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DIFFUSION AND NON LINEAR POPULATION THEORY 

CALIXTO P. CALDERON 

1. Introduction 

Throughout this paper we consider a population evolving ina bounded three dimensional 
habitat (ocean, rain forest with a height distribution, etcetera). 

The function U(XI , x2 ' x3 , t) will denote the population density at time t at the point 
x - (Xl' X2 , X3)' Our bounded habitat will be denoted by the letter a. Outside a and defined 
throught the whole space we shall consider the population source per unit of time: 

(1.1) 

On a. the population source per unit of time will be given by the expression: 

(1.2) cl(X) u [ 1 - flex) u ] 

Cl(X) - 0 outside a . 

In the above expression, P(x) stands for a bounded and continuous function defined on R3. 
The function cl (x) is assumed to be continuous. Clearly, (1.2) represents a generalization of the 
logistic growth. 

We may assume a predatorial action per unit of time on our population U, on a, given by 
the expression: 

c2 (x) - 0 outside a . 

As in the case of cl(x) • C2(X) is a continuous function.Condition (1.3j would indicate that 
the predatorial action on our population is negligible for small values of the density u. This simply 
means that the predators switch to alternate preys when the values of U fall below certain levels. 
Finally, we may assume migration in our population U, which is the shift of population from 
areas of large density to areas of lesser density represented by the scaled laplacian: 

(1.4) Dll U + D22 U + D33 U • 
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. In the above expressions Ojj denotes the second partial derivative with respect to the variable 
Xi • Likewise, OJ will denote the partial derivative with respect to Xj and Ot , that with respect to 
t. The rate of change of the population density u with respect to the time is given by the partial 
Ot u. 

The general balance law gives the following equation for the rate of growth of u: 

3 2 
(1.5) Ot u - 1: Ojj u - CI U [ 1 - P ( x ) u ] -~ u + f . 

I 

We may assume that the initial population distribution is known to be: 

(1.6) u(X , 0) - g(x) . 

The aim of this paper is to study the existence of weak global solutions to the initial value 
problem (1.5), (1.6) in certain U classes. Likewise, the paper explores the existence of steady 

) 

) 

) 

) 

) 

state solutions (solutions independent from t) when the source f becomes stable, that is, ) 
independent from t. 

This problem originated in the diffusion equation that governs the spatial patterning of the ) 
spruce budworm as studied in [3].In the case of the Ludwig-lones-Holling-Aronson-Weinberger 
equation the term f in (1.5) takes the form: 

(1.7) 

Instead (1.7), I consider here a simpler version of the predatorial action that is not governed 
by a "logistic" behavior and, as a trade off, one obtains solutions that are not achievable by the 
"traveling waves" method. 

Another important difference is the fact that unlike the setting in [3], this paper presents a 
three dimensional set up. The reason for that important dimensional difference is the fact that, 
some times, it is necesary to describe spatial distributions of population densities not only in their 
surface dispersal, but also in their height or depth variation. 

As indicated before, a third dimension is meaningful when describing oceanic distributions 
of fish populations whose depth range is wide and constitutes a non negligible dimension of the 
habitat. 

Likewise, in the case or the rain forests, the ecological distribution varies with the height 
range. Many species cover a wide range of altitudes, and in order to describe their interplay is 
quite natural to consider three dimensional densities. 

This paper focuses on the particular problem: "Suppose that the density distribution of a 
population U is known throughout R3 and, at an instant t - 0, a new bounded habitat G opens 
up for the species to migrate in. If we assume a logistic growth for the species U as well as a 
predatorial action within G, as described in (1.2) and (1.3), find the density distribution of the 
population U in G for all time t> 0 , assuming that the migration is governed by diffusion". 

As a simplification, we may consider that the population source outside G is given by the 
function f as in (1.1) and furthermore, we shall assume 

(1.8) f-O,xeG,t>O. 

Within G, we shall assume the growth of the density u per unit of time as described in (1.2) 
and the predatorial action as described in (1.3). 

The values of u at t "" 0 will be given by uo(x) . Obviously, we must have: 
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(1.9) Uo-O,x eG,t-O. 

As a simplification, we neglect the description of any natural barrier beyond G, assuming 
that any diffusion of the biomass toward infinity can be interpreted as a loss due to inhospitable 
subhabitats. At any rate, the distortion caused by the "diffusion toward infinity" can be 
compensated by the selection of an appropiate source function f. 

Finally, the problem can be set up as in (1.5) and (1.6) by making the appropiate selection 
of f and g as in (1.8) and (1.9). 

Classes or Functions And Statement or The Main Result. 
E(x,t) will denote the fundamental solution of the heat equation in R3 , namely: 

(1.10) E (x , t) - (41t t) -312 exp - {lxl2 (4 t) - I } 

L(u) will denote the Heat differential operator applied to u, (left hand side of equation 
(1.5) ). Hence, the equation (1.5) can be written as: 

(1.11) 

E(v) will denote the convolution: 

(1.12) E(v)-t 1 E(x-y, t-s) v (y ,s) dy ds . 
R3 

W(g) will denote the convolution on the spatial variables: 

(1.13) 1 E(x-y, t) g(y) dy . 
R3 

The equation (1.10) is going to be rewritten as: 

(1.14) L(u) - - a2 u2 + b3 U + f 

a2 - CI b + C2 , b - (C I)1/3 ,CI ~ 0, C2 ~ 0, ~ ~ 0 . 

