A NOTE ON ITERATED SIMILARITIES OF OPERATORS

DOMINGO A. HERRERO (*)

Publicación póstuma. D. Herrero falleció en enero de 1991 en Arizona, EEUU.

In [3], J.A.Deddens introduced the set

$$B_{A} = \{X \in L(H): \sup_{n \ge 1} \|A^{n}XA^{-n}\| < \infty\}$$

associated with an invertible operator A. (L(H) is the algebra of all bounded linear operators acting on the complex, separable, infinite dimensional Hilbert space H.) B_A is an algebra that includes the commutant A'(A) of A.

The question (raised by Deddens in [3]) of whether $\mathcal{B}_A = L(\mathcal{H})$ implies that A is a non-zero multiple of a similarity of a unitary operator has been affirmatively answered, independently, by D.A.Herrero [5], J.G.Stampfli [9] and J.P.Williams [11]. Indeed, Stampfli and Williams merely assume that $\mathcal{B}_A \supset \mathcal{K}(\mathcal{H})$, the ideal of all compact operators. The first result of this note says that the same conclusion is true if we just assume that \mathcal{B}_A contains all the rank-one operators. The second result extends a theorem of J.P.Williams [11] by showing that $\mathcal{B}_A \cap \mathcal{B}_{A^{-1}} = \mathcal{A}'(A)$ for a large family of operators. The third and last result is an example showing that we can have

$$\sup_{n \ge 1} \|A^n X A^{-n}\| < \infty \quad \text{and} \quad \|A^n R A^{-n}\| \to 0 \quad (|n| \rightarrow \infty)$$

^(*) This research was partially supported by a Grant of the National Science Foundation.

for a suitably chosen non-zero nilpotent operator R and A invertible. This negatively answers a question of C.M.Pearcy (personal communication).

THEOREM 1. The following are equivalent for A in L(H):

- (i) $B_{\Delta} = L(H)$.
- (ii) $B_{\Lambda} \supset K(H)$.
- (iii) B_A contains all rank-one operators.
- (iv) $A = rWUW^{-1}$, where r > 0, W is invertible and U is unitary.

Proof. (iv) ⇒ (i) ⇒ (ii) ⇒ (iii) are trivial implications. Assume that \mathcal{B}_A contains all operators of the form $f \otimes g^*$ ($f \otimes g^*(x) = \langle x, g \rangle f$, $x \in \mathcal{H}$). Observe that $A^n(f \otimes g^*)A^{-n} = (A^n f) \otimes (A^{*-n}g)^*$. Fix g; since $f \otimes g^* \in \mathcal{B}_A$, the function

$$f \to a_{g}(f) := \sup_{n \geq 0} \|A^{n}(f \otimes g^{*})A^{-n}\| = \sup_{n \geq 0} \|A^{n}f\|.\|A^{*-n}g\|$$

is finite for all $f \in \mathcal{H}$. It is completely apparent that a_g is a Borel function defined on \mathcal{H} with values in R^+ , $a_g(f_1-f_2) \leq a_g(f_1) + a_g(f_2)$ and $a_g(tf) = ta_g(f)$ for t > 0. Thus, by Helson's uniform boundedness principle [4,Theorem 1], there is a positive constant K(g) such that $a_g(f) \leq K(g)\|f\|$ for all $f \in \mathcal{H}$.

Furthermore, K(g) can be chosen equal to

$$K(g) = \sup_{n \ge 0} \sup_{\|f\| = 1} \|A^n f\| . \|A^{*-n} g\| = \sup_{n \ge 0} \|A^n\| . \|A^{*-n} g\|,$$

and the function $g \to K(g)$ has exactly the same properties as a_g . Thus, a new application of Helson's uniform boundedness principle implies that $K(g) \le C \|g\|$ for all $g \in H$ and some constant C > 0.

Let $r = |\lambda|$ for some λ in the spectrum, $\sigma(A)$, of A. We conclude from the above argument that

$$\|(\mathbf{r}^{-1}\mathbf{A})^{\mathbf{n}}\| \cdot \|(\mathbf{r}^{-1}\mathbf{A})^{-\mathbf{n}}\| = \|\mathbf{A}^{\mathbf{n}}\| \cdot \|\mathbf{A}^{-\mathbf{n}}\| = \sup_{\|\mathbf{f}\| = \|\mathbf{g}\| = 1} \|\mathbf{A}^{\mathbf{n}}\mathbf{f}\| \cdot \|\mathbf{A}^{*-\mathbf{n}}\mathbf{g}\| \le C$$

for all $n \ge 0$. A fortiori, $1 \le \|(r^{-1}A)^n\| \le C$ for all *integers* n. By a well-known theorem of B.Sz.-Nagy [10], it follows that

$$A = rWUW^{-1}$$

for some invertible W and some unitary U.

