Revista de la s 127
Unién Matemitica Argentina o
Volumen 36, 1990.

P

L -BOUNDEDNESS OF CERTAIN SINGULAR INTEGRAL OPERATORS

LINDA SAAL and MARTA URCIUOLO

INTRODUCTION. In [R-S], F.Ricci and E.Stein studied singular
integral operators whose kernels are supported on V U {0} where
V is a connected analytic homogeneous submanifold of R" not
containing the origin. = o ‘

It is also known that if B denotes the unit ball of R,

g: B> R™ is.a real analytic function, g(0) = 0, and k is‘'a
C”(R™-{0}) function homogeneous of degree -m and of mean value

zero then the.operator given by

TE(x) = p.v.jBf(x-g(t))k(t)dt

is bounded on LP(RP),>1 < p <=. See for example [C-N-S-W],
[S-U]. ‘

Our aim now is to show that this result still holds even if g
is not analytic at the origin but requiring it to be apprdxima-

tely homogeneous at that point in a sense that will be explicit-
ed at §z. R : : o PPN L B

SOV : : Vo
The proof follows the same lines that in the latter case with
a more exhaustive use of lemma 2.1. stated in :[M]. :

- Partially supported by CONICET and CONIGOR.
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It can be also proved with similar techniques that if g is ap-
proximately homogeneous in a neighborhood U of infinity then
the operator given by

Tf(x) = p.v.jUf(x-g(t))k(t)dt

is bounded on LP(R"), 1 < p < ». The case m=1 is proved in
[S.UR.].

§2. We say that a real analytic function g: B-{0} - R" is ap-

proximately homogeneous at the origin if

g(t) = (g. (t)+p, (t),...,8. (t)+¢_(t)) and it has the following
a; 1 a, n

properties

(2.1) If 1 <i <n, gai(t) is a homogeneous function of degree

. _ .84 : m
a; i.e. gai(rt) =r 1gai(t) ,teER , r>0.

(2.2) I1f m > 1, the image of gy(t) = (gal(t),...,ga-(t)) gene-
n
rates R" in the sense that it is not contained in any
proper subspace of R"; if m=1, gO(R+) and g,(R") genera-
te R".
(2.3) There exists ¢ > 0 such that for each t% € Dom g ¥, has
an analytic extension on W _ = {£ € C%|¢.-t%| <c min |t?]}.
e AR PR
J
(2.4) For each t0 e B-{0}, lim r-aiwi(rg) = 0 uniformly on W 4.
r=+0 t
EXAMPLE. Let f(t) = f,(t) +¢(t) be the function defined on
{teR/0<|t] <1}by £,(t) = [t]*, (t) = [t|* with

A=1, € >0 and let g(tl’tz) = (t f( t%+t§)) be the revo-

1°t2>
lution surface generated by the curve (t,f(t)).

We extend g to the region W = {(zl,zz)lRe(z§+z%) > 0} taking

the principal argument to define zA.
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Let us see that (2.3) and (2.4) hold.

i) Let t% = (t0,td) € B-{O} If t2 >0, tJ >0, W CW, with
0 t
¢ = 7. Indeed, {£; € C/IE 0 < Lye {g, € ¢/-g <arg £, <g).

1

So for suchE,ReE >0andthenfor£- (gl,g)ewo,

Re(€1+£2).>'o. If ‘c1 >0, tz <o, {52/|52_t2| < |t 2|} c
C {52 € C/-m < arg £y g.-%n} U {52 e C/%—"n <arg £, < .
Then 'f-'< arg 'g§:.< .

We take now t° = 0 ‘and tg > 0.

1 .
t2
‘ ; o Ifk|£1|<|—4l, IRe sll
t
m < |5§|~<|-—%—-
N [ , o 0 o
> —— ' 0 [ta| o 27
L/ tg , If |Ey-ty| <=, Re &) =
=|g;| cos arg F,;} |£§|_;os %2_

2

No

> 2] Thus Re(£2+£5) > |t2]° %—7—-——) > 0.

E
42

2))\/2

.. . . 5 : 2 .
ii) In this case goz(t:i,-tz) = (tl,tz,(tl+t2 ) and a, ~=v¢‘1“, .
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(z§+zz) ——> 0 uniformly on W
>0 t

0
NOTE 2.5. There exists N < n such that the map given by
¢0(t1,...,tN) = go(t1)+...+g0(tN) has rank n a.e. (tlp..,t) €
€ B-{0}x...xB-{0} and the same holds for ¢(t1,...,tN) =

= g(t1)+...+g(tN).

Proof. Since g, is not constant, there exists t! € B-{0} such

g, g,

s 9 9 T
Btl t1 Btm

that are not simultaneously null in R".

t1

Let W be the subspace generated by them. Since g, is analytic
on B-{0} there exists a neighborhood_Utl of t! where g, has a
Taylor expansion. We state that there exists t2 € Utl such

ag

0
that 3_{:—.-
1

) ¢ W for some 1 < i < m. Otherwise Dag0| ) EW
c t

for all multiindex o with |a| = 1 and then go(t) =
1 o 1,0 1

= t +)D t-t vt €U and so t) € tT)+W

g(t") g gl 1 (t-t)) o1 go(t) €8y(t")
vt eu 1 This is a contradiction since g9 is analytic on

t

B-{0} and generates R".
Iterating this argument, we find tl,tz,...,tN such that ¢0
has rank n at (tl,...,tN).

