ON "GOOD UNIVERSAL WEIGHTS" IN ERGODIC THEORY

M. E. BECKER

ABSTRACT. Let $\underline{a}=(a_n)$ be a bounded complex sequence such that $\lim_n \frac{1}{n} \sum_{j=0}^{n-1} a_j z^j$ exists for all complex number z in the unit circle. In this paper we prove that if the sequence $\underline{a}(k)=(a_n-a_{n+k})$ is a good universal weight for some natural number k then \underline{a} is a good universal weight. In particular, we extend a certain class of sequences for which the Weighted Pointwise Ergodic Theorem holds.

1. INTRODUCTION.

We denote by N the set of nonnegative integers and by C_1 the set of complex numbers z such that |z| = 1.

Let (Ω, M, μ) be a probability space and let A be the group of automorphisms of (Ω, M, μ) ; $T \in A$ if $T \colon \Omega \to \Omega$ is a bijection which is bimeasurable and preserves μ . Each $T \in A$ induces an operator U_T on $L^P(\Omega) = L^P(\Omega, M, \mu)$, $1 \le p < \infty$, defined by $U_T f = f \circ T$.

Now, let T be a continuous linear operator on $L^1(\Omega)$ and let $\underline{a} = (a_n)$ be a sequence of complex numbers.

DEFINITION 1.1. We say that \underline{a} is a good weight for T if, for every $f \in L^1(\Omega)$

$$\lim_n \frac{1}{n} \sum_{j=0}^{n-1} a_j T^{j} f(\omega) \text{ exists } \mu\text{-a.e.}$$

In the case when $T \in A$ we say that \underline{a} is a good weight for T if \underline{a} is a good weight for the operator U_T induced by T.

DEFINITION 1.2. A bounded complex sequence \underline{a} is said to be a good universal weight if \underline{a} is a good weight for every Dunford-Schwartz operator.

It is known that \underline{a} is a good universal weight iff \underline{a} is a good weight for every $T \in A$ (see [1]).

We denote by $\ell(\infty)$ the space of all bounded complex sequences and we write $\|\underline{a}\|_{\infty} = \sup_{n} |a_{n}|$, for $\underline{a} \in \ell(\infty)$. We also say that $\underline{a} = (a_{n})$ has a mean if $\lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} a_{j}$ exists. This last number will be denoted by $m(\underline{a})$.

A.Bellow and V.Losert proved (see [3]) the following result.

THEOREM 1.3. Let D be the set of all $\underline{a} \in l(\infty)$ satisfying the following conditions:

(1)
$$\gamma_a(k) = \lim_n \frac{1}{n} \sum_{j=0}^{n-1} a_{j+k} \cdot \overline{a_j}$$
 exists for each $k \in \mathbb{N}$.

- (2) The spectral measure corresponding to \underline{a} is discrete.
- (3) The amplitude $\Gamma_{\mathbf{a}}(z) = \lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} a_{j} \overline{z}^{j}$ exists for all $z \in C_{1}$.

Then every $\underline{\mathbf{a}} \in \mathbf{D}$ is a good universal weight.

Now, for each natural number k, let U_k be the class of all $\underline{a} \in \ell(\infty)$ such that $\Gamma_a(z)$ exists for all $z \in C_1$ and the sequence $\underline{a}(k) = (a_n - a_{n+k})$ is a good universal weight.

By D_k we mean the class of all $\underline{a} \in U_k$ such that $\underline{a}(k) \in D$. A direct calculation prove that $D \subset D_1 \subset D_k$, for all k, and in [2] it is shown that D_1 is strictly larger than D.

In this paper we will prove that if $\underline{a} \in U_k$ then \underline{a} is a good universal weight. In particular, every sequence $\underline{a} \in \bigcup_k D_k$ is a good universal weight. From the above considerations, it follows that this result generalizes Theorem 1.3.

2. STATEMENTS AND PROOFS.

We start with the following lemma.

