A BEER'S THEOREM IN UNIFORM SPACES

A. MARTIN MENDEZ and J. L. LOPEZ ROSENDO

ABSTRACT. The fact that completeness and total boundedness become a characterization of compactness in the category of uniform spaces is well known. Beer [1] establishes a new characterization for chainable metric spaces based on two conditions: uniform local compactness, which is stronger than completeness, and uniform chainability, weaker than total boundedness. In this paper, we extend this result to the context of all uniform - T_2 spaces.

1. PREVIOUS DEFINITIONS.

Let X be a Tychonoff space endowed with a diagonal uniformity \mathcal{D} . We say that a subset A of X has a lower diameter than $\mathbb{D} \in \mathcal{D}$ if there exists a point x in X such that $\mathbb{A} \subset \mathbb{D}[x]$. If p,q are points of X, a D-chain of lenght n, from p to q is a sequence $\mathbf{a}_0,\ldots,\mathbf{a}_n$ in X, being $\mathbf{a}_0=\mathbf{p}$ and $\mathbf{a}_n=\mathbf{q}$, such that given $\mathbf{a}_{j-1},\mathbf{a}_j$, $\mathbf{i}=1,\ldots,\mathbf{n}$ there exists a subset \mathbf{A}_j of X with a lower diameter than D containing $(\mathbf{a}_{j-1},\mathbf{a}_j)$. Let us call (X,\mathcal{D}) D-chainable if each two points in X can be joined by a D-chain. (X,\mathcal{D}) will be called a chainable space if it is D-chainable for each $\mathbb{D} \in \mathcal{D}$.

Let us suppose (X, \mathcal{D}) a chainable uniform space. Then X is uni-formly D-chainable if there is a positive integer n_D such that any pair of points in X can be joined by a D-chain of length

 n_D at most. (X, \mathcal{D}) is called uniformly chainable if it is uniformly D-chainable for each $D \in \mathcal{D}$.

On the other hand, extending the condition of uniform-local compactness given by Beer for metric spaces, we say that a uniform- T_2 space is a uniformly locally compact one if there exists a surrounding D such that $\overline{D[x]}$ is compact for all x in X, where $D[x] = \{y \in X \mid (x,y) \in D\}$. However, for operational reasons we introduce an alternative way: (X,\mathcal{D}) is called a uniformly locally compact space if and only if X admits a $D \in \mathcal{D}$ such that $\overline{D}[x]$ is compact for each $x \in X$, [2], being $\overline{D}[x] = \{y \in X \mid (x,y) \in \overline{D}\}$.

2.

LEMMA 1.([2]). The collections $\{\overline{D[x]} \ / \ D \in \mathcal{D}\}$ and $\{\overline{D[x]} \ / \ D \in \mathcal{D}\}$ are equivalent local systems of neighborhoods for the topology of X.

LEMMA 2. Let (X,0) be a chainable uniform space. If X is totally bounded, then X is uniformly chainable. If X is uniformly locally compact, then X is complete.

Proof. For X totally bounded and $D \in \mathcal{D}$, set $\{U_1, \ldots, U_n\}$ a finite cover of X such that $U_k \times U_k \subset D$, $k = 1, \ldots, n$. It follows that each U_k has a lower diameter than D. If we choose a point a_i in U_i , $i = 1, \ldots, n$, and $\Phi_{D(a_i, a_j)}$ denotes the length of the shortest D-chain joining a_i with a_j , then there exists U_i and U_j such that $x, a_i \in U_i$; $y, a_j \in U_j$. Thus, x and y can be joined by a D-chain of length $2 + \max\{\Phi_D(a_i, a_j); 1 \le i, j \le n\}$ at most, for any $x, y \in X$.

For the second assertion, we needn't use the hypothesis of chainability for (X,\mathcal{D}) . If we pick up a Cauchy-net $(x_{\lambda})_{\lambda\in\Lambda}$ in X and a sorrounding D_0 such that each $\overline{D}_0[x]$ is compact,

there exists $\lambda_0 \in \Lambda$ large enough such that the net $(x_\lambda)_{\lambda \in \Lambda}$ is residually in the compact subset $\overline{D}_0[x_{\lambda_0}]$. Then a closure point of $(x_\lambda)_{\lambda \in \Lambda}$ exists in $\overline{D}_0[x_{\lambda_0}]$, which is also a convergence point.

THEOREM. Let (X, D) be a chainable uniform space. Then X is compact if and only if X is uniformly locally compact and uniformly chainable.

Proof. Since any $\overline{\mathbb{D}}[x]$ is a closed set in the compact X, then X is uniformly locally compact. However X is totally bounded, and by virtue of lemma 2, X is uniformly chainable.

