R+). The infinitesimal generator still being (4.7), but it is 

clear that the domain of the infinitesimal generator contains the boundary conditions. 

For example, we refer to the books of Dynkin [6], Ethier and Kurtz [8), among others, 

for a background on Markov-Feller processes. 

5. General Results 

Let n be a bounded open subset of Rd having sm~th boundary an. Consider the 

integral operator 

(5.1) Icp(z, t) = k[cp(z + 'Y(z, t, e), t) - cp(x, t)].8(z, t, e)7I'(d(), 

where 71'(.) is a a-finite measure on the measurable space (E,e), and the differential oper­

ators 

d 

(5.2) Dcp(x, t) ~ Eai(X, t)8fcp(x, t) + ao(x, t)cp(x, t), 
i=1 

d 

(5.3) Aocp(x, t) = - E ai;(x, t)8ijcp(z, t), 
i,j=l 

\ 
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d 

(5.4) Bt.p(x, t) = L bi(x, t)8fcp(x, t) + bo(r, t)cp(x, t), 
i=1 

where of = Oi and of; = Oij denote the first and the second partial derivatives with respect 

to the first variable Xi and Xi, X j. 

The assumptions on the coefficients are as follows. For some exponent 0 < a: < 1 we 

have: 

(A.1) the functions 'Y(x,t,(),{3(x,t,() are continuous 

for (x, t) in n x [0,1) and E - measurable in (, and 

there exist, a E - measurable function 'Yo( () 

and a constant Co > 0 satisfying for every 

x, x' in n, t, t' in [0,1) 

0< h(x, t, 01 :::; 'Yo«(), is 'Yo(01l"(d() = Co, 

1'Y(x,t,() - 'Y(x',t',()I:::; 'Yo«()(lx - x'io + It - t'10/2), 

1{3(x, t, () - {3(x', t', ()I :::; Ix - x'io + It - t'10/2, 

0:::; {3(x,t, () :::; 1 

(A.2) the function 'Y(x, t, () is continuously differentiable 

in x and there is a constant Co> 0 satisfying 

for every x, x' !Rd, t, t' in [0,1), ( in E, 

Ix - x'i :::;Col(x - x') + t'(f(x, t, 0 - 'Y(x', t, ())), 

1'Y(x, t, () - 'Y(x', t', ()I :::; Co(lx - x'i + It - t'lt), 

(A.3) for any (x, t, () n x [0,1) x E such that, 

{3(x, t, () ::f 0, the segment [x, x + 'Y(x, t, (») 

is included in fl, 

(A.4) there exist constants Co ~ Co > 0 satisfying for 

every x, x' in fl, t, t' in [0,1), 
d d 

L lai(x, t)1 + L laij(x, t)1 :::; Co, 
i=O i ,i=1 
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II II 

L lai(z, t) - ai(Z', t')1 + L lai;(z, t) - ai;(Z', t')1 ~ 
;=0 ;';=1 

~ Co(IZ - z'IG + .It _ t'IG/2), 
II 

E ai;(Z, t)e;e; ~coleI2, Ve = (el, ... ect) E r, 
;';=1 

(A.5) there exist coIUitants Co ~ Co > p satisfying 

for every z,z' in an,t,f' in [0,1), 
II 

Llb;(z,t)1 S Co, 
i=O 

II 

L Ibi(z, t) - b;(z', t')1 ~ Co(lz - z'l + It - t'I I / 2, 1 

i=O 
II 

Lbi(z,t)ni(z) ~ Co, 
;=1 

where 1·1 denotes the appropriate Euclidian nonn either on lR or )RII and n(x) = (nt(x), 

... , nll( z» is the outward unit nonnal to the boundary an at the point x. 

Notice that condition (A.2) implies that the change of variables X == XII + tl(X, t, () is 

a diffeomorphism of class 0 1 in lRII for any fixed t, t' in [0,1], e in E. Assumption (A.3) 

states that the integral operator I ep involves only the values of ep on fi, moreover 

(5.5) Iep(z, t) = f d8 k I(X, t, e)· 'Yep(x + 8,(X, t, e), t)P(x, t, ()7I'(d(), 

where 'Yep denotes the gradient of ep with respect to x.Clearly,hypothesis (A. 1) ensures 

the meaning of the integral operator (5.1), (5.5) for all Lipschitz functions ep(x, t) in x. 