Now we define ¢k(t1,...,tN) = D2k¢(2-kt1,...,2_ktN).

Let J(t!,...,tN) = ) IAi(tl,...,tI‘I)lz)l/2 where Al are the
i

minors of order n of the jacobian matrix of ¢, and let Jk’ A;

and JO, Aé be the analogous functions for JO and ¢0 respecti-
vely; by 2.3) and 2.4) we observe that Jk 7:—» Jo uniformly
-+ 00

1

on W ; x...xW y and so J(tl,...,tN) # 0a.e. (t ,...,tN) i.e.
t t
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¢ has rankn a.e. (tl,..;,tN). a

Let k be a Cw(Rm-{O}) function,'homogeheous of degreé -m and

such that V0 <e < e' < 1 f k(t)dt = 0.
e<|t|<g'

We define TE£(x) = p.v. j £(x-g(t))k(t)dt (2.6)
B

Following the same lines as in [S-U], we decompose T as in

[R-S]. We take 8 € C3(1/2,2) such that ] 6(2%s) = 1. Then
=1

k(t) = E k(t) 2% |t]) = k(1) , ot e B.
2=1 -

=
e~ 8
—

Let u, be the measure defined by

b () = [ £(a(t)) K, (0)at.
|t]<1

We denote by. | | a homogeneous norm in R" associated to the

. a
group of dilations given by Dr(xl,...,xn) = (ralxl,...,r nxn)

and we set a = a_ +...+a_. We also define 8, (x) = e(lxlﬁ),

1 n
Ra _ sRa
GR(X) GO(DZRX) = 2

2 GCZZLXIh); If cg=,f 6(y)dy and

c_1(62+1(x)-92(x))~fhen~fOr“eachifixed j, we have that

n, (x)

-1
n“"’c

o
]
e~ 8
1
@

J *in the sense of distributions and thus - '
1 o
* My # f +cT e, ®qus ok £=0

= 7 T om..kyu xf+cVY @, ayu, % £f= ) Mf+ LE.
k=0 j=1 K+ it e <Rk

- N i ‘ .
NOTE 2.7. Set y, = igl kl(t ). We observe that My ® cov®uy

N times is the measure given'by"uz*..;*ul(f) =

N.

= f f(¢(t1,l..,tN)).wQ(fl;...,tN)ﬁtl...dt.'i.ef»it'is the -

transported measure of wz by ¢.
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¢ has rank n a.e. and it is analytic on supp by then Mg #eu okl
N times is absolutely continuous with a density Py satisfying
E 1_0
. o 1- (2.
Jnmawmﬂmu<dﬁwu+ﬂwnuﬂ%m%an°m (2.8)
R

for some o > 0, c depending only on ¢. For a proof see [R-S]
and [S].

THEOREM 2.9. Let k be a C”(R™-{0}) function homogeneous of

degree -m suech that if 0 <e <eg' <1 k(t)dt = 0.
e<|t|<e'

Det g(t) = (84, (1)+0;(t),...,8, ()40, (1)) satisfying 2.1) to

2.4). Then the operator T given by (2.6) is bounded on LP(R"),
1 <p < .

Proof. We now follow straightforward the proof of theorem 3.2

in [S.U]. So we decompose T = J M, + L and we have that

k20 k
VOo<e<i M, o <c. 2% and WLl o <c.
The following step is to prove that:
There exists o > 0 such that IIMkIIZ’2 <c 279, (2.10)

Then the theorem will follow by interpolation and duality ar-
guments.

Using Cotlar's lemma and the iteration argument in [Ch], it is
enough to prove that for & < j ‘

*

* -ok ,(%-j)0
sz * Uy *nk+j"1 <c 2 2

for some o > 0.

We define ¢(tl,...,tY) = 2”¥m wz(z"‘tl,...,z"‘f“) so that

Bz(y) = 27 a pz(Z-zy) is the density of the transported measu-

re of @ by ¢y and supp $ C'{(tl,,..,tN)/i% < |ti| < 2}.

If we prove that
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f nlal(x+y)-52(x)|dx <c |y[g for some <c,0 >0
R

independent of &, the rest of the proof of (2.10) follows as
in [S.U].

By (2.9) it is enough to show that
j |7,(6)] %t < ¢ 2.11)
SUPP‘I’
independent of &, for some o > 0.
As Jl(t) # 0a.e. t € supp ﬁ , there exists a minor, that we

denote by Al’ such that A'Q # 0 a.e. t € supp @.

