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REMARKS ON SOME NONLINEAR INITIAL 

BOUNDARY VALUE PROBLEMS IN HEAT CONDUCTION 

DOMINGO A. TARZIA - LUIS T. VILLA 

1. Introduction 

This paper is concerned with the following initial-boundary value problems for the 
one-dimensional (normalized) heat equation for a semi-infinite material 

(1) {
i) u.,., - u, 
ii) u(x,O) 
iii) u(O, t) 

and for a finite slab: 

(2) {

i) Un - u, 
ii) u(x,O) 

iii) u(O, t) 
iv) u(I, t) 

= F(u.,(O,t» in 0 < x < 00, 

= h(x), x> 0 
=0, 0< t < T 

= F(u.,(O,t» an 0 < x < I, 
=h(x),O<x<1 

= 0, 0 < t < T 
= f(t), 0 < t < T 

0< t < T 

0< t < T 

where u = u(x, t) denote the temperature distribution (the unknown), x and t the spatial 
and time coordinate respectively; T is a given constant and the data functions hand 
f represent initial and boundary conditions. F denote a sink or source of heat energy, 
uniform in x. . 

The preceding one may be thought as mathematical models of controled temperature 
distributions in isotropic mediums. 

In (1), results on existence, uniqueness of solution and asymptotic behavior have been 
proved for (1) and (2). 

In section §2 and §3 some results on the behavior of the soluti~n and explicit formulas 
for special cases are obtained for the problems (1) and (2) respectively. 
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2. Results on problems (1) 

We consider problem (1) for the temperature u=u(x,t). Then, let the function V=V(t) 
be defined by 

(2.1) Vet) = uz(O,t), 0< t < T 

Taking into account [1-1], the following integral representation for the solution u of (lrcan 
be written 

(2.2) 

where 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

u(x,t) = (00 G(x,t,e,O) heel de - (' erf ( ~) F(V(T» dT 
.10 10 2 t - T 

Vet) = l'o(t) + 1t H(t,T, V(T»dT 

F(V) 
ll(t,T, V) = - u--= 

vt -T 

G(x, t,e, T) = [(x, t,e, T) - [( -x, t,e, T) 

. 1 ( (x - e)2) 
]«X,t,e,T) = . exp 4(t )' t > T 2y7r(t - T) - T 

Let us consider for function F = F(V) and h = hex) , in problem (I), the following 
hypothese: 

(H ) {i) F = F(. V) is a continuos function for all V E R, wich satisfies F(O) = 0, 
1 ii) IF(l-'I) - F(V2)1 ~ alVl - \'21 with a = const > 0 

{ i) h E 'Cl [0, +00] with h(O) = 0, 
(H2) ii) h, h' E LOO(O, +00) 

Let us denote by problem (Ibis) the problem (1) with.data F and Ii respectively in 
conditions (li) and (lii). 

Then, we obtain the following result on the continuos dependence upon the data. 
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Theorem 1. Let u=u(x,t) and u = u(x, t) be the solutions of problems (1) and (1bis) 
respectively under the assumptions (HI) and (H2) for data F, F and h, h. If the functions 
F and F satisfy the additional hypothese. 

(2.8) IF(V) - F(V)I $ f31V - VI, with f3 = const. ~ 0 

then we obtain the inequality: 
(2.9) 

lu(x,t)-u(x,t)1 $lIh-hlloo+f3T(I+2f3vT)exp(1I'f32T) 11h'-li'lIoo, for x $ 0, 0 $ t $ T 

Proof. To begin with, we remark that the existence and uniqueness of solution for 
the problems (1) and (Ibis) follows from hypothese (HI) and (H2), [Vi]. 