LEMMA 2.1. Let q,r be integer numbers, $0 \le r < q$, and let $\underline{a} = (a_n) \in \ell(\infty)$ such that $\Gamma_a(z)$ exists for all $z \in C_1$. Then the sequence $(a_{1,q+r})_{i \in N}$ has a mean.

Proof. Let z_1, z_2, \dots, z_q be the set of q-th roots of unity. Then

$$\Gamma_{\mathbf{a}}(z_{i}) = \lim_{n} \frac{1}{q \cdot n} \int_{j=0}^{q \cdot n-1} a_{j} \overline{z}_{i}^{j} =$$

$$= \lim_{n} \sum_{s=0}^{q-1} \left(\frac{1}{q \cdot n} \sum_{j=0}^{n-1} a_{j \cdot q+s} \right) \overline{z}_{i}^{s}$$

For each integer \cdot number m, a straightforward calculation shows that

$$\sum_{i=1}^{q} z_i^m = \begin{cases} q \text{ if m is a multiple of } q \\ 0 \text{ otherwise} \end{cases}$$

Thus, we get

$$\sum_{i=1}^{q} z_{i}^{r} \Gamma_{a}(z_{i}) = \lim_{n} \sum_{s=0}^{q-1} \left(\frac{1}{q \cdot n} \sum_{j=0}^{n-1} a_{j \cdot q+s} \right) \cdot \sum_{i=1}^{q} z_{i}^{r-s} =$$

$$= \lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} a_{j \cdot q+r} ,$$

and the lemma is proved.

COROLLARY 2.2. Let \underline{a} = (a_n) be a sequence satisfying the cond \underline{i} tions of Lemma 2.1. If \underline{b} = (b_n) is a periodic complex sequence then the sequence a.b = $(a_n.b_n)$ has a mean.

Proof. Let $p \in N$ such that $b_{j+p} = b_j$ for all $j \in N$. For each $n \in N$ let $q_n \in N$ satisfying $p, q_n \leq n < p(q_n+1)$.

Thus

$$\frac{1}{n} \sum_{j=0}^{n-1} a_j b_j = \frac{1}{n} \sum_{s=0}^{p-1} b_s \sum_{j=0}^{q_n-1} a_{j,p+s} + \frac{1}{n} \sum_{j=p,q_n}^{n} a_j b_j.$$

Since $\lim_{n \to \infty} \frac{q_n}{n} = \frac{1}{p}$, from 1emma 2.1 we deduce that

$$\lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} a_{j} b_{j} = \frac{1}{p} \sum_{s=0}^{p-1} b_{s} m((a_{j,p+s})_{j \in \mathbb{N}}).$$

We can now state the following theorem.

THEOREM 2.3. Let k be a natural number. Then every sequence $\underline{a} \in U_k$ is a good universal weight.

Proof. Let $T \in A$ and let $\underline{a} = (a_n) \in U_k$. We write

$$A_n f(\omega) = \frac{1}{n} \sum_{j=0}^{n-1} a_j f(T^j \omega), \quad f \in L^1(\Omega).$$

Let us consider the set of all functions h which can be represented in the form

$$h(\omega) = g(\omega) - g(T^{-k}\omega)$$
,

where g is a bounded function. For any function h as above, we have

$$A_n h(\omega) = \frac{1}{n} \sum_{j=0}^{n-1} (a_j - a_{j+k}) g(T^j \omega) + R_n g(\omega)$$
,

being
$$|R_n g(\omega)| \leq \frac{2k \|\underline{a}\|_{\infty} \|g\|_{L^{\infty}(\Omega)}}{n}$$
.

Since the sequence $\underline{a}(k) = (a_j - a_{j+k})$ is a good universal weight, we see at once that $A_n h(\omega)$ converges for almost all ω as $n \to \infty$.

