L^P-BOUNDEDNESS OF CERTAIN SINGULAR INTEGRAL OPERATORS

LINDA SAAL and MARTA URCIUOLO

INTRODUCTION. In [R-S], F.Ricci and E.Stein studied singular integral operators whose kernels are supported on V \cup {0} where V is a connected analytic homogeneous submanifold of $\mathbf{R}^{\mathbf{n}}$ not containing the origin.

It is also known that if B denotes the unit ball of \mathbf{R}^m , g: $\mathbf{B} \to \mathbf{R}^n$ is a real analytic function, $\mathbf{g}(0) = 0$, and k is a $\mathbf{C}^\infty(\mathbf{R}^m - \{0\})$ function homogeneous of degree -m and of mean value zero then the operator given by

$$Tf(x) = p.v. \int_{B} f(x-g(t)) k(t) dt$$

is bounded on $L^p(\mathbf{R}^n)$, 1 . See for example [C-N-S-W], [S-U].

Our aim now is to show that this result still holds even if g is not analytic at the origin but requiring it to be approximately homogeneous at that point in a sense that will be explicited at §2.

The proof follows the same lines that in the latter case with a more exhaustive use of lemma 2.1. stated in [M].

⁻ Partially supported by CONICET and CONICOR.

It can be also proved with similar techniques that if g is approximately homogeneous in a neighborhood U of infinity then the operator given by

$$Tf(x) = p.v. \int_{\Pi} f(x-g(t)) k(t) dt$$

is bounded on $L^p(\mathbf{R}^n)$, 1 . The case m=1 is proved in [S.UR.].

- § 2. We say that a real analytic function g: B-{0} \rightarrow \mathbb{R}^n is approximately homogeneous at the origin if $g(t) = (g_{a_1}(t) + \varphi_1(t), \dots, g_{a_n}(t) + \varphi_n(t))$ and it has the following properties
- (2.1) If $1 \le i \le n$, $g_{a_i}(t)$ is a homogeneous function of degree a_i i.e. $g_{a_i}(rt) = r^{a_i}g_{a_i}(t)$, $t \in \mathbb{R}^m$, r > 0.
- (2.2) If m > 1, the image of $g_0(t) = (g_{a_1}(t), \ldots, g_{a_n}(t))$ generates \mathbf{R}^n in the sense that it is not contained in any proper subspace of \mathbf{R}^n ; if m=1, $g_0(\mathbf{R}^+)$ and $g_0(\mathbf{R}^-)$ generate \mathbf{R}^n .
- (2.3) There exists c>0 such that for each $t^0\in Dom\ g$, φ_i has an analytic extension on $W_{t^0}=\{\xi\in {\bf C}^m/|\xi_i-t_i^0|< c\min\limits_{t_i^0\neq 0}|t_j^0|\}.$
- (2.4) For each $t^0 \in B-\{0\}$, $\lim_{r \to 0} r^{-a} i \varphi_i(r\xi) = 0$ uniformly on \mathbb{W}_{t^0} .

EXAMPLE. Let $f(t) = f_0(t) + \varphi(t)$ be the function defined on $\{t \in \mathbf{R} \ / \ 0 < |t| < 1\}$ by $f_0(t) = |t|^{\lambda}$, $\varphi(t) = |t|^{\lambda+\epsilon}$ with $\lambda \ge 1$, $\epsilon > 0$ and let $g(t_1, t_2) = (t_1, t_2, f(\sqrt{t_1^2 + t_2^2}))$ be the revolution surface generated by the curve (t, f(t)).

We extend g to the region W = $\{(z_1, z_2) | \text{Re}(z_1^2 + z_2^2) > 0\}$ taking the principal argument to define z^{λ} .

Let us see that (2.3) and (2.4) hold.

i) Let $t^0 = (t_1^0, t_2^0) \in B - \{0\}$. If $t_1^0 > 0$, $t_2^0 > 0$, $W_{t_0} \subset W$, with $c = \frac{1}{4}$. Indeed, $\{\xi_i \in \mathbf{C}/|\xi_i - t_i^0| \le \frac{|t_i^0|}{2}\} \subset \{\xi_i \in \mathbf{C}/-\frac{\pi}{8} \le \arg \xi_i \le \frac{\pi}{8}\}$.