The proof of Theorem 1 is now complete.

REMARK. The conclusion " $\|(r^{-1}A)^n\| \le C$ for all integers n" holds for every (real or complex) Banach space.

J.P.Williams has shown that if Q is quasinilpotent, then $B_{1+Q} \cap B_{(1+Q)}^{-1} = A'(Q)$ [11]. His result admits the following mild extension.

THEOREM 2. Assume that $A \in L(H)$ is an invertible operator with totally disconnected spectrum

$$\sigma(A) \subseteq \{r e^{i\phi(r)}: r > 0\}$$

for some real-valued function ϕ defined on $(0,\infty)$; then

$$B_{\Lambda} \cap B_{\Lambda^{-1}} = A'(\Lambda)$$
.

Proof. Observe that $A = e^S$, where $S = \log A$ for some branch of log analytic on $\sigma(A)$; moreover, the weak closure of the polynomials in S coincides with the weak closure of the polynomials in A, and therefore A'(A) = A'(S). Since $\sigma(A)$ and $\sigma(S)$ are totally disconnected, given $\varepsilon > 0$ we can write

$$A = W_{\epsilon} (\sum_{j=1}^{m} A_{j}) W_{\epsilon}^{-1} , \qquad S = W_{\epsilon} (\sum_{j=1}^{m} S_{j}) W_{\epsilon}^{-1} ,$$

where $\{A_j\}_{j=1}^m$ and $\{S_j = \log A_j\}_{j=1}^m$ $(m = m(\epsilon))$ are finite families of operators with pairwise disjoint spectra such that diameter $\sigma(A_j) < \epsilon$ and diameter $\sigma(S_j) < \epsilon$ for all j = 1, 2, ..., m, and $sp(A_j)sp(A_{j+1}^{-1}) < 1$ for j = 1, 2, ..., m-1. (Here sp(T) denotes the spectral radius of the operator T.)

Suppose $\|A^nXA^{-n}\| \le C(X)$ for all $n \in \mathbb{Z}$; then

$$\sup_{\lambda \in \mathbf{R}} \| e^{\lambda S} X e^{-\lambda S} \| \leq (\max_{0 \leq t \leq 1} \| e^{tS} \|) (\max_{0 \leq t \leq 1} \| e^{-tS} \|) \sup_{n} \| e^{nS} X e^{-nS} \| =$$

$$= (\max_{0 \le t \le 1} \|e^{tS}\|) (\max_{0 \le t \le 1} \|e^{-tS}\|) \sup_{n} \|A^{n}XA^{-n}\| \le C'(X).$$

Therefore, $f(\lambda) = e^{\lambda S} X e^{-\lambda S}$ defines an entire function of exponential type, with values in L(H).

Observe that

$$A^{n}XA^{-n} = W_{\varepsilon}(\sum_{j=1}^{m} A_{j}^{n})(W_{\varepsilon}^{-1}XW_{\varepsilon})(\sum_{j=1}^{m} A_{j}^{-n})W_{\varepsilon}^{-1}.$$

Thus, if $W_{\varepsilon}^{-1}XW_{\varepsilon} = (X_{ij})_{i,j=1}^{m}$, then

$$\|\, {\mathbb{W}_{\varepsilon}}^{-1} \, ({\mathbb{A}}^n {\mathbb{X}} {\mathbb{A}}^{-n}) \, {\mathbb{W}_{\varepsilon}} \| \ = \ \| \, ({\mathbb{A}_{\mathbf{i}}}^n {\mathbb{X}_{\mathbf{ij}}} {\mathbb{A}_{\mathbf{j}}}^{-n})_{\, \mathbf{i} \, , \, \mathbf{j} \, = \, 1}^{\, \, m} \| \ \leqslant \| \, {\mathbb{W}_{\varepsilon}} \| \, . \| \, {\mathbb{W}_{\varepsilon}}^{-1} \| \, {\mathbb{C}} ({\mathbb{X}})$$

for all n, whence we immediately see that $X_{ij} = 0$ for all $i \neq j$. Hence,

$$A^{n}XA^{-n} = W_{\varepsilon}(\Sigma^{\oplus_{j=1}^{m}}A_{j}^{n}X_{jj}A_{j}^{-n})W_{\varepsilon}^{-1}.$$

