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MATHER’S POLYNOMIAL DIVISION THEOREM

AND DIVIDED DIFFERENCES

CARLOS ZUPPA

1. INTRODUCTION.

The aim of this paper is to give a proof of Mather's Polynomial
Division Theorem (PDT) based on elementary concepts of Divided
Differences and of Glaeser's Composite Mapping Theorem. In fact,
PDT is an almost easy corollary of the C®-Newton Theorem ([3]).
The proof of Glaeser's theorem is, however, somewhat formidable.
So, we give here a slightly more elementary proof of this theo-
rem under more restricted conditions though sufficient in our
context.

We feel that it is very natural to view PDT as an interpolation
problem of Hermite type in the following sense: if f is in

C*(R") and t,,...,t, are points of R, we can write

k

f(x)= pf{tl,...,tk}(x) + (x-tl)...(x—tk)[tl,...,tk,x]f

where pf{tl,...,tk} is the Hermite polynomial interpolating f

at t ,t, and [t

K .,tk,x]f is the k'th divided differen-

12 17"

ce of f at st X, This equality looks like a polynomial
division formula and we can make appeal to a Glaeser type re-
sult to see that this is really the case.

This approach could be also carried over to a more general set
of interpolating functions other than polynomials (the ECT-
systems [5], pag.363). We do not know, however, if this kind
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of results could be of any use.

2. SYMMETRIC POWERS.

Let k =2 2, and consider the action of the symmetric group of
permutations S, over ck by permutation of coordinates on ck,

Let OpseessOp be the elementary symmetric polynomials in the
coordinates ZyseeesrZy of CX. The o, are given by the polyno-
mial identity

(z))ee-(rvz,) = ¥S + 02y  + L.+ 0 (2) , ¥y €C.

We define a map w ck - Ck by T = (01,...,0k). Hence, 7, is

Kk k
a finite morphism in the complex sense and, because C is alge-
braically closed, nk(Ck) =ck (r61).

Now, we look at Ck ~ RX with its natural real structure, and

let d be any positive integer. We consider on c® xRY the act-
ion of Sk by permutation of complex coordinates of Ck, and we

® S
denote as C (Ck de) k

the closed subalgebra of the Fréchet
algebra Cw(Ck><Rd) of Sk-invariant real-valued functions over

Ck)<RP (of course, these algebras are considered endowed with
the C”-Whitney topology).

: ¢ xR > ¥ xR? is the map defined by

If Te.d

T a(BX) = (M (2),%) , (z,%) € ¢“ xR

the associated homomorphism

© S
(r, 27 ¢"c®xrY > ®c*xrH"

of Fréchet algebras is defined by (Tk d)*(f) ='fork a-

A key step for proving PDT is:

THEOREM 2.1. For any positive integers k and d, (Tk d)* is8 an

isomorphism of Fréchet algebras.
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Before proving this theorem we turn to explain how it applies
to PDT, after a glimpse at interpolation theory.

3. DIVIDED DIFFERENCES. ([2],[5]).

Let U = {ui}T be a set of functions on R and let t;,t,,...,t
be points in R such that

t, <t

1 <...<xt

2 m’

Then, we define the matrix associated with {ui}T and {ti}T by

€hneent u () u,(t)) ... ou (t))
M = : : : (3.1)
Upseeenliy u (e ) u(t ) ...ou (t)
and the determinant
ti,e..,t ) ti,ee.,t )
D[ 1 mJ =det M| 177777 mJ . (3.2)
Upseeeru Up,e..,U

Such matrices arise in the basic interpolation problems of
Lagrange, Hermite, etc. (I[5], pag.20).

m—l}‘

Let um = {1,x,...,X Then

ti,...,t
_ 1’ H m
V(tl,...,tm) = D[ : m'lJ

is the Vandermonde determinant.

DEFINITION 3.1. Given a function f and points tl,...,tr+1,

(r =2 0), we define the r'th order divided difference over the
points oot oy by

tpoeeenn. ,tr+1]
D r-1
1,X,...,X ,fJ
drf(tl”"’tr+1) = _— T ) (3.3)
12°°°2 "r+l
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where t1 < t2

their natural order.

