ON "GOOD UNIVERSAL WEIGHTS" IN ERGODIC THEORY #### M. E. BECKER ABSTRACT. Let $\underline{a}=(a_n)$ be a bounded complex sequence such that $\lim_n \frac{1}{n} \sum_{j=0}^{n-1} a_j z^j$ exists for all complex number z in the unit circle. In this paper we prove that if the sequence $\underline{a}(k)=(a_n-a_{n+k})$ is a good universal weight for some natural number k then \underline{a} is a good universal weight. In particular, we extend a certain class of sequences for which the Weighted Pointwise Ergodic Theorem holds. # 1. INTRODUCTION. We denote by N the set of nonnegative integers and by C_1 the set of complex numbers z such that |z| = 1. Let (Ω, M, μ) be a probability space and let A be the group of automorphisms of (Ω, M, μ) ; $T \in A$ if $T \colon \Omega \to \Omega$ is a bijection which is bimeasurable and preserves μ . Each $T \in A$ induces an operator U_T on $L^P(\Omega) = L^P(\Omega, M, \mu)$, $1 \le p < \infty$, defined by $U_T f = f \circ T$. Now, let T be a continuous linear operator on $L^1(\Omega)$ and let $\underline{a} = (a_n)$ be a sequence of complex numbers. DEFINITION 1.1. We say that \underline{a} is a good weight for T if, for every $f \in L^1(\Omega)$ $$\lim_n \frac{1}{n} \sum_{j=0}^{n-1} a_j T^{j} f(\omega) \text{ exists } \mu\text{-a.e.}$$ In the case when $T \in A$ we say that \underline{a} is a good weight for T if \underline{a} is a good weight for the operator U_T induced by T. DEFINITION 1.2. A bounded complex sequence \underline{a} is said to be a good universal weight if \underline{a} is a good weight for every Dunford-Schwartz operator. It is known that \underline{a} is a good universal weight iff \underline{a} is a good weight for every $T \in A$ (see [1]). We denote by $\ell(\infty)$ the space of all bounded complex sequences and we write $\|\underline{a}\|_{\infty} = \sup_{n} |a_{n}|$, for $\underline{a} \in \ell(\infty)$. We also say that $\underline{a} = (a_{n})$ has a mean if $\lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} a_{j}$ exists. This last number will be denoted by $m(\underline{a})$. A.Bellow and V.Losert proved (see [3]) the following result. THEOREM 1.3. Let D be the set of all $\underline{a} \in l(\infty)$ satisfying the following conditions: (1) $$\gamma_a(k) = \lim_n \frac{1}{n} \sum_{j=0}^{n-1} a_{j+k} \cdot \overline{a_j}$$ exists for each $k \in \mathbb{N}$. - (2) The spectral measure corresponding to \underline{a} is discrete. - (3) The amplitude $\Gamma_{\mathbf{a}}(z) = \lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} a_{j} \overline{z}^{j}$ exists for all $z \in C_{1}$. Then every $\underline{\mathbf{a}} \in \mathbf{D}$ is a good universal weight. Now, for each natural number k, let U_k be the class of all $\underline{a} \in \ell(\infty)$ such that $\Gamma_a(z)$ exists for all $z \in C_1$ and the sequence $\underline{a}(k) = (a_n - a_{n+k})$ is a good universal weight. By D_k we mean the class of all $\underline{a} \in U_k$ such that $\underline{a}(k) \in D$. A direct calculation prove that $D \subset D_1 \subset D_k$, for all k, and in [2] it is shown that D_1 is strictly larger than D. In this paper we will prove that if $\underline{a} \in U_k$ then \underline{a} is a good universal weight. In particular, every sequence $\underline{a} \in \bigcup_k D_k$ is a good universal weight. From the above considerations, it follows that this result generalizes Theorem 1.3. ## 2. STATEMENTS AND PROOFS. We start with the following lemma. LEMMA 2.1. Let q,r be integer numbers, $0 \le r < q$, and let $\underline{a} = (a_n) \in \ell(\infty)$ such that $\Gamma_a(z)$ exists for all $z \in C_1$. Then the sequence $(a_{1,q+r})_{i \in N}$ has a mean. *Proof.* Let z_1, z_2, \dots, z_q be the set of q-th roots of unity. Then $$\Gamma_{\mathbf{a}}(z_{i}) = \lim_{n} \frac{1}{q \cdot n} \int_{j=0}^{q \cdot n-1} a_{j} \overline{z}_{i}^{j} =$$ $$= \lim_{n} \sum_{s=0}^{q-1} \left(\frac{1}{q \cdot n} \sum_{j=0}^{n-1} a_{j \cdot q+s} \right) \overline{z}_{i}^{s}$$ For each integer \cdot number m, a straightforward calculation shows that $$\sum_{i=1}^{q} z_i^m = \begin{cases} q \text{ if m is a multiple of } q \\ 0 \text{ otherwise} \end{cases}$$ Thus, we get $$\sum_{i=1}^{q} z_{i}^{r} \Gamma_{a}(z_{i}) = \lim_{n} \sum_{s=0}^{q-1} \left(\frac{1}{q \cdot n} \sum_{j=0}^{n-1} a_{j \cdot q+s} \right) \cdot \sum_{i=1}^{q} z_{i}^{r-s} =$$ $$= \lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} a_{j \cdot q+r} ,$$ and the lemma is proved. COROLLARY 2.2. Let \underline{a} = (a_n) be a sequence satisfying the cond \underline{i} tions of Lemma 2.1. If \underline{b} = (b_n) is a periodic complex sequence then the sequence a.b = $(a_n.b_n)$ has a mean. Proof. Let $p \in N$ such that $b_{j+p} = b_j$ for all $j \in N$. For each $n \in N$ let $q_n \in N$ satisfying $p, q_n \leq n < p(q_n+1)$. Thus $$\frac{1}{n} \sum_{j=0}^{n-1} a_j b_j = \frac{1}{n} \sum_{s=0}^{p-1} b_s \sum_{j=0}^{q_n-1} a_{j,p+s} + \frac{1}{n} \sum_{j=p,q_n}^{n} a_j b_j.