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A NOTE ON LAGRANGE INTERPOLATION IN R?

J. R. BUSCH

ABSTRACT. In [1] Chung and Yao introduced some sets in Rz, sa-
tisfying what they called the GC condition for P, unisolvency
of Lagrange interpolation problems; in [2] Gasca and Maeztu,
while studying which of their reversible systems for Hermite
interpolation in R? were P, unisolvent, conjectured that in
the Lagrange case these systems included as a special case tho
se satisfying the GC condition, and they mentioned a proof for
n=3. In this work we shall prove this conjecture for n=4.

INTRODUCTION.

By P, we denote the real polynomials over R? with total degree
less than or equal to n; P is a (n+1) (n+2)/2 dimensional
linear space. ACR? is said P, unisolvent when for any set

{f,: a € A} of real numbers, there is one and only one pol-
ynomial p in P, such that p(a) = f, for all a in A. Given a
P, unisolvent set A, we call basis function associated to a
point a in A to the function p, in P, such that p,(a) = 1 and
p,(b) = 0 for all b in A different from a. In this case, any
polynomial p in P, may be expressed by a Lagrange formula as

p = Z,p(a)p,. ‘

THE GC CONDITION.
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Let ACR2 be a set with (n+1)(n+2)/2 points. We say that A satis
fies the GC condition for P, unisolvency when for each a in A
there is a set L, of n lines such that: i) for each L € L,,

a ¢ L, and ii) if b € A and b#a, then there exists L € L, such
that b € L. When L € L, we say that a needs L, and we call the
points in A nodes.

Chung and Yao proved in [1] that if A satisfies the GC condi-
tion for Pn_unisolvency, then A is P, unisolvent; in fact, the
basis function associated to a node a is easily obtained as
the product of the n linear factors wp, where wy(x) = 0 is a
linear equation for L € L, and the wy are chosen such that
wp(a) = 1.

GASCA AND MAEZTU'S CONJECTURE.

Let ACR? be a set with (n+1)(n+2)/2 points and let it satisfy
the GC condition for P, unisolvency. Then it is easy to see
that no line passes through more than (n+1) nodes; Gasca and
Maeztu conjectured that there <s at least one line passing
through (n+1) nodes (see [2], pp.9-10). We shall not refer to
the significance of this conjecture in the context of their
work, but we shall prove it for n=4 (for n=1 and n=2, the re-
sult is immediate; for n=3 the proof is comparatively easy, as
mentioned in [2]).

THE CASE n=4 OF THE CONJECTURE.

We shall need the following lemma, which is a consequence of a
well known result on cubics, which is itself a special case of
the Cayley-Bacharach theorem (see [3], pp.671-673); this last

theorem seems to be very related to the conjecture in its ge-

neral version.

LEMMA 1. Suppose that we have three lines L;, 1=1,2,3, and
another three lines L}, such that for each i,j Lj and L} inter-

sect at a point ajj, and assume that these intersection points
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are all different. Then if a polynomial P € P53 vanishes at

etght of the a; it vanishes at the nine.

j.’
Assume from now on that ACR? is a set with fifteen points, and
that it satisfies the GC condition for P, unisolvency.

LEMMA 2. Suppose that a node a needs a line L that passes
through exactly four nodes; then there are three nodes that

need a same line.

Proof. Consider the line L and the four lines that join the
node a with the nodes on L: each of the eleven nodes that are
not on L needs some of these five lines, thus at least three
of them need a same one.

LEMMA 3. Let two nodes a and b be such that L, and Ly have
exactly one line L im common. Then L has at least four nodes,

and 1f a third node c needs L, L has five nodes.

Prodf. The three remaining lines in L, intersect the three
remaining lines in Ly, at a set B having at most nine nodes; B
must include all the nodes but a,b and those on L, so that L
has at least four nodes. Assume now that L passes through
exactly four nodes: then B has nine nodes and no node in com-
mon wich L; a third node c that needs L must be in B, but
then the three lines in L, different from L should cover eight

points of B and not the nine, which is impossible by Lemma 1.

LEMMA 4. If two nodes a and b are such that L, and Ly have
exactly two lines im common, then some of these lines passes

through five nodes.