Let us denote by g!, or g!(fi x [0,1], lR") when necessary, k ~ 0, n ~.1, 0 < a < 1, the 

space of all continuous functions ep( x, t, e, T) defined for x, e in fi C )RII and 0 ~ T < t ~ 1, 

with values in lR" and such that the following define (5.6), ... , (5.16) are finite. 

(5.6) O(ep, k) = inf{c ~ 0 : lep(x, t, e, T)I S O(t - stl+i;d, Vx, t, e, T}, 

(5.7) K(ep, k) = inf{K ~ 0 : k[lep(x, t,e, T)I + lep(z, t,e, T)lldz ~ 
~ K(t - s)l+t) VX,t,{,T}, 

(5.8) M(<p,k,a)= M1(ep,k,a) + M2(ep,k,a), 

IIC b; are only llolder continuous then a singularity on the boundary a~ occurs Cor the second derivatives. 
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(5.9) M1(cp,k,Q) = inf{M1 ~ 0: Icp(x,t,e,r) -cp(x',t',e,r)l:5 

:5 M1(lx - x'l" + It - t'lf)[(t - r)-1+·-1-a /\ 

A(t' )-l+~ \.J , °t t' e } 1\ -T 2 iVX,x" ,,,,T, 

(5.12) N1(cp, k, Q) = inf{Nl ~ 0: kUcp(x, t, z, r) - cp(x', t', z, r)l+ 

+Icp(z,t,e,r) - cp(z,t',e,r)l1dz:5 

:5 N1(lx - x'l" + It - t'lf)[(t - r)-1+~ /\ 
( , )-l+b..:a \.J , , e } /\ t - r 2, vX, x, t, t , .. , r , 

(5.13) N 2(cp, k, Q) = inf{N2 ~ 0: kUcp(x, t, z, r) - cp(x, t, z, r')I+ 

+cp(z,t,e,r)-cp(z,t,e',r')ldz :5 

:5 N 2(1e - e'l" + Ir - r'lf)[(t - r)-1+~ /\ 
( ')-l+b..:a \.J e e' '} /\ t-r 2, vx,t, .. , .. ,r,r , 

(5.14) R(cp, k, Q) = R1(cp, k, Q) + R 2(cp, k,Q), 

(5.15) R1(cp, k, Q) = inf{R1 ~ 0 : llcp(Z, t, e, r) - cp(Z', t, e, r)1 
, . l+~' } J.,,(Z, Z )dz :5 Rl'1"(t - r)- 2, 'VZ, Z , t, e, rand '1 > 0 , 

(5.16) R 2(cp,k,Q) = inf{R2 ~ 0: klcp(x,t;Z,r) -cp(x,t,Z')r)1 

J.,,(Z, Z')dz :5 R2'1"(t - r)-1+¥, 'Vx, t, Z, Z', rand '1 > O}, 

227 

where the change of variables Z(z) and Z'(z) are diffeomorphisms of class C1 in ~d , and 

the Jacobian 

( ) J (Z ') _ { I det(VZ)I/\ I det(VZ')1 if IZ - Z'I :5 '1 and Z, Z' E fl, 
5.17 'II ,Z -

o otherwise, 



228 J.L. MENALDI 

det(·) means the dete~nant of a d x d matrix, VZ, VZ' stand for the matrices of the 

) 

) 

) 

, ) 

first partial derivatives of ~(z),Z'(z) with respect to the variable z, and A, V denote the ) 

minimum, maximum (resp.) between two real numbers. ) 

Let cp( x, t, e, T) be a Heat kernel type function, i.e. a continuous function defined for 

x,e in 11 C ~d and 0::5 T < t ::51, and such that for every x,x',t,t',e,e',T,T' we have 

(5.19) Icp(x, t, e, T) - cp(~', t', e, T)I ::5 9(lx - x'io + It - t'lt) x 

x{(t - T)-H'-1-o'exp[-8Ix - el 2(t - T)-llV 

Vet' - T)-H1=p exp[-8Ix' - eI2(t' - T)-l]}, 

(5.20) Icp(x, t, e, T) - cp(x, t, e', T')I ::5 9(le - e'la + IT - T'lt) x 

x{(t - T)-H'-1-o exp[-8Ix - el2(t - T)-llV 

Vet - T')-H'-~-o exp[-8Ix - e'12(t _ T')-l]}, 

for some constants A ~ A > 0,9 ~ 8 > 0,0 < a < l,k;:::: o. 