<...<t consists of the points {ti}§+l

r+1 in

When the t's are distinct, then drf(tl""’tr+1) is defined

for any function that has finite values at these points. When
one of the t's occurs more than once, then the value of
drf(tl""’tr+1) depends on certain derivatives of f.

It is clear from (3.3) that a divided difference is a linear
operator on f. In the next theorem we give several important
properties of divided differences (see [5]).

THEOREM 3.2. Given points ty,...,t. .., and any function f on
R, we have:

If t, =t, = ... =t

2 then

r+l °

_ AT
ri.d_f(t,...,t_,) = DE(t)) (3.4)

In general, if a = min{ti} and b = max{ti},

ri.d £(t,.. = DFf(v) (3.5)

"tr+l)

for some a <v <b.

For i = 1,...,r+1, (B/Bti)drf exists and, if t = (tl,...,tr+l)
3 ) A
5{; drf(t) dr+1f(ti) (3.6)
where t, = (tl""’ti—l’ti’ti’ti+1""’tr+l)'

COROLLARY 3.3. For any function f on R and r > 0, drf is a
smooth function symmetric in its arguments. Also,

d_: ¢®(R) - C°@®R™

r

is a Fréchet homomorphism (Cm-Whitney topology).

THEOREM 3.4. Hermite Interpolation. Given a function f and

points
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1 m 12 1 227272 d’ d
 I— | — I
I1 ]2 ]d
there exists a unique polynomial pf{tl,...,tm} in Pm = get of
polynomials of degree < m, such that
pi-! = pi-! j =1 i=1,...,d
pf{tl""’tm}(Ti) =D f(Ti) » 3= 1.0, 1= 1,00.,d.

REMARK 3.5. Using divided differences it is possible to give
an exact expression for pf{tl,...,tm} and for the difference

between f and pi{tl,...,tm}. Setting t = (tl,...,tm), we have:

pf{t}(x) =’f(t1) + dlf(tl,tz).(x—tl) + .. dm_lf(t).(x—tl). vee . (x-t
and
f(x) = pf{t}(x) + (x-tl). e . (x-tm).dmf(x,t)
nol oy K k
If pf{t}(x) = ) cf(t).x , we see that each Cg is a smooth
k=0

function on R" and, because pf{t} is univocally determined by
the points tl”"’tm and not by their order, symmetric in its

variables.

4. MATHER'S GLOBAL DIVISION THEOREM.

For every positive integer m, let ro: RxR™ > R be the monic
m-1
x"+ 7 uk'.xm'k , X €R and u € R".

k=0

polynomial Fm(x,u)

We shall reformulate Mather's theorem in such a way that we
also have uniqueness of division if we required an additional
condition.

THEOREM 4.1. There exists a unique Fréchet homomorphism

c.: ¢C"(R) » C@®R™ , i=20,...,m-1

i
R: C(R) +» C"(RxR™)
sueh that:

m-—



44

1) For each f € Cw(R) we have
-1
f(x) = mZ ck(f)(u).xk + Fm(x,u).R(f)(x,u)
k=0

for every (x,u) € R x R™.

m
k=1

Pm(—,u) (of course, rk(u) can be a complex number). Set,

2) For each u € R", let {rk(u)} be the set of roots of

for k = 1,...,m, ty(u) equal to the real part of Ty (u), <.
e., t, = Re(rk(u)).
Then -1

(£).xk
kZO N x

i8 the Hermite interpolating polynomial of f at {tk}z=l

Proof. Uniqueness is straightforward, from 4.1.2.

Existence. For any z € C" and k = 1,...,m we set t, = Re(zk}
and t(z) = (t,(2),...,t (2)).
If £ € ¢C(R), we have
m
£0 = plt(0}() + T (x-t, (2)) .4 £0x,t(2))
for every (x,z) € c" x R.
The coefficients Ei(f), i=1,...,m, of p,{-} are smooth real-

valued functions over C™ and symmetric in their arguments,
i.e.: S
c,(H)ectEem ™ , i=0,...,m1

Sm

and we also have R(f) = d f e c”(C™ x R)
Using theorem 3.2 one can be easily convinced that

(o] e ] S
c;r CT(R) » CT(E™) " i=0,...,m-1

and
-— ) <] m Sm
R: C(R) » C (C xR)
are Fréchet homomorphisms.