To show the converse, let X be uniformly locally compact and uniformly chainable and let $D_0 \in \mathcal{D}$ such that $\overline{D}_0[x]$ is compact for all x in X. Choose $E \in \mathcal{D}$, $E \circ E \subset D_0$. Lemma 1 allows us to pick up an open and symmetric sorrounding D satisfying $D \subset \overline{D} \subset E$. [2]

Firstly, let C be a closed subset in X; we will show that $\overline{\mathbb{D}}[\mathbb{C}] = \bigcup_{\mathbf{x} \in \mathbb{C}} \overline{\mathbb{D}}[\mathbf{x}]$ is also a closed set. Suppose that $(\mathbf{x}_{\lambda})_{\lambda \in \Lambda}$ is a net in $\overline{\mathbb{D}}[\mathbb{C}]$ convergent to a point x; there exists $\lambda_0 \in \Lambda$ such that $(\mathbf{x}, \mathbf{x}_{\lambda}) \in \mathbb{D}$ for $\lambda \geqslant \lambda_0$. Let \mathbf{c}_{λ} a point in C verifying $\mathbf{x}_{\lambda} \in \overline{\mathbb{D}}[\mathbf{c}_{\lambda}]$, for each λ ; thus $(\mathbf{x}, \mathbf{x}_{\lambda}), (\mathbf{c}_{\lambda}, \mathbf{x}_{\lambda}) \in \overline{\mathbb{D}} \quad \forall \ \lambda \geqslant \lambda_0$. But since \mathbb{D} is symmetric, likewise is $\overline{\mathbb{D}}$, and so $(\mathbf{x}, \mathbf{c}_{\lambda}) \in \overline{\mathbb{D}}_0$. Then, $(\mathbf{c}_{\lambda})_{\lambda \in \Lambda}$ is residually in the compact $\overline{\mathbb{D}}_0[\mathbf{x}]$, and because C is a closed set, a subnet (\mathbf{c}_{μ}) exists, convergent to a point \mathbf{c} in C. Moreover, $(\mathbf{c}, \mathbf{x}) \in \overline{\mathbb{D}}$, because the subnet $(\mathbf{c}_{\mu}, \mathbf{x}_{\mu}) \subset \overline{\mathbb{D}}$ converges to (\mathbf{c}, \mathbf{x}) ; so $\mathbf{x} \in \overline{\mathbb{D}}[\mathbf{c}]$ and $\mathbf{x} \in \overline{\mathbb{D}}[\mathbf{c}]$.

Secondly let A be a compact subset of X, we assert that $\overline{\mathbb{D}}[A]$ is also compact. To this end, let $(x_{\lambda})_{\lambda \in \Lambda}$ be a net in $\overline{\mathbb{D}}[A]$. As in the previous case, choose $a_{\lambda} \in A$ such that $(a_{\lambda}, x_{\lambda}) \in \overline{\mathbb{D}}$; hence a net $(a_{\lambda})_{\lambda \in \Lambda}$ in A is obtained; as A is compact, there exists a closure point a in A for $(a_{\lambda})_{\lambda \in \Lambda}$. If (a_{μ}) is a subnet convergent to this point, we have $(a, a_{\mu}) \in \mathbb{D}$ if $\mu \geqslant \mu_0$,

being μ_0 large enough. Then, $(a,x_\mu)\in \overline{\mathbb{D}}_{\circ}\overline{\mathbb{D}}\subset \overline{\mathbb{D}}_0$ and (x_μ) is residually in the compact $\overline{\mathbb{D}}_0[a]$; therefore (x_μ) as well as (x_λ) , has a closure point in $\overline{\mathbb{D}}_0[a]$. But $\overline{\mathbb{D}}[A]$ is a closed set, and that closure point will be in $\overline{\mathbb{D}}[A]$.

Finally, given a point p in X, it follows from the last assertions that $\overline{\mathbb{D}}[\{p\}]$ is compact, and so is $\overline{\mathbb{D}}^k[\{p\}] = \overline{\mathbb{D}}[\overline{\mathbb{D}}^{k-1}[\{p\}]]$, $(\forall k \in \mathbb{N})$. As X is uniformly chainable a positive integer n exists such that every point in X can be joined to p by a D-chain of length n, at most, showing that $X = \overline{\mathbb{D}}^n[\{p\}]$ is compact.

As a consequence of the fact that chainability is a weaker condition than connectedness, and that compact chainable uniform spaces are connected, [4] we conclude the following: a chainable uniform space is a continuum if and only if it is uniformly chainable and uniformly locally compact.

REFERENCES

- [1] BEER,G., Which connected metric spaces are compact?, Proc. Amer.Math.Soc.83,4, (1981) 807-811.
- [2] MARTIN MENDEZ, A. and LOPEZ ROSENDO, J.L.: Algunas propiedades relativas a la topología de los espacios uniformes, Acta Cientif. Comp. Preprint.
- [3] ISBELL, J.R., Uniform spaces, Math.Surv. 12 Amer. Math.Soc. Providence (1964).
- [4] WILLARD, S., General Topology, Addison Wesley. London (1968).

Departamento de Geometría y Topología Facultad de Matemáticas Universidad de Santiago de Compostela Spain.

Recibido en marzo de 1987.