Then cp(x,t,y,s) belongs to the Green space g!, i.e. the infima (5.6), ... ,(5.16) are finite. 

Moreover, we have the relation: 

For a given function cp in g!, we denote by [cpl",a the minimum of the values G( cp, k), 

K(cp,k), M(cp,k,o:), N(cp,k,o:), R(cp,k,a) defined by (5.6), ... , (5.16). It is clear that ['ka 

provides a norm for g!, which becomes a Banach space. Notice that from any sequence of 

functions {CPn, n = 1,2, ... } in g! such that 

G(cp", k) ::5 Go and M(CPn, k, a) ::5 Mo, "In = 1,2, ... 

we can extract an uniformly convergence subsequence on x, e belonging to 11 and 0 ::5 

T, t ::5 1, t - T ;:::: e, for any fixed e > O. Then g! has a compact inclusion on the Frechet 

space GO of all continuous functions cp(X,t,e,T) is x'e belonging to 11,0::5 T < t::5 1. 
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If p( x, t, e, r) is a continuous function, defined for x, e, in n and 0 ~ r < t ~ 1, such 

that for any x,x/,t, t/,e,e/,r,r/, 

(5.24) Ip(x, t, e, r)1 ~ Po, 

(5.25) Ip(x, t, e, r) - p(X/, t/, e, r)1 ~ Pl(lx - x/la + It - t/lt)x 

x[(t - r)-t V (t' - r)-t], 

(5.26) Ip(x, t,e, r) - p(x, t, e/, r')1 ~ Pl(le - e'la + Ir - r'lt)x 

x[(t - r)-t V (t - r')-t); 

then the product by the function P on the space g! is a continuous operation, more precisely 

we have 

(5.27) C(p,<p, k) ~ PoC( V', Ie), 

(5.28) K(p<p, k) ~ PoK(<p, k), 

(5.29) M(p<p, k, 01) ~ PoM(<p, k,a) + P1C(<p, k) , 

(5.30) N(p<p,k,a) ~PoN(<p,k,a)+2pIK(<p,k), 

(5.31) R(p<p,k,a) ~PoR(<p,k,a)+PIK(<p,k), 

for any <p in G:. 0 

Let t/J(x,t,e,r) be a function belonging to g:, for some fixed 0 < a < 1, 01< r ~ 2" 

i.e. 

(5.32) [t/J]r,a < 00, 

the infima (5.6), ... , (5.16) are finite for <p = t/J and k = r. We consider the integral 

transformation 

(5.33) T<p(x,t,y,s) = 1.' dr In ?/I(x,t,e,r)<p(e,r,y,s)de, 

for <p in g!. 
Under the condition (5.32), the operator T maps the space g! into g!+r, for any k > 01, 

more precisely we have the estimates 
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(5.34) C(Tcp, k + r) :5 2d+2(r-l + k-l )[C(1/J, r)K(cp, k) + K(1/), r)C(cp, k)], 

for O<k:5d, 
r k-d 

C(Tcp, k + r) :5 ,8(2' -2-)K(1/J, r)C(cp, k), for k> d, 

r k 
(5.35) K(Tcp,k+r):5,8(2'2)K(1/J,r)K(cp,k), for k>O, 

(5.36) M(Tcp, k + r) :5 2,l+2[(r - 0')-1 + (k - a)-l[C( 1/J, r) + K( 1/J, r)+ 

+M( 1/J, r, a) + Nl( 1/J, r, a)][C(cp, k) + K( cp, k + M2( cp, k, 0')+ 

N2(cpl,k,a)], for 0 < k < d - a, 
r-a k-d 

M(T, cp, k + r, a) :5 ,8(-2-' -2- - a)[N1(1/J, r, a) + K(1/J, r)]x 

x[C(cp,k) + M2(cp, k,a)], for k > d - a, 

r-a k-a 
(5.37) N(Tcp, k + r, a) S ,8(-2-' -2-)[N1(1/J, r,a) + K(1/J, r»)x 

x[K(cp,k) + N2(cp,k,a)], for k> a, 

r-a k-a 
(5.38) R(Tcp,k + r + a) S ,8(-2-' -2-)[Rl(1/J, r,a) + K(1/J,r)Jx 

x [K( cp, k) + R2( cp, k, a)], for k > a, 

where ,8(p, q) is the Beta function, i.e. 