So for such ξ_1 , $\operatorname{Re}\ \xi_1^2 > 0$ and then for $\xi = (\xi_1, \xi_2) \in \operatorname{W}_{t^0}$, $\operatorname{Re}\ (\xi_1^2 + \xi_2^2) > 0$. If $t_1^0 > 0$, $t_2^0 < 0$, $\{\xi_2/|\xi_2 - t_2^0| \leq \frac{|t_2^0|}{2}\} \subset \{\xi_2 \in \mathbf{C}/-\pi \leq \arg\ \xi_2 \leq -\frac{7}{8}\pi\} \cup \{\xi_2 \in \mathbf{C}/\frac{7}{8}\pi \leq \arg\ \xi_2 < \pi\}$. Then $\frac{-\pi}{4} < \arg\ \xi_2^2 < \frac{\pi}{4}$.

We take now $t_1^0 = 0$ and $t_2^0 > 0$.

If
$$|\xi_1| \le \frac{|t_2^0|}{4}$$
, $|\text{Re } \xi_1^2| \le |\xi_1^2| \le |\xi_1^0|^2$.

If
$$|\xi_2 - t_2^0| \le \frac{|t_2^0|}{2}$$
, Re $\xi_2^2 =$

$$= |\xi_2^2| \cos \arg \xi_2^2 \ge |\xi_2^2| \cos \frac{\pi}{4} \ge$$

$$\geqslant \frac{|\mathbf{t}_{2}^{0}|^{2}}{4} \cdot \frac{\sqrt{2}}{2}$$
. Thus $\operatorname{Re}(\xi_{1}^{2} + \xi_{2}^{2}) > |\mathbf{t}_{0}^{2}|^{2} (\frac{\sqrt{2}}{8} - \frac{1}{16}) > 0$.

ii) In this case
$$g_0(t_1, t_2) = (t_1, t_2, (t_1^2 + t_2^2)^{\lambda/2})$$
 and $a_1 = 1$,

$$a_2 = 1$$
, $a_3 = \lambda$
$$r^{-\lambda} \varphi(r\sqrt{z_1^2 + z_2^2}) = r^{-\lambda} r^{\lambda + \varepsilon} (z_1^2 + z_2^2) \xrightarrow{\frac{\lambda + \varepsilon}{2}} 0 \text{ uniformly on } W_{t_0}.$$

NOTE 2.5. There exists $N \le n$ such that the map given by $\phi_0(t^1,\ldots,t^N) = g_0(t^1)+\ldots+g_0(t^N) \text{ has rank } n \text{ a.e. } (t^1,\ldots,t^N) \in \\ \in B-\{0\}\times\ldots\times B-\{0\} \text{ and the same holds for } \phi(t^1,\ldots,t^N) = \\ = g(t^1)+\ldots+g(t^N).$

Proof. Since g_0 is not constant, there exists $t^1 \in B-\{0\}$ such that $\frac{\partial g_0}{\partial t_1}\Big|_{t^1}, \dots, \frac{\partial g_0}{\partial t_m}\Big|_{t^1}$ are not simultaneously null in \mathbf{R}^n .

Let W be the subspace generated by them. Since g_0 is analytic on B-{0} there exists a neighborhood U_{t^1} of t^1 where g_0 has a Taylor expansion. We state that there exists $t^2 \in U_{t^1}$ such that $\left. \frac{\partial g_0}{\partial t_i} \right|_{t^2} \notin W$ for some $1 \le i \le m$. Otherwise $D^{\alpha}g_0|_{t^2} \notin W$

for all multiindex α with $|\alpha| \ge 1$ and then $g_0(t) = g_0(t^1) + \sum_{\alpha} D^{\alpha} g_0|_{t^1} (t-t^1)^{\alpha} \quad \forall \, t \in U_{t^1} \text{ and so } g_0(t) \in g_0(t^1) + W$ $\forall \, t \in U_{t^1}.$ This is a contradiction since g_0 is analytic on B-{0} and generates \mathbf{R}^n .

Iterating this argument, we find $t^1, t^2, ..., t^N$ such that ϕ_0 has rank n at $(t^1, ..., t^N)$.

Now we define $\phi_k(t^1,...,t^N) = D_{2k}\phi(2^{-k}t^1,...,2^{-k}t^N)$. Let $J(t^1,...,t^N) = (\sum_i |A^i(t^1,...,t^N)|^2)^{1/2}$ where A^i are the

minors of order n of the jacobian matrix of ϕ , and let J_k , A_k^i and J_0 , A_0^i be the analogous functions for J_0 and ϕ_0 respectively; by 2.3) and 2.4) we observe that $J_k \xrightarrow[k \to \infty]{} J_0$ uniformly on $W_{t^1} \times \ldots \times W_{t^N}$ and so $J(t^1, \ldots, t^N) \neq 0$ a.e. (t^1, \ldots, t^N) i.e.