Let i: R®™ > C™ be the natural inclusion and

i*: ¢"(e™ » "M
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the associated Fréchet homomorphism. We define now the Fréchet

homomorphisms

c.: CC(R) > C@®"Y , i=0,...m-1

1

and
R': C"(R) » C (R"xR)
by
I *.-1
c; = iollry, )71 Tecy
and -1
R' = i*o [(T )*] o—}i
m.1 ‘

By the construction, it is straightforward to see that the c;'s
satisfy 4.1.2. We only need now a slight modification of R' in
order to obtain 4.1.1. To accomplish this task we observe that
the coefficients Yk(Z), k=20,...,m-1, of the polynomial

T (x-t,(2))

m-1
m k
X 4+ (z).x
k=1 kZO Yk

S (o]
are in ¢7(C™ ™. Hence, there exist functions VR € ¢ (C€™ such

that Y = YeoTn o k = 0,...m-1. We know then that, for every

z e C™ and w = m_(z), the roots of

m-1 k
e ] ¥ ) .x
k=0
m
are {tk(Z)}k=1.

Now, let A, € Cw(RP) be the restriction to R® ¢ C® of ¥, and

Pm the polynomial

m-1
P(x,u) = x™ + ] A (m.x, (x,u) € RxR".
k=0
By the remark above, Pm(x,u) = 0 when Fm(x,u) = 0. Therefore,

because grad(Fm) is never zero on R)(RF, by a coordinate chan-
ge and Taylor's Theorem, there exists g € C@(R:;RP) such that
Pm = Fm.g.
Clearly, the Fréchet homomorphism

R: CC(R) » C (RxR™
defined by R(f) = g.R'(f) , f € Cw(R), is all we need to finish
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the proof of theorem 4.1.

5. PROOF OF THEOREM 2.1.

. k
k). R
nomial map (f must be open), and £, Cw(Rk) > Cw(Rk) the as-

sociated Fréchet homomorphism. Clearly, f£* must be injective.

Let f = (fl,...,f > Rk be a surjective and proper poly-

We will prove the following Glaeser type theorem:

Claim 5.1. £* is an isomorphism onto its image. Or, what is the
same, Im(f*) is closed in C”(RK).

By "g_ - £, {gn}°° and f in Cm(Rk), we mean that the limit

n=1

of the sequence of functions g, is £ in the Cm-Whitney topology.

More precisely, for every integer q = 0 and compact set K C Rk

Lim (I8,-£l, = max{|Df(g_-£)(x)|, x € X, |8] <a}) = 0.

>0

Functional Analysis implies that Claim 5.1 is equivalent to:
5.1'. If {gn}:=1 is a sequence in Cm(Rk) such that

*
gof=1£f1(g)~>20,

then g, > 0.

Let v be a point in Rk. C:(Rk) is the ring of all germs of

smooth real-valued functions defined in a nbhd of v, m the
unique maximal ideal in C:(Rk), and fv the germ at v ¢cf f.

If x € R* and y = £(x) then, moving at germ level, we get mor-

phisms
* .

=) k oo k
£, Cy(R ) - Cx(R )

and, for each integer q > 0,

(£)

*

© . ky, q+ ©, & +1
WDt G®RO/mIT - R R /mITh

q’
o _k q+l . . . q
¢, (R )/mv is naturally isomorphic to the vector space J' (k)

of gq-jets of functions at v e Rk. Also, if g € C:(Rk), then
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(£9) G %)) = §(gef) (x).
For every q > n, there is a canonical projection

Ton JYx) » J" (k)

and we can view Jn(k) as naturally immersed in J9(k) via the

decomposition J9=J"e Ker(ﬂq n).

Let s = max {degree(fi)}. Since f*: P(Rk) > P(Rk) must be in-
1<i<k

jective (P(Rk) = ring of polynomials over Rk), the following
remark is straightforward.