(5.39) ,8(p,q) = l(l- 8)'P-189- 1d8, p,q > O. 

The operator (5.1) and (5.2) are always considered as :l.CLing on the first variable x in 

n. In view of the properties (5.24), ... ,(5.24), it is clear that the operator D maps g! into 

g!-l. It is also possible to prove that there exists a constant Cl > 0 such that 

(5.40) C(Icp,k) S ClC(Vcp,k) , 

(5.42) M(Icp,k) S CdCVcp,k) + M(Vcp,k)], 

(5.43) N(Icp, k) :5 Ct[J(Vcp, k) + N("i1cp, k) + R(VI,C', k)J, 

(5.44) R(Icp, k) :5 Ct[J(Vcp, k) + R(Vcp, k)], 
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for any k;;:: O. 

Let Go{x, t,{, r) be the Green function associated with the parabolic second order differ­

ential operator at + Ao and the boundary operator B. As proved in Garroni and Solonnikov 

[11], such a function exists and satisfies the estimates (5.18), ... ,(5.19) for .,p = Go, k =2 

and.,p = VGo,k = 1. 

Theorem 1. 

, Under the assumptions (A.1), ... ,(A.5) the Volterra integral equation 

(5.45) G(x,t,{,r) = Go{x,t,{,r) + l ds 10 Go(x,t,x,s)(I - D)G(z,s,e,r)ds 

possesses one and only one solution G in the Green space g~. Moreover we have 

00 

(5.46) G{x,t,{,r) = EGIc{x,t,{,r), 
Ic=O 

GIc(x,t,{,r) = l ds 10 Go(x,t,x,s)(I - D)G Ic_1(z,s,{,r)dz, 

where the convergence is uniform over compact subsets of the domain for G and VG. 

Furthermore, G has the semi group properties 

(5.47) G{x,t,{,r) = 10 G{x,t,z,s)G{s,z,{,r)dz,Vs E (r,t), 

(5.48) 1oG{x,t,{,r)'P{{)d{-+'P(x) as (t-r)-+O, 

uniformly in x, for continuous function 'P. 

also, if ao = 0, bo = 0 then 

(5.49) 1oG(x,t,{,r)d{=1. 0 

In order to estimate the second order derivatives we go back to the operator T given 

by (5.33). We assume that .,p satisfies (5.18), ... ,(5.20) for 'P = .,p, k = 0', instead of (5.32), 

i.e. essentially .,p = V2GO' Also .,p satisfies the following "cancellation" properties: 

(5.50) 110 1/J(x,t,z,r)dzl + 110 1/J(z,t,Cr)dzl:::; [(oCt - r)o/2-t, 
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(5.51) I 1o['I/J(x,t,z,r) ~ 'I/J(x',t',r)]dzl+ 

+1 1o['I/J(z, t, e, r} - 'I/J(z, t, e', r')]dzl S 

S No(t - ry/2-t(lx. - x'rr + It - t'I'Y/2 + Ie - e'rr + Ir - r'I'Y/2), 

for every 0 S r' S r < t S t' S 1, x, e in n, a = ,"),+e, '")', e > 0, and some suitable constants 

Ko > 0, No = No(e) > O. Under these conditions, there exist constants C t , [(h Mt, Nt 

and Rt depending on 'I/J, e such that 

(5.52) C(V2T<p, 1).S Ct[C(<p, 1) + K(<p, 1) + M(<p, 1)], 

(5.53) K(V2T<p, 1) S K 1[K(<p, 1) + N(<p, 1) + R(<p, 1)], 

(5.54) M(V2T<p, 1,,"),) S M 1[C(<p, 1) + K(<p, 1) + M(<p, l,a)+ 

+N( <p, 1, '")' )], 

(5.55) N(V2T<p, 1,,"),) S Nt[K(<p, 1) + N(<p, 1, a) + R( <p, 1, a)], 

(5.56) R(V2T<p, 1,,"),) S RtlK(<p, 1) + N(<p, l,a) + R(<p, l,a)], 

where M(·,·,'")'), N(.,.,'")'), R(·,·,;) denote the infima (5.8), (5.11), (5.14) with; in lieu 

ofa,anda=;+e, ,")"e>O. 