Observe that A = exp S, where S = log A = $W_{\epsilon}(\sum_{j=1}^{m} A_{j})W_{\epsilon}^{-1}$ for some branch of log analytic on $\sigma(A)$. It follows as in [11] that

$$\|e^{\lambda S}Xe^{-\lambda S}\| = \|\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} \delta_{S}^{n}(X)\| = \|W_{\varepsilon}(\sum_{j=1}^{\infty} e^{\lambda S_{j}}X_{jj}e^{-\lambda S_{j}})W_{\varepsilon}^{-1}\| \leq \|W_{\varepsilon}\| \cdot \|W_{\varepsilon}^{-1}\| \max_{j=1}^{\infty} \|e^{\lambda S_{j}}X_{jj}e^{-\lambda S_{j}}\| = \|W_{\varepsilon}\| \cdot \|W_{\varepsilon}^{-1}\| \max_{j=1}^{\infty} \|e^{\lambda S_{j}}X_{jj}e^{-\lambda S_{j}}\| = \|W_{\varepsilon}\| \cdot \|W_{\varepsilon}^{-1}\| \max_{j=1}^{\infty} \|e^{\lambda S_{j}}X_{jj}e^{-\lambda S_{j}}\| = \|W_{\varepsilon}\| \cdot \|W_{\varepsilon}^{-1}\| \cdot \|W_{\varepsilon}$$

$$= \|W_{\varepsilon}\| \cdot \|W_{\varepsilon}^{-1}\| \cdot \|\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} \sum_{j=1}^{m} \delta_{s_{j}}^{n} (X_{jj})\| ,$$

where $\delta_{\mathbf{T}}(\mathbf{R}) = \mathbf{T}\mathbf{R} - \mathbf{R}\mathbf{T}$ and $\delta_{\mathbf{T}}^{n+1}(\mathbf{R}) = \delta_{\mathbf{T}}(\delta_{\mathbf{T}}^{n}(\mathbf{R}))$.

Therefore, for a sufficiently large N, we have

$$\| e^{\lambda S} X e^{-\lambda S} \| \leq \| W_{\varepsilon} \| . \| W_{\varepsilon}^{-1} \| \sum_{n=0}^{\infty} \frac{|\lambda|^n}{n!} \| \sum_{j=1}^{\infty} \delta_{S_{j}}^{n} (X_{jj}) \| \leq$$

$$\leqslant \| \, \mathbb{W}_{\varepsilon} \|^{\, 2} \, . \, \| \, \mathbb{W}_{\varepsilon}^{\, -1} \|^{\, 2} \, . \, \| \, \mathbb{X} \| \, \, \sum\limits_{n \, = \, 0}^{\infty} \, \, \frac{\, \left| \, \lambda \, \right|^{\, n}}{n \, !} \, \, \left(\, \max\limits_{1 \, \leq \, j \, \leq \, m} \, \, \| \, \delta_{\, S}^{\, \, n} \| \, \right) \, \, \, \, \leqslant \, \, \,$$

$$\leqslant \|\mathbf{W}_{\varepsilon}\|^{2}.\|\mathbf{W}_{\varepsilon}^{-1}\|^{2}\|\mathbf{X}\| \max_{1 \leq j \leq m} \{\sum_{n=0}^{N} \frac{|\lambda|^{n}}{n!} \|2\mathbf{S}_{j}\|^{n} + \sum_{n=N+1}^{\infty} \frac{|2\varepsilon\lambda|^{n}}{n!}\} \leqslant$$

$$\leq C_{\varepsilon}'(X) e^{2\varepsilon |\lambda|}.$$

Hence, either the function f has order $\rho < 1$, or it has order $\rho = 1$ and type 0. In either case, since $\|f(\lambda)\|$ is bounded on the real axis, f is bounded everywhere, and therefore it is a constant function [1,10.2.1], [8,p.282].

This means, in particular, that

$$\delta_{s}(X) = SX - XS = 0 ;$$

that is, X commutes with S. A fortiori, $X \in A'(A)$.

PROBLEM 3. Suppose $A \in L(H)$ is an invertible operator such that

$$\sigma(A) \subset \Gamma(A) := \{r e^{i\phi(r)} : r > 0\}$$

for some real-valued function ϕ . (By using the compactness of $\sigma(A)$, we can easily see that ϕ can be chosen a continuous function.)

Does
$$B_A \cap B_{\Lambda^{-1}} = A^{\tau}(A)$$
?.

Deddens [3] proved that this is the case if A is a positive hermitian operator. In fact, his results actually show that $\mathcal{B}_A \cap \mathcal{B}_{A^{-1}} = A'(A)$ for every normal operator A with $\sigma(A)$ included in an increasing arc $\Gamma(A)$ of the above described type. Theorem 1 shows that, in general, $\mathcal{B}_A \cap \mathcal{B}_{A^{-1}}$ is strictly larger than A'(A) whenever $\sigma(A)$ meets the circle of radius r in at least two points, for some r > 0. (Take A a unitary operator, not a multiple of the identity.) On the other hand, P.G.Roth [7] gave an example of an operator A such that $\sigma(A) = \{-1,1\}$ but, nevertheless, $\mathcal{B}_A = \mathcal{B}'(A)$.

