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ON THE EXISTENCE OF LOCALLY HEAVY ARCS 
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Everyone is familiar with space's filling curves 'a la' Peano. Those curves are continu
ous functions of [0 ,1] but , by the Invariance of domain theorem, they are barred from being 
one-to-one. On the other hand, an arc is a homeomorphism of [0 , 1 ]  into a metric space. 
Thus , it is reasonable to expect that arcs are unidimensional objects .  This is indeed the 
case if dimension is understood in the topological sense as in Hurewicz and Wallman [5, 
p. 24] . However, if II is a square's filling curve, the arc r(t) = (t, lI(t» has a 2-dimensional 
projection; i .e . , it has a heavy shadow. In 1903 W.F. Osgood ' [7] show�cl that there exists 
a closed Jordan curve with positive exterior area (actually his curve has positive plane 
measure [2, p. 138] . Osgood's paper, which was motivated by a question of Jordan, makes 
for enjoyable reading; as an additional bonus, it has two beautiful color pictures (at least in 
the 1964 reprint ) .  Another fascinating curve was discovered by Koch in 1904; for pictures 
of it , see [6, pp. 42-43J . Manddbrot , in discussing the Koch-type curves, mentioned that 
they can be constructed with any possible Hausdorff dimension between 1 and 2, [6, p.  
39] . The regularity used in the construction would mean that any portion of a Koch-type 
curve has the same Hausdorff dimension. 

Recently, T. Lance and E. Thomas [3J have constructed a one parameter family of arcs 
in R2 with positive plane Lebesgue measure which converge to a space filling curve. In 
section 2, we show that the Lance and Thomas's construction, after a suitable modification, 
still yields the fact that there exist arcs which have positive plane Lebesgue measure 
wherever you look at them. Actually, for q such that 1 < q :::; 2, the same construction 
also yields the above mentioned fact that there exists an arc in R2 such that any subarc 
has Hausdorff dimension q. 

In section 3, we exhibit an arc which is " infinitely heavy" in the sense that its Hausdorff 
dimension is greater than any prescribed number. Such an arc cannot , of course, livejn 
a finite dimensional space. Ours lives in an infinite-dimensional separable Hilbert space, 
and while in it we'll see that " the crinkled arc" f : [0, 1] ----t L2 ( [0 , 1] , dx) ,  defined by 
f(t) = X[O ,t] , has Hausdorff dimension 2. As mentioned in Halmos [3, problem 5] , every 
pair of disjoint sub arcs of the crinkled arc are perpendicular; hence its name. 
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LOCALLY HEAVY ARCS 

Let E be a metric space . We recall how its Hausdorff dimension is defined [5. p. 105] . 

Let p be a real number and c > 0, 

h�(E) = inj{L [d(E. )JP} 
.=1 

where E = UEj is any partition of E in a countable number of subsets of diameter(E) = 
deE) < c. Let 

hp(E) = sup{h�(E) : c >  O} 

hp(E) is called the Hausdorff p-measure of E. The Hausdorff dimension of E i s  

h(E) = sup{p : hp(E) > O} . 

When E is compact , it suffices to consider finite partitions. The topological dimension of 
E satisfies: 

dim(E) = inJ{h(E' ) : E' is homeomorphic to E}  

Remark O.  B.  Mandelbrot [6, p.  15] suggests the term Hausdorff-Besicovitch dimen
sion as being more historically accurate. 

Remark 1. hq (E) finite implies that hp(E) = 0 if p > q. 
Remark 2 .  Let J : E � E' be bounded; i .e. , there exists C > 0 so that 

dist(j(x) , J(y) )  � Cdist(x , y) . 

Also, let J be onto. Then h(E') � h(E). 
Thus, the arc given in the introduction has h(r[I] ) 2: 2, where I stands for [0, 1] . 
The next known lemma will be used in the proof of the theorem. 