Because in the assumption (A.5) we took Lipschitz coefficients we have no singularity 

on the boundary for V2GO' atGo as proved in Garroni and Solonnikov [11]. Thus for 

'I/J = V2Go or 'I/J = alGo we have (5.18), ... ,(5.20) with <p = 'I/J, k = 0, as well as the 

cancellation properties (5.50) , (5.51). 

In view.of the equation (5.45) and the fact that (I - D)G belongs to g~, we deduce 

from the estimates (5.52), ... ,(5.56) that 

. for any 0 < ; < a. Hence, G is indeed a "classic" Green function since Gt satisfies the 

equation 

(5.58) aIGl(·,·,e,r)+AGl(·,·,e,r) = Fn, in nx(r,I], 

G1(t,·,e,r) -+ 0 as t -+ r, in n, 

BGt(·,·,e,r)=O in anx(O,lj, 
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for any fixed ~,T and F~(X,t,e,T) = (I - D)Go(X,t,e,T). From this, we can obtain the 

representation formula 

where u is the solution of the equation 

(5.60) a,u - Au = j, in n x (0,1] , 

u{·,O) = uo, in n, Bu = 0, on an x (0,1], 

in the appropriated sense according to the degree of regularity of the data j, tlo. 

When the coefficients of the boundary operator B are only Holder continuous, we need 

some more analysis (cf. Garroni and Menaldi [10]). 

These results are extended to boundary conditions of Dirichlet type, i.e. "BG = 0" is 

replaced by "0 = 0" on the boundary an x (0,1]. It is clear that any interval (0, T] may 

be used in lieu of (0, 1]. 

6. Asymptotic Results 

Let n be a bounded open subset of )Rd having smooth boundary an. In this section we 

assume that the coefficients of the operators A and B are independent of t ~ 0, i.e. 
d d 

(6.1) Acp(x) = - "E a;j(x)8f;cp(x) + "E a;(x)8jcp(x)-
;,j=1 ;=1 

- k[cp(x + ,(x, ()) - cp(x )]{3(x, 01r(de) , 

d 

(6.2) Bcp(x) = "Eb;(x)aicp(x), 
i=l 

where for some exponent ° < a < 1 the assumptions are: 

(B.1) the function ,(x, 0, {3(x, () are continuous for 

x in Q and £ - measurable in (, and there exist 

a £ - measurable function 'Yo( 0 and 

a constant Co > 0 satisfying for every x, x' in Q 

0< 1,(x,OI ~ 'Yo«(), fe 'Yo«()1r(d() = Co, 

1'Y(x, () - 'Y(x' , ()I ~ 'Yo«()lx - x'I", 

1{3(x, () - {3(X', ()I ~ Ix - x'I", 0 ~ f3(x; () ~ 1, 
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. . 
(B.2) the function -y.(z, () is continuously differentiable 

in z and there is ~ constant Co > 0 

satisfying for every z, z' in n, ( in E, 0 S 9 S 1 

Iz - z'l S Col(z, -z') + 8hl(z, () - 7(Z', ()]I , 

17(z, () - 7(Z', ()I S Colz - z'l, 

(B.3) for any (.:z:, () in n x E such that (3(z, () =F 0, the 

segment [.:z:,z + 7(.:z:, ()] is included in n, 

(B.4) there exist constants Co ~ Co > 0 satisfying for every z, z' in n 
d d 

L lai(z)1 + L laij(z)1 S Co, 
i=1 iJ=1 

d d 

L lai(z) - ai(x') + L lai;(z) - ai;(z')1 S Colz - z'I"', 
i=1 iJ=1 

d 

L ai;(z)eie; ~ colel 2 , Ve = (el,'" ,ed) e lRd , 
iti=l 

(B.5) there exist constants Co ~ Co > 0 satisfying for 

every z, z, in an 
d d 

L Ib;(z) I S Co, Lbi(x)ni(z) ~ Co, 
i=1 i=1 

d 

L Ibi( x) - bi( z') I S colx - z'l, 
i=1 

where 1·1 denotes the appropriate Euclidian norm either in lR or ~d and n(z) = (n\(z), 

... ,nd(x» is the outward unit normal to the boundary an at the point z. 