If we define V(t) = uz(O, t), from expressions (2.3)-(2.5), we obtain 
(2.10) 

V(t) - V(t) = 1 foo e exp (_ e2 ) [h(e) _ h(e)] de + ft F(V(T» - F(V(T» dT 
2...ftt3/ 2 Jo 4t Jo..;t::T 

= _1_ f+OO exp (_ e2 ) [h'(e) _ Ii' (e)] de + t F(V(T» - F(V(T» dT 
..;:it Jo 4t Jo ~ 

By using (2.8), we have 

(2.11) 

On the other hand, by the Gronwall's inequality [Cal applied to (2.11), we deduce 

(2.12) 

where IIOlit 

(2.13) 

denote 

1I0llt = max 10(T)1 
o~ t $ T 

Now, from (2.2), (2.8) and (2.12), we obtain 

roo . 
lu(x, t) - u(x, t)1 $ Jo G(x, t, e, 0) Ih(e) - h(e)1 de+ 

. 0 

(2.l4) t erf ( ~) IF(V(T» - F(V(T»ldT $ Jo 2 t - T 

$ erf C~) IIh - 'h'lIoof31t IV(T) - V(T)ldT, 

that is (2.9). 

If we consider the special case 
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F(V» = dV, with d = const. > 0 

(2.16) h = h E COlO, +00], . 

(2.17) 
Vo = Vo(t), defined by (2.4), is a non-decreasing function which verifies Vo(O) > 0 

. we obtain the following comparison result. 

Theorem 2. Under the conditions {2.15}-{2.17}, if the function F = F(V) verifies 
hypothese {HI} and furthermore 

(2.18) V F(V) > O,Jor all V E R, 

(2.19) a < d 

then there exists tl > 0 such that 

(2.20) u(x, t) :5 u(x, t), 0:5 x, 0:5 t :5 tl 

where u and u are the solutions of problem {1} and {1bis} with data F, hand P, h = h 
respectively. . 

Proof. Owing to (2.15)-(2.18) and [Vi, lemma 2], it follows that 
(V(t) = u:-(O, t), V(t) = us(O, t» : 

(2.21) V(t) > 0, V(t) > 0, "It E (0, T) 

Taking into account (2.2)-(2.5), (2.15) and (2.16), we have 

(2.22) u(x,t) - u(x,t) = rt erf ( ~) [F(V(r» - dV(r)] dr, 10 2 t - r 

(2.23) V(t) _ V(t) = rt F(V(r» - dY(r) 
10 .;r-:::T 

. From (HI) and (2.21) we obtain 

(2.24) F(V):5 aV 

and then 

(2.25) V(t) - V(t) :5 d rt V(r) - Y(r) dr, 0 < t :5 T 
10 .;r-:::T 
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It is clear, from (2.25) and continuity properties for .,pt = Vet) - Vet), with .,p(0) = 0, that 
there exists to E (0, t) such that 

(2.26) VCr) :5 VCr), 0< r < to 

Moreover, from (2.23), (2.26) and the fact that I/>(t) = F(V(t)) - dV(t) verifies 1/>(0) :5 0, 
we deduce that there exists tl E (0, to), such that 

(2.27) F(V(t)) - dV(t) :5 0, ° < t < tl 

that is (2.20) from (2.22). 

Remark 1. The comparison result (2.20) can be also obtained by using the maximun 
principle taking into account the inequality (2.27). Let U = U(x, t) and W = W(x, t) be 
defined by 

(2.28) U(x, t) = u(x, t) - u(x, t), x > 0, ° < t < tt, 

(2.29) W(x,t) = Uz(x,t), x> 0, 0< t < tl 

They satisfy the following problems 

(2.30) 

(2.31 ) 

Then, we obtain 

(2.32) 

{ 
Uzz - Ut = dV - F(V) ~ 0, 
U(x,O) = 0, x ~ 0, 

U(O, t) = 0, ° < t < tl 

x> 0, 

{ 
Wzz - Wt = 0, x > 0, ° < t < tt, 
W(x,O) = 0, x ~ 0, 

Wz(O, t) = dV(t) - F(V(t)) ~ 0, 0:5 t :5 tl. 

W(x,t) :5 0, U(x,t) :5 0, x ~ 0, 0:5 t :5 tl. 

Remark 2. If we suppose hypothesis (Ih) with 

(2.33) 
, ~ 

h(x)=h(x)~O, x~O 

instead of (2.16) in Theorem 2, we deduce the inequality 

(2.34) ° :5 u(x, t) :5 !I(x, t), x ~ 0, 0:5 t :5 tt, 

by using the Lemma 3 of [V;]. 