 ϕ has rank in a.e. (t^1, \ldots, t^N) .

Let k be a $C^\infty(\textbf{R}^m-\{0\})$ function, homogeneous of degree -m and such that $\forall~0<\epsilon<\epsilon'<1~\int\limits_{\epsilon<|t|<\epsilon'}k(t)dt$ = 0.

We define
$$Tf(x) = p.v. \int_{B} f(x-g(t))k(t)dt$$
 (2.6)

Following the same lines as in [S-U], we decompose T as in [R-S]. We take $\theta \in C_0^{\infty}(1/2,2)$ such that $\sum_{k=1}^{\infty} \theta(2^k s) = 1$. Then

$$k(t) = \sum_{\ell=1}^{\infty} k(t) \theta(2^{\ell}|t|) = \sum_{\ell=1}^{\infty} k_{\ell}(t)$$
, $t \in B$.

Let μ_0 be the measure defined by

$$\mu_{\ell}(f) = \int_{|t|<1} f(g(t)) k_{\ell}(t)dt.$$

We denote by $| \cdot |_n$ a homogeneous norm in \mathbf{R}^n associated to the group of dilations given by $\mathbf{D}_{\mathbf{r}}(\mathbf{x}_1,\ldots,\mathbf{x}_n)=(\mathbf{r}^{a_1}\mathbf{x}_1,\ldots,\mathbf{r}^{a_n}\mathbf{x}_n)$ and we set $\mathbf{a}=\mathbf{a}_1+\ldots+\mathbf{a}_n$. We also define $\theta_0(\mathbf{x})=\theta(|\mathbf{x}|_n)$, $\theta_k(\mathbf{x})=2^{ka}\theta_0(\mathbf{D}_{2k}\mathbf{x})=2^{ka}\theta(2^k|\mathbf{x}|_n)$. If $\mathbf{c}=\int\theta(\mathbf{y})\mathrm{d}\mathbf{y}$ and

 $\eta_{\ell}(x) = c^{-1}(\theta_{\ell+1}(x) - \theta_{\ell}(x))$ then for each fixed j, we have that $\delta = \sum_{\ell=j}^{\infty} \eta_{\ell} + c^{-1}\theta_{j}$ in the sense of distributions and thus

$$Tf = \sum_{j=1}^{\infty} \mu_{j} * f = \sum_{j=1}^{\infty} \sum_{k=j}^{\infty} \eta_{k} * \mu_{j} * f + c^{-1} \sum_{j=1}^{\infty} \theta_{j} * \mu_{j} * f = \sum_{k=0}^{\infty} \sum_{j=1}^{\infty} \eta_{k+j} * \mu_{j} * f + c^{-1} \sum_{j=1}^{\infty} \theta_{j} * \mu_{j} * f = \sum_{k=0}^{\infty} M_{k}f + Lf.$$

NOTE 2.7. Set $\psi_{\ell} = \prod_{i=1}^{N} k_{\ell}(t^{i})$. We observe that $\mu_{\ell} * \cdots * \mu_{\ell}$ Note times is the measure given by $\mu_{\ell} * \cdots * \mu_{\ell}(f) = \int f(\phi(t^{1}, \dots, t^{N})) \cdot \psi_{\ell}(t^{1}, \dots, t^{N}) dt^{1} \cdot dt^{N}$ i.e. it is the transported measure of ψ_{ℓ} by ϕ .

 φ has rank n a.e. and it is analytic on supp ψ_{ℓ} then $\mu_{\ell} * \ldots * \mu_{\ell}$ N times is absolutely continuous with a density ρ_{ℓ} satisfying

$$\int_{\mathbb{R}^{n}} \left| \rho_{\ell}(x+y) - \rho_{\ell}(x) \right| dx < c \left(\int \left| \nabla \psi_{\ell} \right| + \int \left| \psi_{\ell} \right| \right)^{\sigma} \left[\left(\int \left| \psi_{\ell}(t) J_{\ell} dt \right| \right)^{\frac{2\sigma}{1-\sigma}} dt \right]^{1-\sigma} \tag{2.8}$$

for some $\sigma>0$, c depending only on $\varphi.$ For a proof see [R-S] and [S].