Proof. The remaining two lines in L, intersect.the remaining
two lines in Ly, at a set B that has at most four nodes. B
must contain all the nodes but a, b and those on some of the
lines common to L, and Ly; thus on these two lines there are
at least nine nodes, so that some of them passes through five
nodes.
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LEMMA 5. Suppose that three nodes a,b and c need a same line,

and assume that no line in L, passes through five nodes. Then

we have: 1) There are three lines Ly, L, and L3 needed by both
a and b; ii) each of the lines L; passes through exactly four

nodes, and two of them have no node in common; iii) <if a node

d needs some of the lines Lj, it needs the three; iv) the node
C also needs the three lines Lj.

Proof. i) By Lemma 3, L, and L, have more than one line in com

a
mon; by Lemma 4. they have more than two lines in common; thus
L, and Ly have three lines in common.

ii) As no line in L, passes through five nodes, the lines Lj
cover at most twelve nodes. Let d be a node not covered by
them and different from a and b: then the fourth line in L,
must be the one through b and d, and the fourth line needed by
b must be the one through a and d; as these lines intersect
only at d, there is not a fourth node out of the Lj's so that
these lines cover exactly twelve nodes, each of them passes
through four nodes, and each two of them have no node in com-
mon.

iii) Suppose that d needs L; and d is not on Ljy. Then the
three remaining lines in Ly cover the four nodes in L,, so
that d needs L,; now the two ramaining lines in L4 cover at
least three nodes on L3 (all but eventually d), so that d
needs Lj.

iv) As c needs some of the Li's, iv) is a consequence of iii).

REMARK. Note that we have thus far shown that if there are no
lines through five mnodes, then if a line is needed by two nodes
it passes through four nodes (Lemmas 3,4 and 5).

THEOREM. There is a line passing through five nodes.

Proof. Suppose that there is no line passing through five no-
des. Then for each node x there is a line in L, that passes
exactly through four nodes, so that by Lemma 2 there are three
nodes a,b and ¢ that need a same line; now by Lemma 5 a,b and
c need three lines L;, L, and L3, each of them passing through
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exactly four nodes and each two of them with no node in common.

Let us call B the set of nodes covered by L;, Ly and L3, and C
the set of nodes covered by L; and L;; thus B has twelve nodes
and C has eight nodes.

If three nodes in B need a same line, they are each on a dif-
ferent Li: because (by Lemma 5) they must need three lines in
common, each with four nodes and with no node in common bet-
ween them, so that (as no of these lines can be one of the
Li's) each of these lines have one node on each L;, thus they

cover three mnodes on each Lj leaving only one node not covered.

If two nodes in C need a same line L, it has one node on each
Lij: as a,b and c are not on a same line, L has at most two of
these nodes; by our previous remark L has four nodes, so that
L has one node on at least two of the Lj's, say L; and Lj; let
us call d the node on L and Ly, and consider the set V formed
up with the three lines joining d with the nodes in L5 that
are not on L. If a node in C different from d does not need L,
it needs some line in V, and then it follows (as there are not
‘three nodes in C needing a same line) that there are at least
two lines in V needed by two nodes in C and which in conse-
quence have four nodes. We conclude that L has at most one of
the nodes a,b and c, thus it has a node on .each Lj.

Consider now the set W of lines that join a to the nodes on Lj:
each of the eight nodes in C needs some of the lines in W, and
no three of them need a same one: thus, each line in W is need
ed by exactly two nodes in C, and in consequence each line

in W has a node on each L;. Thus, the four lines of W cover B.

Consider now the polynomial p obtained as the product of the
four linear factors wp, where wy(x) = 0 is a linear equation
for L. € W: as this fourth degree polynomial vanishes at all
the nodes but b and ¢, it should be a linear combination of
the basis functions associated to these nodes; but these basis
functions vanish all along the lines Lj, so that this should
be true also for p, which is a contradiction.
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FINAL REMARKS. Of course our purpose while studying this special
case of the conjecture was to get a thorough understanding of
the general one; but we arrived to solve this case with argu-
ments that do not seem to have a wider application; perhaps
the most promising in this sense is the relation with the

Cayley-Bacharach theorem that we have already mentioned.
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