$$ Since $\lim_{n \to \infty} \frac{q_n}{n} = \frac{1}{p}$, from 1emma 2.1 we deduce that $$\lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} a_{j} b_{j} = \frac{1}{p} \sum_{s=0}^{p-1} b_{s} m((a_{j,p+s})_{j \in \mathbb{N}}).$$ We can now state the following theorem. THEOREM 2.3. Let k be a natural number. Then every sequence $\underline{a} \in U_k$ is a good universal weight. *Proof.* Let $T \in A$ and let $\underline{a} = (a_n) \in U_k$. We write $$A_n f(\omega) = \frac{1}{n} \sum_{j=0}^{n-1} a_j f(T^j \omega), \quad f \in L^1(\Omega).$$ Let us consider the set of all functions h which can be represented in the form $$h(\omega) = g(\omega) - g(T^{-k}\omega)$$, where g is a bounded function. For any function h as above, we have $$A_n h(\omega) = \frac{1}{n} \sum_{j=0}^{n-1} (a_j - a_{j+k}) g(T^j \omega) + R_n g(\omega)$$, being $$|R_n g(\omega)| \leq \frac{2k \|\underline{a}\|_{\infty} \|g\|_{L^{\infty}(\Omega)}}{n}$$. Since the sequence $\underline{a}(k) = (a_j - a_{j+k})$ is a good universal weight, we see at once that $A_n h(\omega)$ converges for almost all ω as $n \to \infty$. Now, we consider the set of all functions $p\in L^2(\Omega)$ satisfying $p(\omega)$ = $p(T^k\omega)$ $\mu\text{-a.e.}.$ For any such a function p we can find a set $\Omega_p \subset \Omega$ of full measure such that the sequence $(p(T^j\omega))$ is k-periodic for any $\omega \in \Omega_p$ (by k-periodic we mean that $p(T^{j+k}\omega) = p(T^j\omega)$ for all $j \in N$). By corollary 2.2, $A_n p(\omega)$ converges for every $\omega \in \Omega_p$. We conclude that $A_nf(\omega)$ converges almost everywhere if f is in the linear span V of the functions h and p. Theorem 2.3 will follow by a standard argument if we prove that V is dense in $L^1(\Omega)$. For this purpose, we assume that for a certain function $q_0\in L^2(\Omega)$ we have $$\int_{\Omega} q_0(\omega) \ \overline{f}(\omega) d\mu = 0 \quad \text{for all} \quad f \in V.$$ Hence $$0 = \int_{\Omega} q_0(\omega) \overline{h}(\omega) d\mu = \int_{\Omega} q_0(\omega) (\overline{g}(\omega) - \overline{g}(T^{-k}\omega)) d\mu =$$ $$= \int_{\Omega} \overline{g}(\omega) (q_0(\omega) - q_0(T^k\omega)) d\mu ,$$ for every bounded function g. Then $q_0(\omega)=q_0(T_\omega^k)$ for almost all ω and so $q_0\in V$. Consequently, we have $\int_\Omega q_0(\omega).\overline{q}_0(\omega)\mathrm{d}\mu=0$, which proves that V is dense in $L^2(\Omega)$. Since $L^2(\Omega)$ is dense in $L^1(\Omega)$, the result follows. REMARK. A bounded complex sequence \underline{a} such that $\underline{a}(k)$ is a good universal weight does not necessarily have amplitude $\Gamma_{\underline{a}}(z)$ for every $z \in C_1$. The following is an example: Let $k\in N$ and let z_0 be a root of unity of order k. For each $m\in N$ let I_m be the integer interval $$I_m = \{n \in N/2^m \le n < 2^{m+1}\}.$$ Let α and β be two real and nonnegative numbers. We define the sequence $\underline{a} = (a_n)$ in the following way: $$a_{n} = \begin{cases} \alpha \overline{z}_{0}^{n} & \text{if } n \in I_{m}, \text{ m even} \\ \\ \beta \overline{z}_{0}^{n} & \text{if } n \in I_{m}, \text{ m odd.} \end{cases}$$ We see that a_{n+k} - a_n = 0 if n and n+k are in I_m , for any m. Then, $\{n \in N/a_{n+k} - a_n \neq 0\}$ has zero density. From this we immediately deduce that $\underline{a}(k)$ is a "good universal weight". On the other hand, $$a_{n} z_{0}^{n} = \begin{cases} \alpha & \text{if} & n \in I_{m}, \text{ m even} \\ \\ \beta & \text{if} & n \in I_{m}, \text{ m odd} \end{cases};$$ and a simple calculus shows that \underline{a} has not amplitude in z_0 . ACKNOWLEDGEMENT. We would like to thank the referee, whose suggestions lead us to the consideration of the example given in this remark. ### REFERENCES - [1] J.R.BAXTER and J.H.OLSEN, Weighted and subsequential ergodic theorems, Canad.J.Math.35 (1983), 145-166. - [2] M.E.BECKER, Note on the Weighted Pointwise Ergodic Theorem, Revista de la Unión Matemática Argentina, Vol.32 (1986), 206-210. - [3] A.BELLOW and V.LOSERT, The Weighted Pointwise Ergodic Theorem and the Individual Ergodic Theorem along subsequences, Trans.Amer.Math.Soc.288 (1985), 307-345. Universidad de Buenos Aires Buenos Aires, Argentina. Recibido en abril de 1988. Versión final mayo de 1990.