THEOREM 2.9. Let k be a $C^{\infty}(\mathbf{R}^m - \{0\})$ function homogeneous of degree -m such that if $0 < \epsilon < \epsilon' < 1$ $\int\limits_{\epsilon < |t| < \epsilon'} k(t) dt = 0$. Let $g(t) = (g_{a_1}(t) + \varphi_1(t), \ldots, g_{a_n}(t) + \varphi_n(t))$ satisfying 2.1) to 2.4). Then the operator T given by (2.6) is bounded on $L^p(\mathbf{R}^n)$, 1 .

Proof. We now follow straightforward the proof of theorem 3.2 in [S.U]. So we decompose $T = \sum_{k>0} M_k + L$ and we have that

$$\forall 0 < \varepsilon < 1$$
 $\|M_k\|_{p,p} \le c_{\varepsilon,p} 2^{\varepsilon k}$ and $\|\cdot L\|_{p,p} \le c$.

The following step is to prove that:

There exists
$$\sigma > 0$$
 such that $\|M_k\|_{2,2} \le c \ 2^{-\sigma k}$. (2.10)

Then the theorem will follow by interpolation and duality arguments.

Using Cotlar's lemma and the iteration argument in [Ch], it is enough to prove that for $\ell < j$

$$\|\rho_{\ell} * \mu_{j}^{*} * \eta_{k+j}^{*}\|_{1} \leqslant c \ 2^{-\sigma k} \ 2^{(\ell-j)\sigma} \quad \text{for some} \quad \sigma > 0.$$

We define $\tilde{\psi}(t^1,...,t^N) = 2^{-Nm} \psi_{\ell}(2^{-\ell}t^1,...,2^{-\ell}t^N)$ so that

 $\tilde{\rho}_{\ell}(y) = 2^{-\ell a} \rho_{\ell}(2^{-\ell}y)$ is the density of the transported measure of $\tilde{\psi}$ by ϕ_{ℓ} and supp $\tilde{\psi} \subset \{(t^1, \dots, t^N) / \frac{1}{2} < |t^i| < 2\}$.

If we prove that

$$\int_{\mathbb{R}^n} |\tilde{\rho}_{\ell}(x+y) - \tilde{\rho}_{\ell}(x)| dx < c |y|_n^{\sigma} \quad \text{for some} \quad c, \sigma > 0$$

independent of ℓ , the rest of the proof of (2.10) follows as in [S.U].

By (2.9) it is enough to show that

$$\int_{\text{supp }\widetilde{\Psi}} |J_{\ell}(t)|^{-\alpha} dt < c$$
 (2.11)

independent of ℓ , for some $\alpha > 0$.

As $J_{\ell}(t) \neq 0$ a.e. $t \in \text{supp } \widetilde{\psi}$, there exists a minor, that we denote by A_{ℓ} , such that $A_{\ell} \neq 0$ a.e. $t \in \text{supp } \widetilde{\psi}$.

To obtain (2.11) it is enough to check that $\int\limits_{\text{supp}\,\widetilde{\psi}} |A_{\ell}(t)|^{-\alpha} dt < C$ for some $\alpha>0$, \forall ℓ large enough.

Since
$$\mathsf{D} \phi \left(\mathsf{t}^1, \dots, \mathsf{t}^N \right) \; = \; \left(\begin{array}{c} \frac{\partial \mathsf{g}_{\mathsf{a}_1}}{\partial \mathsf{t}_1} \; + \; \frac{\partial \varphi_1}{\partial \mathsf{t}_1} \right) \big|_{\mathsf{t}^1} \; \dots \dots \; \left(\frac{\partial \mathsf{g}_{\mathsf{a}_1}}{\partial \mathsf{t}_{\mathsf{m}}} \; + \; \frac{\partial \varphi_1}{\partial \mathsf{t}_{\mathsf{m}}} \right) \big|_{\mathsf{t}^N} \\ \vdots \\ \frac{\partial \mathsf{g}_{\mathsf{a}_1}}{\partial \mathsf{t}_1} \; + \; \frac{\partial \varphi_n}{\partial \mathsf{t}_1} \big|_{\mathsf{t}^1} \; \dots \dots \; \left(\frac{\partial \mathsf{g}_{\mathsf{a}_1}}{\partial \mathsf{t}_{\mathsf{m}}} \; + \; \frac{\partial \varphi_n}{\partial \mathsf{t}_{\mathsf{m}}} \right) \big|_{\mathsf{t}^N} \right)$$