If, in problem (1), we suppose that 

(2.35) F(V) = aV, with 0' = const. > 0, 
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(2.36) { he Cl [0, +001 with h(O) = 0, 
h = h(x) and h' = h'(x) are 0 (eaox ) for x large for some ao > 0, 

then, by using the Laplace transformation, we obtain the explicit solution. 

Theorem 3. Under assumptions (2.35) and (2.36), the solution of problem (1) is 
given by 

(2.37) u(x,t) = roo G(x, t,e,O) h(e) de - 0 r' V(r)erf ( ~) dr . 10 10 2 t - r 

where 

(2.38) V(t) = Vo(t)-o l' ["'/-77 -01rexp(7r02 (t-77))erfc(oV7r(t -77»] Vo(77)d77, 

and Vo is exp/icited in (2.4). 

Proof. From (2.3), (2.5) and (2.35) we obtain the following second kind Volterra 
integral equation for V=V(t) 

(2.39) V(t) = Vo(t) - 0 1t R(t, r) V(r) dr 

where the kernel R = R(t, r) is given by 

(2.40) 
1 

R(t,r) = U--=' 
vt -r 

t>r>O 

which depends only on the difference of the two arguments t and r, and it is singular at 
t = r. 

From elementary calculations, we have 

(2.41) 1 1+00 ((2) Vo(t) = c; exp -- h'(Od~ 
v 7rt 0 4t 

and so that for t large (M, I> 0) 

(2.42) { lVo(t)1 :5 M exp(/t) 
lV(t)1 :5 (1 + 2(0) lVo(t) I exp(7r02t) 

that is 

(2.43) lV(t)1 :5 N exp(mt) 

with 7r02 + I < m. 

On the other hand, let W = W(t - r) be the resolvclit kernel of (2.39), that is 

(2.44) V(t) = Vo(t) - 0 l' W(t - r) Vo(r) dr 
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If s denote the one-sided Laplace integral transform variable, for Re(s) > m, we deduce 

(2.45) 
Vo(s) 

v(s) = ( )' v(s) = vo(s)(1 - aY(s» 
.1+ays 

that is 

(2.46) 
Y s _ y(s) _ .,fi 

( ) - 1 + ay(s) - a.,fi + s 

where 

(2.47) { 
vo(s) = .c(Vo(t», v(s) = .c(V(t)) 

y(s) = .c(R(t)) = ~, Y(s) = .c(W(t)) 

and .c denotes the Laplace transformation. 

By using the inversion formula we obtain that. 

(2.48) W(t) = ~- a1r exp(1ra2t) erJc(av:;t) 

that is (2.38), and so that (2.37). 

Remark 3. We can verify directly that (2.37) and (2.38) is the explicit solution of 
problem (1) for the particular case (2.35) and (2.36). In fact, if we put (2.38) in (2.3) it 
is sufficient to check that 

(2.49) i t exp(~- '1)) erJc(aV1r(T -7J»dr = 
II t - T 

.!.. -.!.. exp(1ra2(t - '1))erJc(aV1r(t -7J», 0 < 7J < t. 
a a 

By using that er J c( x) = 1 - er J (x) and the function Z = Z (x), defined by 

(2.50) Z(x) = 21% exp(1ra2(x2 - y2» erJ(aV1r(x2 - y2» dy,' x> 0 

which verifies the Cauchy problem 

(2.51) 

whose solution is given by 

(2.52) 

{ Z'(x) = 21ra2xZ(x) + 21rax 
Z(O) = 0 

the equality (2.49) is obtained. 
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3. Results on problems (2) 

Let the function V=V(t) be defined by (2.1). Such as it was pointed out in [\1;] if 
u=u(x,t) satisfies the problem (2), the following integral representation can be written 

(3.1) u(x, t) =x/(t) + (I ](o(x,e, t)[h(e) - /(O)e] de + I' ](1 (x, t - r) F(V(r» dr . 10 10 
+ 1t ](2(X, t - r) i(r) dr 

where 

(3.2) V(t) = Vo(t) + l' lI(t,r, V(r))dr 

(3.3) 

(3.4) lI(t, r, V(r» = ]( 1(0, t - r) F(V(r» +]( 2(0, t - r) i(r) 

being ](0'](1, ](2, ](0, ](1, ](2 explicited ill the Appendix. 