Lemma 3. Let 1 < q < 2 and let r be such that 4rq = 1. Let 

00 4 · 
A = n U Ak (i) 

k=1 i=1 

be, a Cantor subset of the unit square I2 such that , 
1 )  Ak+1 (4(i - 1 )  + v) C Ak(i) , v = 1 , 2 , 3, 4; where each of these sets is a square with 

sides parallel to the x and y axis andthe smaller squares contain the vertices of Ak(i) , 
2) Ak( i) and Ak(j )  are disjoint if i I- j ,  
3 )  The size of Ak(i) i s  rk , 

Then A has Hausdorff dimension q,  

) 
) 
) 
) 
\ ) 
) 
) 
) 
) 

) 
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Remark 4. Let A be as in Lemma 3. If g is an adequate convex function that sends 
the unit square 12 onto a diamond contained in 12 , then h(g(A) ) = q. This follows from 
applying Remark 2 since 9 and g-l are bounded. 

Remark 5 .  Let limk_oo Tk = 1 /2 ,  Tk > O. If A is as in the lemma except that the 
side of the Ai ( v)' s are II�=l Tk , then h(A) = 2 .  

In preparation for the theorem, we need the following ' sets :  for each n . E N; let 

Dn = {i = (i I , . . . , in ) : ik E {O ,  1 ,  . . .  , 7} fOT 1 :5 k  :5 n} 

endowed with the lexicographic order. Let (i 1 , . . .  , in , j ) E Dn+1 be denoted by (i , j ) ,  
where i E Dn . 

' 

We recall that in each step ofthe Lance and Thomas's construction there are squares 
and segments. What we basically do is use diamonds instead of segments .  When 1 < q :5 2 ,  
the diamonds are chosen in such a way that their width (length of their shorter diagonals) 
go to zero very rapidly, while the corresponding " squares" (in fact they are also diamonds) 
are chosen judiciously. 

We emphasize again that , although the content of the next theorem, is not new, its 
proof provides a unified and easy way of exhibiting arcs which locally have the same 
previously specified Hausdorff dimension. 

' 

Theorem 6. Let 1 < q :5 2, Then there exists an arc r : [0, 1] ---+ R2 , such that 
for each ret) and each f > 0, {y E R2 : Ir(t) - y l < f} n r( [O, 1 ] )  has Hausdorff dimension 
q. When q = 2, there exists an arc such that each subarc has positive two dimensional 
Lebesgue measure. 

Proof: Let us con:sider first q = 2. We construGt inductively nested sets :(h such that 
the arc satisfies ' , 

r Ill = nk::1 Bk 

Each Bk is the union of Sk diamonds in whl<;h each pair of distinct diamonds intersects 
at most in one point . Every Bk is connected; , 

In the first step we construct B1 = uI=l A( i )  according to figure 1 .  B1 is contained 
in (l. and each of the squares A(O),  A(2) , A(5) ,  A(7) contains a vertex of J2 , and they are 
all translates of A(O) . Each square has side T1 .A( I )  is a translate of A(6), while A(3) is a 
translate of A(4}. (The S diamonds have positive two-dimensional :J:,ebesgue measure.)  

Let Tk be an increasing sequence of positive numbers with limit 1/2 such that 

k 
lim 2k II Tj > 0. k-oo j=l 

( 1 )  

Assume that we have already constructed Bt , t =  1 ,  . . .  , n .  Let 

Bn+1 = U A(i) 
IED .. + 1  
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where the A(i) satisfy: 
1 )  If j E Dn , then A(j , k)  C Am, 

2) Each A( iI , . . .  , in+t } ,  with {i I , . . .  , in+d C {O ,  2, 5, 7} , is a square of side rr��i rk , 
3) For each pair of distinct i , k E Dn+1 , A(i) and A(k) intersect at most in one point , 

and such a point is a common vertex. 
4) If j E Dn , A(j , l )  is a translate of A(j , 6) ,  while A(j , 3) is a translate of A(j , 4) .  

The A(j, u) 's  with u = 0, 2 , 5 , 7, are all translate of each other. Also d(A(j , 7» = 

rn+ld(A(j » . 
5) Let i , j ,  k be three consecutive words of length n. Suppose that the diamonds A(i) , A(j )  

and A(k) are in  the position shown in  figure 2. Then the enumeration of A(j , u ) ,  u = 

0, . . .  , 7, is as shown in figure 3; i .e , the order is from A(i) to A(k). (Notice that the 
actual position of figure 2 may be rotated. When j = (0, . . . , 0) we can have only 
j � k; while j = (7, . . .  , 7) admits only i � j . )  

Let x E ] be  written in  base S,  x = L: x; /Si . We define the arc r : ] � ]2 by 