it is easy to see, by induction on n, that $A(t^1,...,t^N) = A_0(t^1,...,t^N) + R(t^1,...,t^N)$ where A_0 is homogeneous of degree (a-n) and $R(t^1,...,t^N)$ is a finite sum of terms of the form

$$\frac{\partial g_{a_{i_1}}}{\partial t_{\ell_1}}\Big|_{t_1} \cdots \frac{\partial g_{a_{i_s}}}{\partial t_{\ell_s}}\Big|_{t_s} \cdots \frac{\partial \varphi_{j_1}}{\partial t_{\ell_{s+1}}}\Big|_{t_{s+1}} \cdots \frac{\partial \varphi_{j_{(n-s)}}}{\partial t_{\ell_n}}\Big|_{t_n} (2.12)$$

with $1 \le i_1, \dots, i_s, j_1, \dots, j_{n-s} \le n$, $\{i_1, \dots, i_s\} \cap \{j_1, \dots, j_{n-s}\} = \emptyset$, s < n, $1 \le \ell_1, \dots, \ell_n \le m$, $1 \le k_1, \dots, k_n \le N$. Moreover, 2.12 is

a function of separated variables t^1, \ldots, t^N and each variable appears at most in m factors. Thus, if $r = 2^{\ell}$, we have that $A_r(t^1, \ldots, t^N) = r^{-(a-n)}A(r \ t) = A_0(t^1, \ldots, t^N) + r^{-(a-n)}R(rt^1, \ldots, rt^N)$.

We want to prove that for each $t_0 = (t_0^1, \dots, t_0^N) \in \operatorname{supp}\widetilde{\psi}$ there exists a neighborhood of t_0 , U_{t_0} , and constants α_0, c_0 such that

$$\int_{U_{t_0}} |A_0(t) + r^{-(a-n)} R(rt)|^{-\alpha_0} dt \le c_0 \quad \forall \ r \le r_0.$$
 (2.13)

Provided (2.13) the theorem follows since ${\rm supp}\tilde{\psi}$ is compact. To verify (2.13) we will make use of Lemma 2.1 in [M]. Indeed, we will check that given t_0 and $\delta>0$ there exists $r_0>0$ such that

$$\sum_{J} r^{-(a-n)} \frac{r^{|J|}}{J!} |\frac{D^{J}R}{dt^{J}} (r t_{0}) |M^{|J|} \leq \delta$$
 (2.14)

for a suitable choice of M, \forall $r \leq r_0$.

To obtain (2.14) we analize only one summand of $R(t^1, ..., t^N)$. By (2.12) this term has the form $f_1(t) ... f_n(t)$ where for $1 \le k \le s$ f_k is a first partial derivate of $g_{a_{i_k}}$ and for $s < k \le n$, f_k is a first partial derivate of $\varphi_{j_{(k-s)}}$.

If
$$J = (j_1, ..., j_{mN})$$
, $D^{J}(f_1...f_n) =$

$$= \sum_{\left|\mathbf{I}_{1}\right| = \mathbf{j}_{1}, \dots, \left|\mathbf{I}_{\mathbf{m}N}\right| = \mathbf{j}_{\mathbf{m}N}} \frac{\mathbf{J}!}{\mathbf{I}_{1}! \cdots \mathbf{I}_{\mathbf{m}N}!} \mathbf{D}^{\mathbf{i}_{1}^{\mathbf{m}N} \cdots \mathbf{i}_{1}^{1}} \mathbf{f}_{1} \cdots \mathbf{D}^{\mathbf{i}_{n}^{\mathbf{m}N} \cdots \mathbf{i}_{n}^{1}} \mathbf{f}_{n}$$

where $I_k = (i_1^k, \dots, i_n^k)$ for $1 \le k \le mN$. Let $N_k = (i_k^1, \dots, i_k^{mN})$ for $1 \le k \le n$. Then $|N_1| + \dots + |N_n| = |J|$.

We also write $r^{-(a-n)} r^{|J|} = r^{-a_{i_1}} r^{|N_1|+1} ... r^{-a_{i_s}} r^{|N_s|+1}$

$$r^{-a}j_{1}r^{|N_{s+1}|+1}...r^{-a}j_{(n-s)}r^{|N_{n}|+1}.$$

We must estimate $D^{N_i}f_i$. For example we take i = n and we assume that $j_{(n-s)} = n$. So $D^{N_n}f_n = D^{M_n}\varphi_n$ where $|M_n| = |N_n|+1$ and we must evaluate $|D^{M_n}\varphi_n(rx^0)|$ for $x^0 \in B-\{0\}$.