We want to consider the following three problems: 

(6.3) atu + Au = f in n x (0,00) , 

u(·,O) = in n, Bu = 0 on an x [0,00), 

(6.4) Au,\ + AU,\ = 9 in n, Bu,\ = 0 on an 

and 

(6.5) Auo = 9 in n, Buo = 0 on an 

) 

) 

) 

) 

. ) 
) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 
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where a, denotes the p~ial derivative with respect to the second variable, say t, the 

functions! = !(:c,t), 9 = g(x), x in 0, t in [0,00) and the constant ,\ > 0 are given. We 

wish to know under which circu.mstances the problem (6.5) possesses one or more solutions 

and when we have 

(6.6) u(·,t) --. Uo as t --. 00, and u,\ --. Uo as ,\ --. o. 

It is clear that these questions lead to the study of the invariant measures of the homo­

gen,eous semigroup generated by the integra-differential operator (6.1) and the differential 

boundary operator (6.2). 

By means of the previous section (d. Garroni and Menaldi [10)) we can construct the 

Green function G(x, t,e), x, 11 in 0, t > 0 , which solves the problem 

(6.7) a,G(x,t,e)+A.,G(x,t,e) = 6(x-e)6(t) in nx(O,oo), 

B.,G(x,t,e) = 0 on an x [0,00), 

G(x, t, e) --. 6(x - e) as t --. 0, 

in an appropriate sense. Such a function admits the representation 

(6.8) G(x,t,e) = Go(x,t,e)+Gl(x,t,e), Yx,e e O,t > 0, 

where Go is the Green function corresponding to the principal part of A (the second order 

differential terms) and the boundary operator B. The function G1 belongs to g~, 'VGl 

belongs to g! and 'V2Gl, a,Gl belongs to g~ for any 0 < 'Y < cr, but only locally in t, i.e. 

valid on every bounded set a x [0, T), for any fixed T > o. 
From the results in Garroni and Solonnikov [111, we deduce that for i = 0,1,2, 

. !!:h Ix - el2 
(6.9) 1'V'Go(x, t, e)1 S Co(t A 1)- 2 exp( -Co t ), 

for every x,x',e,e in 0, t,t' in (0,00) and some constants Co, co, Mo,mo > o. Moreover, 

Calderon and Zygmund type estimate hold, i.e. for any 1 < p < ~ there exists a constant 



236 J.L. MENALDI 

CPo depending only on r~ and p, but not on T ~ 0 such that for any measurable function 

f(e,r) ~ O,e in n,r ~O wehave 

(6.11) loT dt 111' dr 1 V 2GO(x,t - T,e)J(e,T)deIPdx:5 
o Tn 0 n 

:5 Cp 10 dT 10 If(e,T)IPde, 

) 

) 

) 

) 

where the hessian V2 can be replaced by at in (6.9), (6.10), (6.11), and " denotes the ) 

minimum between real numbers. ) 

. Let us redefine the function spaces 9!, or 9!(fl x [0, 00), !Rn) when necessary, k ~ 0, n ~ ) 

1, 0 < a < 1, as the space of all continuous functions cp(x, t,~) defined for x, ~ in fl, t > 0, 

with values in !Rn, and such that the following infima (6.12), ... ,(6.16) are finite. 

(6.12) C( cp, k) = inf{ C ~ 0 : Icp(x, t, ~)I :5 C(t " 1)-1+·;d, 'v'x, t, 0 

(6.13) K(cp,k)=inf{K~O 1oUcp(x,t,z)I+lcp(z,t,{)ldz:5 

:5 K(t" 1)-1+t, 'v'x, t, 0, 

(6.14) M(cp,k,a) = inf{M ~ 0: Icp(x,t,~) _cp(X/,t',OI:5 

:5 M(lx - x/lo + It - t'l' + I{ - e'IO)x 
x[(t" 1)-1+~ + (t'" 1)-1+·-f-o. 'v'x,x',t,t',e,{/} 

(6.15) N(cp,k,a) = inf{N ~ 0: kUcp(x,t,z) - cp(X/,t',Z)I+ 

+Icp(z, t, {) - cp(z, t', {/)I] :5 N(lx - x/lo + It - t'lt + 

+I{ - ~/IO)[(t " 1)-1+.tr + (t' "1)-1+.tr], 'v'x, x', t, t', {, {'}, 

(6.16) R(cp, k, a) = inf{R ~ 0 : 1oUcp(Z, t,~) - cp.(Z', t, ~)I+ 
+Icp(x, t, Z) - cp(x, t, Z')I]J,,(Z, Z')dz :5 

:5RTfO(t"l)-1+~, 'v'x,t,Z,Z' and Tf>O} 

where the change of variables Z(z) and Z'(Z) are diffeomorphisms of class Cl in !Rd, and 

the Jacobian 

( ) ( I)' {I det(VZ)I" I det(VZ') if IZ - Z'I :5 1] and Z, ZI E fl, 
6.17 J" Z,Z = 

o otherwise. 