"" 
rex) E n A(xt , . . .  , Xn )  

n=l 

The set n�=lA(Xl ' . . .  , Xn )  is a singleton since the family {A(x t , . . .  , Xn) : 1 � n}  is 
nested and d(A(Xl , . . .  , Xn» � 2-n/2 . The only case when x can be written in two distinct 
forms is , for 1 � Xn , if 

n n-l 00 
X = L xm/Sm = L xm /sm + (xn - l)/Sn + L 7/sm . 

m=l m=l m=n+l 

But it is clear that A(Xl , . . .  , Xn-t ,  Xn , 0 ,  . . .  , 0) and A(Xl , . . .  , Xn-l , Xn - 1 , 7, . . .  , 7) 

, ) 
) 
) 
) 
) 
) 
) 

) 

) 

have a common point . That r is one-to-one and continuous is clear. ) 
Let mn( ) denote n-dimensional measure. If i E Db then m2 (A(i , O» = r�+1m2 (A(i». 

This and inequality (1) imply 

00 
m2(A(i) n r(I» � II (2rn+j )2m2 (A(i» > o .  " ) 

j=l 

If we only ask that limn ..... "" rn = 1/2 ,  then Lemma 3 and Remark 4 imply that ) h(A(i) n r(I) = 2.  
We now tackle the case 1 < q < 2 .  Let r be such that 4rq = 1 and let us choose an 

increasing sequence of natural numbers nk such that 

and 

"" 
� Sknl -q < 00 L.J k , 
k=l 

(2) 

(3) 

It will be convenient to denote {O ,  2 ,  5, 7} by S and {I ,  3 ,  4, 6}  by T. The construction 
of the Bk is as before except that 2) is replaced by 

) 



2') A(i} ' . . .  , ik ) , with { i I , . . .  , id c S, is a square of side rk , 
and we also ask: 

6) If ik E T, then the width of A(iI , . . . , ik )  is at most link . 
Conditions 2') and 4) ;  Lemma 3, and Remark 4 imply that for all i's ,  

h(A(i) n reI»� � q .  

Thus, i t  suffices to  show, by  Remark 1 ,  that hq (r(I)) i s  finite. In  fact , i t  i s  at most 
2(1 + L:�I 8

kn�-q ) . 
Let € > 0 and j be so that 2I /2ri < €. In what follows all the i's are in Di . 
If i is such that all of its components are in S; i ,e, 

. 

i E S x . . .  x S, --.....-..j , times 

then d(A(i) :::; 2I /2ri . There are 4i of these i's .  If i is such that its g-component is in T, 
while the 9 + 1, . . .  , j  components are in S, we partition 

ng A(i) = U X(i, u) 
u=1 

in such a way that the intersection of X(i , u ) with the long diagonal of A(i) has length 
ling the length of sU:h diagonal (�ee figu.re 4,. assumig nQ = 8) . Each X.(i,u) has diameter 
at most 21/2 (1/ng )rJ 9 • Inequabty (3) Impbes that 2I/2 ( l/ng )rJ-g < e.: (Observe that 
there are 2g-1 4i of these i 's . ) The choice of r and of {nk } implies the following inequalities 

and 

E [d(A(i))} q :::; 2q/24iriq = 2·q/2 
iES x . . .  x S � 

j t imes 

ng i 
.L L [d(X (i , u» ] q :::; 2q/2 E 2g-I 4ing [( 1/ng )ri-g j q .  

iriS x . . .  x S u=1 g=1 . 
� 

j times 

Thus the sum of the left-hand side in' the two preceeding inequalities is at most 

00 
2q/2 [1 + E(1/2)8gn!-q] 

g=1 

By using inequality (2) ,  we see that this last quantity is finite. Tb,is :;;hows that 
here!)� :::; q, which is the only estimate needed to conclude the proof of the theorem. 



Remark 7. This same construction works in higher dimensions; for each natural 
number n > 1, and n - 1 � q .� n, there exists an arc in rn such that each subarc has ) 
Hausdorff dimension q. 