Now, we consider the set of all functions $p\in L^2(\Omega)$ satisfying $p(\omega)$ = $p(T^k\omega)$ $\mu\text{-a.e.}.$ For any such a function p we can find a

set $\Omega_p \subset \Omega$ of full measure such that the sequence $(p(T^j\omega))$ is k-periodic for any $\omega \in \Omega_p$ (by k-periodic we mean that $p(T^{j+k}\omega) = p(T^j\omega)$ for all $j \in N$). By corollary 2.2, $A_n p(\omega)$ converges for every $\omega \in \Omega_p$.

We conclude that $A_nf(\omega)$ converges almost everywhere if f is in the linear span V of the functions h and p. Theorem 2.3 will follow by a standard argument if we prove that V is dense in $L^1(\Omega)$. For this purpose, we assume that for a certain function $q_0\in L^2(\Omega)$ we have

$$\int_{\Omega} q_0(\omega) \ \overline{f}(\omega) d\mu = 0 \quad \text{for all} \quad f \in V.$$

Hence

$$0 = \int_{\Omega} q_0(\omega) \overline{h}(\omega) d\mu = \int_{\Omega} q_0(\omega) (\overline{g}(\omega) - \overline{g}(T^{-k}\omega)) d\mu =$$

$$= \int_{\Omega} \overline{g}(\omega) (q_0(\omega) - q_0(T^k\omega)) d\mu ,$$

for every bounded function g.

Then $q_0(\omega)=q_0(T_\omega^k)$ for almost all ω and so $q_0\in V$. Consequently, we have $\int_\Omega q_0(\omega).\overline{q}_0(\omega)\mathrm{d}\mu=0$, which proves that V is dense in $L^2(\Omega)$. Since $L^2(\Omega)$ is dense in $L^1(\Omega)$, the result follows.

REMARK. A bounded complex sequence \underline{a} such that $\underline{a}(k)$ is a good universal weight does not necessarily have amplitude $\Gamma_{\underline{a}}(z)$ for every $z \in C_1$. The following is an example:

Let $k\in N$ and let z_0 be a root of unity of order k. For each $m\in N$ let I_m be the integer interval

$$I_m = \{n \in N/2^m \le n < 2^{m+1}\}.$$

Let α and β be two real and nonnegative numbers. We define the sequence $\underline{a} = (a_n)$ in the following way:

$$a_{n} = \begin{cases} \alpha \overline{z}_{0}^{n} & \text{if } n \in I_{m}, \text{ m even} \\ \\ \beta \overline{z}_{0}^{n} & \text{if } n \in I_{m}, \text{ m odd.} \end{cases}$$

We see that a_{n+k} - a_n = 0 if n and n+k are in I_m , for any m. Then, $\{n \in N/a_{n+k} - a_n \neq 0\}$ has zero density. From this we immediately deduce that $\underline{a}(k)$ is a "good universal weight". On the other hand,

$$a_{n} z_{0}^{n} = \begin{cases} \alpha & \text{if} & n \in I_{m}, \text{ m even} \\ \\ \beta & \text{if} & n \in I_{m}, \text{ m odd} \end{cases};$$

and a simple calculus shows that \underline{a} has not amplitude in z_0 .

ACKNOWLEDGEMENT. We would like to thank the referee, whose suggestions lead us to the consideration of the example given in this remark.

REFERENCES

- [1] J.R.BAXTER and J.H.OLSEN, Weighted and subsequential ergodic theorems, Canad.J.Math.35 (1983), 145-166.
- [2] M.E.BECKER, Note on the Weighted Pointwise Ergodic Theorem, Revista de la Unión Matemática Argentina, Vol.32 (1986), 206-210.
- [3] A.BELLOW and V.LOSERT, The Weighted Pointwise Ergodic Theorem and the Individual Ergodic Theorem along subsequences, Trans.Amer.Math.Soc.288 (1985), 307-345.

Universidad de Buenos Aires Buenos Aires, Argentina.

Recibido en abril de 1988. Versión final mayo de 1990.