Based on the semigroup properties 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 
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(6.18) G(x,t + s,e) = 10 G(x,t,z)G(z,s,e)dz , 

for every x, y in n, t, s > 0, 

(6.19) cp(x) = lim { G(x,t,e)cp(e)de, 
t ..... oin 

uniformly in x belonging to n and for any 

continuous function cp in n, 

(6.20) (G(x,t,e)de = 1, for every x in n,t > 0, , in 

we can prove the 

Theorem 6.1 

Under the assumption (B.l), ... ,(B.5) the function G I in (6.8) is such that 

237 

i.e. the infima C(ViGt,3 - i), K(ViGt,3 - i), M(ViGt,3 - i,a), N(ViGt,3 - i,a), 

R(ViGI, 3-i, a), i = 0, 1, and C(V2G\ 1), C(8tG\ 1), K(V2Gl, 1), K(8, GI, 1), M(V2GI, 1,-y), 

M(8c,Gl,1,-y), N(V2Gl,1,-y), N(8tGt,1,-y), R(V2Gt,1,-y), R(8tGi,1,-y), 0 < -y < a, are 

finite. The Green function (6.8) is positive, precisely, there exist two constant 0 < 7], 6 ~ 1 

such that 

(6.22) G(x,t,{) ~ 7] > 0, Vx,{ e n, t ~ 6 > O. 

If the oblique boundary condition given by the operator B are changed into homogeneous 

Dirichlet boundary conditions then (6.22) holds only for x in 0, dist (x,80) ~ c > 0, for 

any c > O. 0 

Therefore, the solution of the parabolic equation (6.3) is given by , ' 

(6.23) u(x,t) = l' dT 10 G(x,t - T,{)f({,T)d{, 

according to the previous section. Then, for (6.4) we should purpose 

(6.24) u),(x) = 1000 e-),'dt 10 G(x, t, {)g(e)de, >. > O. 

Let us denote by 
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(6:25) [fl ... T = inf{C?! 0: If(x,t) - f(x',t')1 $ C(lx - x'l" + It - t'la/2) 

and If(z, t)1 $ C, ,Vx, x' E n, t, t' E [0, T]}, 

(6.26) [gl .. = inf{C ~ 0: Ig(x) - g(x')I$ Clx - x'l" 

and Ig(x)1 $ C, Vx,x' E fi}, 

(6.27) IIfll".T = (foT dt k If(x,t)I"dx)I/", 

(6.2~O IIglI" = (k Ig(x)I"dx)I/" 

and 

(6.29) 'lIfll:.T = (foTM dt k If(x, t)I"dx )1/"+ 

+ sup{(l ds k If(x, t - 8 )I"dx )1/,,: 1 < t $ T}, 

for any t > 0 and 1 $ p < 00. 

Theorem 6.2 

Let the assumptions (B. 1), ... ,(B.5) hold. Then the function (6.23) and (6.24) are the 

solutions of the equations (6.3) and (6.4) respectively. Either classic or weak solution, 

according to the hypotheses made on f and g. Moreover, we have the following estimates: 

(6.30) (T A. 1)-2[ul ... T + (T A. l)-I[Vul .. ,T $ C([flo.T + IIflh.T), 

(6.31) [V2ul,.,T + [ac, ul,.,T $ C,.([JI ... T + IIflh.T), 

for any 0 < 'Y < Q', t > 0, 1 ~ >. > 0 and some constants C, C,. independent of f, T and 

g, >.; 

) 

) 

) 

-) 

) 

) 

) 

) 

) 

) 

) 

) 
) 

) 

) 

) 

') 

) 

) 

) 

) 

) 
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where the constants Cp, Mp are independent of I, T and g, Aj and 

(6.3S) 11I1IIh.T:5 lu(x, T)I :5 T[Ilo,T,VT ~ 1, 

for any x in n and some constant TJ > 0 independent of I, t and g, A. 0 

Let us now present a result relative to the adjoint equation 

(6.40) A*m = 0 in n, B*m = 0 on an, 
m > 0, 10 m(x)dx = 1, 

which is actually not defined (cf. Bensoussan et al. [4]). 