Let us denote by problem (2 bis) the problem (2) with data P, h, J. 
For functions F, h, P, hand J in problems (2), (2 bis) we shall suppose the following 

assumptions 

(At) [the same as (lIt) of problem (1)] and furthemore (2.18) 

(Aa) 

{ 
i)h,h E CO[O,oo) 

ii)/, J E Cl [0, T] 

PCV) = aV, a> 0 Vo(O) > 0 

Then, we obtain the following comparison result 

Theorem 4. Under the hypothese (1ft), (A2), (Aa), if the following condition is 
satisfied 

(3.5) a<a 
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with Q introduced by ii} of (lit), there exists to > 0 such that 

(3.6) u(x, t) ~ u(x,t), 0 < x < 1, 0::; t ::; to 

where u and it are the solutions of problem (2) and (2bis) respectively. 

Proof. In a similar way as in Theorem 2 of I 2, we find 

(3.7) u(x,t) - it(x,t) = 10t I<1(X,t - T) [F(V(T» - aV(T)]dT 

. (3.8) V(t)-V(t) = fo t (-I<I(O,t-T»[aV-F(V)]dT 

where V(t) = ux(O, t) 

273 

Since Vo(O) > 0, from the continuity of V(t) on t=O it follows that there exists t2 > 0 
such that 

(3.9) V(t) > 0, 0 < t < t2 

Therefore, taking into account (2.18) and (3.5) in equation (3.8) we obtain 

(3.10) V(t)-V(t) < r'[-I<l(O,t-T)][V(T)-V(T)]dT 
a 10 

from which, by similar arguments used in proving (2.20), owing to the continuity of the 
function J( 1 (x, t - T) an the fact that 

{ 
-~ if 0 < x ::; 1 

(3.11) I<1(X,O) = 1 
- if -1 < x < 0 2 -

follows the inequality announced by (3.6). 

If, in problem (2), we suppose that 

(3.12) 

(3.13) 

«3.14» 

F(V) = dV, with d = cont. > 0 

hE CO[O.I] 

f E C 1[0.71' f(n) = o(eho '), for t large, n=O,l for .some bo > 0 

then, by using the Laplace transformation, the explicit solution can be obtained. 

Theorem 5. Under assumptions (3. 12}, (3.13) and (3.14) the solution of problem 
(2) is given by 

(3.15) u(x, t) =x f(t) + 101 
](0 (x, e, t) [hW - f(o)e] de 

+ d 10' !(I(X, t - T)[Vo(T) - d 10t 
8(T -l1)Vo(l1) d111 dT 
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where 

(3.16) 

(3.17) 
1 j+iOO 

6(t) = -2 • ,;,(s) eBI ds 
'11'1 -ioo 

(3.18) ,;,(s) = 
tan(¥) 

tan( 0) 
4+d 2 

(Vs) 
2 

Proof. The proof is similar to the preceding one for Theorem 3 and therefore we 
omit detail here. 

Now, the Volterra integral equation is 

(3.18) 

where Yo(t) is given by (3.16). 

Appendix 

00 

](0 = 22:>-1;211'21 sin(bx) sin(be) 
1;=1 

00 

](1 = 2:>k e-k2r2 (I-r) sin(bx)j 
k=1 
00 

](2 = L bk e-k2r2 (I-r) sin(k'll'x) 
k=1 

-, d/(o 
l\ 0(0, e, t) = dx at x = ° 
-, d/(. 
A .(0, t - r) = dx at x = 0 

-, d/(2 
l\2(O,t-r)= dx at x=O 

1 [ k] ak=--1-(-1) 
b 

1 k 
bk = -(-1) 

k 
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