Solving the equation (1.5) with initial data (1.6), if one assumes enough regularity on u, a, 
b, g and f, is equivalent with solving the integral equation: 

(1.15) 

We shall call any solution u for all t > 0 of (1.15) a weak global solution of the equation 
(1.5) with initial data (1.6) whenever the integrals that are involved exist in the Lebesgue sense 
for all value t > O. . 

Since the local behavior of solutions of the problem (1.5), (1.6) have no biological meaning, 
we will consider in our discussion only properties of weak solutions that are global in nature. 

II g lip will denote the usual U norm of the function g in R3. 



286 C.P. CALDERON 

. \I V .\lp will denote the LP norm in R3 of the function: 

(1.16) v· (x) - sup t > 0 Iv(x, t)1 . 

The main result of this paper is contained in the following: 

TheoremA. 
There exist two small constants Eo> 0 and 50 > 0 such that whenever 

(1.17) \I W.(g)·I~ + \I fO\l9/8 < Eo , 

( \I b \19/2 )3 <: 50 . 

The problem (1.5) with initial data (1.6) possesses a global weak solution u(x,t) that 
satisfies: 

Here • . Co depends on Eo and on ao. 
Concerning steady state solutions. if the source function f does not depend on t and satisfies 

(1.18) 

and b satisfies 

Here E I has the same meaning as eo above. a/dough its numerical value is not necessarily 
the same. The same for al • 

Then. there exists a steady state solution u that satisfies: 

Here. CI depends on e l • 

2. Proof Of Theorem A. 

A Potential Inequality. 

Lemma 1. 
Let T(vi , V2' V3' V4) be the multilinear operator defined by: 

(2.1) 

Here. the functions Vj are measurable and defined on RJ, Ixi is the distance from the origen. 
and * is the convolution symbol. Then: 
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Proof. 
The Hardy-Littlewood-Sobolov inequality gives, see ref [5] p.119: 

(2.2) II T IIq < Cp II VI' Vl' V3 • v4 11 p lIq - lip - 213- • 
. ' 

Take p - 9/S and apply H6lder's inequality to the right hand side of (2.2) above, Pi - 9/2 , 
i-I,2,3,4. 

Lemma 1. 
Consider the convolution E ( v,) , where v - v (x , t) is a measurable function in R3XR+ .If 

v* belongs to some U class, we have: 

i) IE(v)1 S Co Ixl" I * v· . 

Proof. 
The above estimate is a consequence of: 

(2.3) 

Taking in the convolution E(v) the integral with respect to the time as the inner integral and 
using the estimate (1.16) and (2.3), we obtain i) for the particular value of Co . 

This observation concludes the proof~ 

Estimates for the integral equation. 
. Calling F - E(f) and observing that as a consequence of Lemma 2 and the 

Hardy-Littlewood-Sobolov potential inequality we have: 

(2.S) II P-11,n S C II (' 1'- • 

Denoting by II II the norm II ( ). 1_, we obtain for the operator: 

(2.6) T(u ,v) - E(- alu v + b' u +f) + W(g) 

the estimate: 

(2.7) II T(u, v) II S C { II a III II u II II v II + II b 113 II u II + "F II +" W(g) II } 

wich is a consequence of lemmae 1 and 2. 
On the other hand, the integral equation can be written as: 

(2.S) u -T(u, u) . 

Lemma 3. 
Let T(u,v) be a general operator of the type (2.6), mapping the cartesian product X x X 

into X, where X denotes a Banach space, such that: 
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(2.9) II T(u, v) II S; CIII u II II v II + C2 11 u II + II F II 

Suppose that C I ' C2 and II F II satisfy: 

(2.10) 

Then, thequadraticoperatorT(u, u)maps the ball {II u II S; Sl} into itselfifsl is the smallest 
root of the equation: 

(2.11) 

If 2 Sl CI + C2 < 1 , T(u,u) is a contraction mapping in the ball of radius Sl • Finally. we 
have for SI the estimates: 

(2.12) 

For the proof of this lemma I refer the reader to ref [4] (lemma (2.2) there). 
Lemma 3 applied to the (2.8) gives immediately part i) of theorem A. 
Part ii) follows by using the same arguments as in i), and it reduces to solving the integral 

equation: 

(2.13) 

Here, the norms we use are the usual L 9/2 (R3) and L9/8 (R3) norms. The symbol * denotes 
convolution on the spatial variables. This concludes the proof of Theorem A. 

Final remarks. 
If the initial density g of the population U as well as the source function remain bellow 
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certain levels, the population in G will not experience an outbreak, even if one supresses the ) 
predatorial action. 

From the method that we have employed, it follows that the steady state solution is stable, 
this however will not be done here. 
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