Theorem 6.3 

139 

Let assumptions (B. 1), ... ,(B.5) hold. Then there exists a unique Holder continuous 

function m(·) in n, with exponent a, such that 

(6.41) m(e) = A 1000 e->'Idt 10 G(x,t,e)m(x)dx, 

10 m(x)dx = 1, "'Ie e n, >. > o. 

Moreover, there exists a positive constant II such that 

(6.42) m(e) ~ II > 0, "'Ie e n, 

and for every t ~ 1, 9 in Ll(n), x inn, 

(6.43) 110 G(x, t, e)g(e)de - 10 g(e)m(e)del :5 C exp( -lIt)lIglh, 

for some constant C independent of t, g, x. Further more, 

(6.44) m(e) = 10 G(x,t,e)m(x)dx, "'Ie e n,t > o. 0 
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Theorem 6.4 

Under the assumptions (B.1), ... ,(B.5) the limit problem (6.5) possesses a solution 

unique up to an additive constant if and only if 

(6.45) kg(x)m(x)dx == 0, 

where m(·) is the function defined in' Theorem .6.3. Moreover, the solution of problem 

(6.5), satisfying (6.45) with Uo instead of g, admits the representation 

(8.46) uo(x) = 1: dt k G(x,t,()g«()tJ.e, Vx E 0, 
o 0 . 

and 

(6.41) uo(x) = lim (CO e-Atllt ( G(x. t. ()g(e)tJ.e.Vx E O. 
A-olo lo 

Furthermore. the class of functions to which uo(·) belongs is determinate by the following 

estimates according to how smooth is the datag(.), 

(6.48) [uo] .. + [Vuo] .. :s C(g]o, 

(6.49) [V2UO] .. :s C.,(gJ .. , va < 7 < or, 

(6.50) lIuoll, + IIVuoll, :s C,lIgll" 

(6.51) IIVuolli>:S M,llglI" VI < p <: 00, 

where the constants C, C." C" M, are independent of g. 0 

Instead of the problem (6.5) we consider: 

(6.52) find a function v = vex) and a real number 7r such that 

Av + 11" = ginO. Bv = 0 on a~. . 

H u is an integrable function in 0 then we set 

(6.53) m(u) = k·u(x)m(x)dz, 

where m = m(x) is the invariant density function given in Theorem 6.3 by (6.41). (6.44). 

Theorem 6.5 

Let the assumptions (B.1) •...• (B.5) and 

) 

) 

) 

) 

- ) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 
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) 

) 

) 
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) 

) 
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hold true. Then the problem .(6.52) possesses a solution (v,7I") with 71" = meg) and v 

unique up to an additive constant, in the class of functions determinate by the estimates 

(6.48), .. ,(6.51) for v instead of Uo. Moreover, denoting by u(·, t) and u,\ the solutions of 

problems (6.3), (6.4), we have 

(6.55) u,\ - m(u,\) = w,\ - Vo = v - m(v) as >. - 0, 

and 

(6.56) u(·,t)-m(u(·,t»=w(·,t) -Vo as t-oo, 

where the convergence is in the topology derived from the estimates (6.48), ... ,(6.51) with 

w,\ in lieu of uo, uniformly in 0 < >. ~ 1, and 

(6.57) [w(·,t)]a + [Vw(·,t)]a ~ Csup{[f(·,s)]o: 0 ~ s ~ t}, 

(6.58) [V2w(·,t)]., ~ C.,sup{[f(·,s)]aO ~ S ~ t}, 

for any t ~ 1,0 < 'Y < ex and some constants C, C., independent of f and t, 

(6.59) IIw·, t)lIp + IIVw(·, t)lIp + IIV2W(·, t)lIp ~ 

~ Cp(lIfll;,! + sup{lIf(·,s)11t : 0 ~ s ~ t}), 

where the constant Cp is independent of f and t, for any 1 < p < 00. 0 

The proof of all the above results can be found in Garroni and Menaldi [10]. 

Notice that as a consequence of the results for the parabolic problem we obtain similar 

results for the elliptic equation. 

The key point in the above theorems is the use of the estimates on th~ Green functic..n to 

deduce a priori estimates for the solution of the second order integra-differential equations. 
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