To obtain (2.11) it is enough to check that f A (t) | "%t <c

supp ¥
for 'some o > 0, y & large enough.
Since (3 ) 5g ) 7
ga1 1 ( a, 1)
(=— + =) cieenn + e
d ot 7|, 1 ot ot ltN
1
Do(t,...,tN) =
.agan {2 agan oY .
(— F =) ; coveen ( + =)
TN at 7|1 ot At ltN}
it is easy to see, by induction on n, that A(tl,...,tN) =

= Ao(tl,...,tN) + R(tl,...,tN) where A0 is homogeneous of de-

gree (a-n) and R(tl,...,tN) is a finite sum of terms of the

form
98a - og 9y .. .
eS| aijg i I (a-s) (2.12)
ot k, """ 2dt k""" a3t k oot k :
2,1 t 1 gs t S g‘s+1 t s+l ’ jz’n e "
with 1 < i, eeu,ig,dpseeesd g <0, lpeenid NG, ) =0,

s<n, 1 <28 8 <m, 1 <k

120y 1,...,kn < N. Moreover, 2.12 is



134

a function of separated variables tl,...,tN and each variable

appears at most in m factors. Thus, if r = 22, we have that
Acel, oo tY) = 7@ g = Al )+ T TR et

We want to prove that for each t = (té,...,tg) € supp@ there

0
exists a neighborhood of tye Ut , and constants ayC such
0
that .
|A0(t) + 7@ IRErt) |0 gt < o VT ST (2.13)

to

Provided (2.13) the theorem follows since supp@ is compact.
To verify (2.13) we will make use of Lemma 2.1 in [M]. Indeed,
we will check that given t) and § > 0 there exists T, >0
such that

IR

131
-(a-n) r D |7l
§ T 5| o (rt)l M7 <3 (2.14)

for a suitable choice of M, v r < T,
To obtain (2.14) we analize only one summand of R(tl,...,tN)
By (2.12) this term has the form fl(t)... fn(t) where for

1 <k <s fk is a first partial derivate of g,., and for
1
k
s <k <n, fk is a first partial derivate of ¢. .
I (k-5)
. . J
IE T = (Gyseeendpy) - DI(E).u£) =
imN 11 imN 11
1 . B
= ! . I".I:I rD ! l’fl’ D" A
Il =gl =d 72 N
.k .k .1 .mN
where Ik = (11,...,1n) for 1 <k <mN. Let N‘Q = (12“..,11)
for 1 <& <n. Then |N/| +...+ [N | = |J].
—(a— -a; N, |+1 ~ay [N |+1
We also write ¢ (8™ I3l o 77 1T s s
-a. | N |+1 a |N_|+1
.r J1 gy st I(n-s) n
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N.
We must estimate D 1fi. For example we take i = n and we assu-
N M
me that j =n. SoD*f =D"¢_ where |M | = |[N_|+1 and
(n-s) n n n n

M
we must evaluate |D ¢n(rx0)| for x0 € B-{0}.

We apply Cauchy formula.

Let D denote the polydisk {f]| Igi-x2| = ¢ min |x§|}

0 040
XJ#

Mn 0 n
D Te (rx7) = —— M (T, 1) 46

M, J ‘Pn(g)
(2mi)® Di.0 (g-rx%) ™

where ¢ is as in (2.3).

-;a_ [N |+1 M 0 -a -M | 07N
r r ID g (xx)| <M!'Tt "sup e ()] ¢ ™ .(min |x;]) .
n n n O3
) Drxo xj#O

By the hypothesis (2.4) about p we have that

~-a
r "sup le (&) =

D

“8n -1 N -
sup |¢_(r r"7€)| <e V¥ r small

rx I'XO
enough since r_lg belong to W_,.
X

We obtain similar estimations for the others fk, but if

1 <k <s instead of j we have g which is a homo-
(k-S) alk
geneous function of degree aj, and thus r ik suplgai | <c.

Returning to (2.14) we have that the sum is bounded by

ce™® ) o < T Ml in 12017
. , 0 J
3ol =iyl =gy %370
< C "8 ) 'L, |J|n+mnN ¥ r small enough choosing
J 2
M o< i
7 ¢ min | x5 |

Since the last sum is convergent the theorem follows.
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Now we state an analogous result in the case that g is approxi
mately homogeneous in a neighborhood U of infinity. Mcre pre-

cisely, let g: U - R" be a real analytic function of the form
g(t) = (ga, (¥ + wl(t),---,gan(t) + ¢ (t)) satisfying (2.1),
(2.2), (2.3) and

a:
(2.15) for each t, € U, 1limr Yo (rg) = 0 uniformly on W, ,
0 i t
0

r—>+oo

instead of (2.4).

THEOREM 2.16. The operator T defined by Tf(x) =

= p.v jU f(x-g(t))k(t)dt <s bounded on LP(R"), 1 < p < w=.

Sketch of the proof. We decompose T = ) M, + L and we ob-

k>0
tain that [ILI <c, M <c2®% ve>0,1<p<o,
P,P k'p,p
as in [S.UR.]. The proof that [IM I <c 2% for some o > 0

k'2,2
is completely analogous to the given in theorem 2.9.
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