We apply Cauchy formula.

Let $D_{\mathbf{x}_0}$ denote the polydisk $\{\xi \mid |\xi_i - \mathbf{x}_i^0| = c \min_{\mathbf{x}_i^0 \neq 0} |\mathbf{x}_j^0|\}$

$$D^{m} \varphi_{n}(rx^{0}) = \frac{M_{n!}}{(2\pi i)^{m}} \int_{rx^{0}} \frac{\varphi_{n}(\xi)}{(\xi - rx^{0})^{M_{n} + (1, ..., 1)}} d\xi$$

where c is as in (2.3).

$$r^{-a_n} r^{|N_n|+1} \|_{D^{-n}\varphi_n(rx^0)}^{M}| \leq M_n! r^{-a_n} \sup_{D_{rx^0}} |\varphi_n(\xi)| c^{-|M_n|} \cdot (\min_{x_{\mathbf{j}}^0 \neq 0} |x_{\mathbf{j}}^0|)^{-M_n}.$$

By the hypothesis (2.4) about φ_n we have that

$$r \xrightarrow{a_n} \sup_{D_{rx}0} |\varphi_n(\xi)| = r \xrightarrow{a_n} \sup_{D_{rx}0} |\varphi_n(r \ r^{-1}\xi)| \leqslant \varepsilon \quad \forall \ r \ small$$

enough since $r^{-1}\xi$ belong to W_{r0} .

We obtain similar estimations for the others f_k , but if $1 \le k \le s$ instead of $j_{(k-s)}$ we have $g_{a_{i_k}}$ which is a homogeneous function of degree a_{i_k} and thus $r^{-a_{i_k}} \sup |g_{a_{i_k}}| \le C$.

Returning to (2.14) we have that the sum is bounded by

< C $\epsilon^{n-s} \sum_{J} \frac{1}{2|J|} |J|^{n+mnN} \forall r \text{ small enough choosing}$

$$M < \frac{1}{2} c \min_{\substack{x_{j}^{0} \neq 0}} |x_{j}^{0}|.$$

Since the last sum is convergent the theorem follows.

Now we state an analogous result in the case that g is approximately homogeneous in a neighborhood U of infinity. More precisely, let g: U \rightarrow Rⁿ be a real analytic function of the form g(t) = (g_{a1}(t) + φ_1 (t),...,g_{an}(t) + φ_n (t)) satisfying (2.1), (2.2), (2.3) and

(2.15) for each $t_0 \in U$, $\lim_{r \to +\infty} r^{-a_i} \varphi_i(r\xi) = 0$ uniformly on W_{t_0} , instead of (2.4).

THEOREM 2.16. The operator T defined by Tf(x) = $= p.v \int_{U} f(x-g(t))k(t)dt \text{ is bounded on } L^{p}(\textbf{R}^{n}), \ 1$

Sketch of the proof. We decompose $T = \sum\limits_{k \geq 0} M_k + L$ and we obtain that $\|L\|_{p,p} < C$, $\|M_k\|_{p,p} < C2^{\epsilon k}$ \forall $\epsilon > 0$, $1 , as in [S.UR.]. The proof that <math>\|M_k\|_{2,2} < C2^{-\sigma k}$ for some $\sigma > 0$ is completely analogous to the given in theorem 2.9.

REFERENCES

- [Ch] CHRIST, M., Hilbert transforms along curves, 1. Nilpotent groups. Ann. of Math. 122 (1985), 575-596.
- [C.N.S.W.] CHRIST, M., NAGEL, A., STEIN, E., WAINGER, S., Singular and maximal Radon transform. Preprint.
- [M] MULLER, D., Singular kernels supported by homogeneous submanifolds. J. Reine Angew. Math. 356 (1985), 90-118.
- [R.S.] RICCI, F., STEIN, E., Harmonic analysis on nilpotent groups and singular integrals II. Singular kernels supported on submanifolds. J. Funct. Anal.78 (1988) 56-84.
- [S] SAAL,L., A result about the Hilbert transform along curves. To appear in Proc. Amer. Math. Soc..

- [S.U.] SAAL,L., URCIUOLO,M., Singular integrals supported on the image of an analytic function. To appear in Math.Z..
- [S.UR.] SAAL, L., URCIUOLO, M., The Hilbert transform along curves which are analytic at infinity, Preprint.

Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Argentina