INFINITELY HEAVY ARCS AND THE CRINKLED ARC 
For each n > 1 ,  let �n : I � In be an n-cube's filling curve. Let B be the real 

Hilbert space H = EflRn . The arc � : I � H defined by 

�(t) = (t, ( 1/2)�2 (t) ,  ( 1 /3)�3 (t) ,  . . .  ) 

is infinitely heavy. This follows fr�m Remark 2 since orthogonal projections are contrac
tions. By using Remark 7, a little more can be said. Let Q be any de�umerable dense 
subset of [ 1 , 00).  For each q .E Q, let nq = q if q E N and nq = [q] + 1 otherwise ( [q] = 
integer part of q ) . There exists an arc nq such that each subarc has Hausdorff dimension 
q. Let 9 be any injective mapping from N onto Q. For each j ,  let Hj = RngU ) . Define the 
arc n : I � EflHj by 

net) = (ng( l ) (t) ,  ( 1/2)ng(2) (t), ( 1/3)ng(3) (t) ,  . . .  ) 

For each j E N, let Pg(j) be the orthogonal projection in Hj . Then for each interval 
[a, b] C I, Pg(j) (n[a, b] ) has Hausdorff dimension q. It is plausible that for each x E [1 , 00) 
and every [a, b] , there exists a finite dimensional projection Px such that 

h(Px(n( [a, b] ))) = x 
In what follows we'll consider that f : 1  � Y(l, dx) is defined by J(t) = X[o)j , for 

1 < p <  00 .  We'll still call it the crinkled arc. 

Proposition 8. The crinkled arc haS Hausdorff dimension p. 

) 
) 
) 

) 
) 
) 
) 
) 

Proof. Since d(f( [a, b] ) = (b - a)l /p , L:?=1 d(f( [(i - 1 )/n, i/';'j )P = 1 . Thus Remark 1 
implies that h(f(I)) � p. . 

') 
Let 1 < q < p. We now show that hq(f(I)) = 00. Observe that B C f(I) implies that 

). d(f-1 (B)) = d(B)p . . 
Let f(I) = Uf=lBi with d(Bi ) � e. Since ) 

it follows that 

n n 
1 = m1 (Ui'=l r1 (Bi )) � E m1(f-1 (Bi )) � L d(ri (B;)) ,  

;=1 

n n n 

;=1 

L d(Bi )q = L d(r1 (Bi))q/P 2:: eq-p L, d(f-1 (B; ))  2:: eq-p . 
i=l ;=1 i=l 

Thus hq(j(I)) = 00 and so h(f(I)} == p .
. 

) 
) 
) 

) 

) 



Remark 9. The crinkled arc looks exactly the same (except at the end points, of 
course) wherever you look at it . 

Proposition 1 0 .  The projection of the crinkled arc in any (non-zero) finite dimen
sional subspace of LP(I, dx) has Hausdorff dimension 1 .  

Proof. Let P : LP(I, dx) --; LP(I, dx) be a finite dimensional projection. Then 
there exist linearly independent functions gl , . . .  , gm in LP(I, dx) and linearly independent 
functions k1 , . . .  , km in Lq(I, dx) ,  with l /p + l/q = 1 ,  so that for r E LP(I, dx ) 

For each n E N express P(f(I)) as Ui'=I P(f([(i  - 1 )/n , i/nJ ) ) .  The definition of the the 
diameter of P(f([( i - l )/n , i/n])) is 

sup{ I IP(f(s ) )  - P(f(t) ) l l p : (i - 1 )/n ::; s , t ::; i/n} .  
Since 

it follows that 
m j(i-I l /n 

d(P(f( [( i � 1 )/n , i/nJ ) ) ::; �) . I kj (x) ldx) l l gj l l p . j= 1  ./n 
Therefore 

t d(P(f( [(i - 1 )/n , i!nJ ) ) ) ::; f ( 1
1

I k(x) ldx) l lgj l l p  i=1 j=1  0 

and, by Holder's inequality, the last quantity is at most 

m 
L I I kj l l g l 19j l l p  < 00. 
j= 1  

Thus h(P(f(I)) ::; 1 .  To see the other inequality i t  suffices to  consider, by  Remark 2 ,  
the case when P i s  a one dimensional projection P( r) = ( fol r( x )k(  x)) g .  

We may assume that the real part of the function k is non-zero . Therefore the real 
part of {f; k(x)dx : .5  E [0, I ) } is ai non-degenerate interval of R. This concludes the proof 
of. the proposition. 

. 
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