Claim 5.2, For every r > 0 and x € R®
* . ST ST
(£])gp: J5T(K) > J°7(K)

is injective over JY(x) € J°T (k). More precisely, if

wy 1,...,wy x are generators of m, (y = f(x)), then the vectors
k
* a a a
f w): |la] <rand w_ = I w®}
(D o, W) e lal y = I wn

are linearly independent.

Now, let {gn}:=1 be a sequence in Cw(Rk) such that gn0f > 0.
We must show that g, 0, that is, for each r > 0, g, 0 in
¥ (RY).

Because f is proper, open and surjective, it is enough to show
claim 5.1 in a local context, that is, it suffices to prove:

Claim 5.3. For every X, € Rk there exists a nbhd U of ) U

compact in RF, such that

vim e, Dl @), or ~
implies

lim Ig llg _ = 0

n->o

Proof. Let F be a vector subspace of Jsr(k) which satisfies
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JEE(K) = (£ ), (" (K)eF

X0

and pr: J%T(k) » J®Y(X)/F = E the canonical projection.

Writing 1: RX

ned by

> L(Jsr(k),E) to denote the continuous map defi-

k

1(x) = pro(f¥) , xeR

X“sr
we can choose a nbhd U of X and a continuous map
G: U =+ GL(J®"(k))
such that, for every x € U:
i) 1(x)|J5(k): J*(k) +» E is an isomorphism.
ii) G6(x)|JI* (k) is an;iSOmorphism onto JY (k).

iii) G(x)|Ker(1Tsr r) is an isomorphism onto Ker(1(x)).
By shrinking, if necessary, we can assume that

max {1G()N,IG (x)I} <L < +o.,

xeU
Next, let
P
JNK) o« Pl J%T (k) ., Ker(m__ )
where P, = Tgry » and
JT (k) +—El£fl— J%F (k) -Eiifi—» Ker (1(f(x))), x€U

are the canonical projections. Clearly, q; and q, vary conti-
nously with their argument.

We note that, if h: U -» Jsr(k) is any map, then

6™ (x) (q; (x) .h(x))
6™ (x(a, (x.h(x))))

nsr.r(h(x))
p,(h(x))

(5.1)

[}

Now, we are ready to finish the proof of claim (5.3). Since

g of » 0 in T (0) , §°T (g of) » 0 in °(T,I°F(K)) and also

pr(j°F (g of)) = pr(£;)  (G°Tg (£(x))) — 0

X° sTr
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Co-uniformly over U. This fact necessarily implies that
a; (x).j% g (£(x)) — 0

Co—uniformly over U. This last convergence is clearly the sa-

me as: jrgn(y) >0 Co-uniformly over f(U), which proves the
claim.

We turn now to the last tool necessary to prove theorem 2.1.

* S
Claim 5.4. Im((Tk d)*) is dense in C (Ck)<Rd) k.

S
Since the set of S;-equivariant polynomials P(Ck><Rd) kois

S
dense in Cm(Ck><Rd) k, it suffices to show that this set is

included in Im(('rk d)*).
An Sk—equivariant polynomial in c* x R has the form:

k d

p —
) ga(z,z),x“ , ¢z €GC and x €R

a=0
. . . . k
where each g, 1s an Sk-equlvarlant polynomial over C . There-

fore, without loss of generality, we can suppose d=0, and we
shall now admit complex-valued polynomial mappings in varia-

bles z,Z. We denote the ring of such maps by PR(CR,C) and by

P(Ck) the ring of holomorphic polynomials over ck,

It immediately becomes apparent that

S
o p(ck) — Pch) k

is a ring isomorphism. To see that * is surjective, pick any
S . . . - .

p € P(Ck) kK The necessarily continuous function p which sa-

tisfies p = Eonk is holomorphic in a thin set (the critical

values of nk), and then, p is holomorphic all over Ck. Also,
it must be a polynomial, as one can easily see. -

Noting that

PR(C,€) = P(c¥) e, P(CH)
and

S S —%. S
Pr(CE,C) 7 = p(c¥y K o, p(ct) 7k
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where the overbar is conjugation, the proof of claim 5.4 and

of theorem 2.1 can be easily finished.
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