If A is decomposable (in the sense of C.Foiaş [2]) and $\sigma(A)$ is

included in an increasing arc $\Gamma(A)$, then for each $r e^{i\phi(r)} \in \Gamma(A)$, the maximal spectral subspace

$$\mathsf{M}_{\mathtt{r}} \; = \; \{\mathtt{f} \; \in \; \mathsf{H} \colon \; \sigma_{\mathtt{A}}(\mathtt{f}) \; \subset \; \Gamma(\mathtt{A}) \; \cap \; \{\lambda \colon \; \big| \lambda \big| \; \leqslant \; \mathtt{r} \} \}$$

is hyperinvariant under A and admits the following characterization

 $M_r = \{f \in H: \text{ for each } \epsilon > 0, \text{ there exists } C(f, \epsilon) \text{ such that}$ $\|A^n f\| \leq C(f, \epsilon) \left[r(1+\epsilon)\right]^n \text{ for all } n \geq 1\}.$

Suppose that $\|A^nXA^{-n}\| \le C(X)$ for all $n \in \mathbb{Z}$ and $f \in M_r$; then for each $\epsilon > 0$,

$$\|A^n X f\| = \|(A^n X A^{-n}) A^n f\| \le C(X) \|A^n f\| \le C(X) X (f, \epsilon) [r(1+\epsilon)]^n$$

 $(n = 1, 2, ...)$, whence it readily follows that $XM_r \subseteq M_r$.

If $N_r = \{f \in H : \sigma_A(T) \subset \Gamma(A) \cap \{\lambda : |\lambda| \le r\}\}$, then a similar argument shows that $XN_r \subset N_r$.

Thus, we have the following

PROPOSITION 4. If A is decomposable and $\sigma(A)$ is included in an increasing arc $\Gamma(A)$, then

$$\mathbf{B}_{\mathbf{A}} \, \cap \, \mathbf{B}_{\mathbf{A}^{-1}} \, \subseteq \, \{\mathbf{X} \, \in \, \mathsf{L}(\mathsf{H}) \colon \, \mathbf{X} \, \mathsf{M}_{\mathbf{r}} \, \subseteq \, \mathsf{M}_{\mathbf{r}} \, , \, \, \mathbf{X} \, \mathsf{N}_{\mathbf{r}} \, \subseteq \, \mathsf{N}_{\mathbf{r}} \, \, \, \, \text{for all } \, \mathbf{r} \, > \, 0 \} \, .$$

What is the answer to Problem 3 for the case when A is a decomposable operator?.

Recently, D.A.Herrero and H.-W.Kim [6] proved that there is a T in L(H) such that

$$(\operatorname{ran} \delta_{\mathbf{T}})^{-} \supset \{\lambda \mathbf{I} + \mathbf{K} \colon \lambda \in \mathbf{C}, \mathbf{K} \in \mathbf{K}(\mathbf{H})\}.$$

Williams result [11] play an important role in the proof. C.M.Pearcy observed that if A, $X \in L(H)$, A invertible, $X \neq 0$, and

$$\|A^{n}XA^{-n}\| \le C(X)$$
 for $n \ge 1$ $\Rightarrow \inf_{n \in \mathbb{Z}} \|A^{n}XA^{-n}\| > 0$,

then the proofs given in [6] can be strongly simplified.

Unfortunately, this is not the case.

EXAMPLE 5. Let $\{e_n\}_{n\in \mathbb{Z}}$ be an orthonormal basis of \mathcal{H} . Define $Be_n = (1/2)e_{n+1}$ $(n \le 0)$, $Be_n = 2e_{n+1}$ (n > 0), and let 1 denote the identity operator on C^1 (orthonormal basis $\{e\}$).

Let A = B \oplus 1, and let R be the rank-one nilpotent operator defined by Re₀ = e, R|{e₀}¹ = 0. For n \geqslant 1, we have

$$\|A^{n}RA^{-n}\| = \|(B \oplus 1)^{n}R(B \oplus 1)^{-n}e_{n}\| = 2^{-n}\|(B \oplus 1)^{n}Re_{0}\| =$$

$$= 2^{-n}\|(B \oplus 1)^{n}e\| = 2^{-n}$$

and

$$\|A^{-n}RA^{n}\| = \|(B \oplus 1)^{-n}R(B \oplus 1)^{n}e_{-n}\| = 2^{-n}\|(B \oplus 1)^{-n}Re_{0}\| = 2^{-n}\|(B \oplus 1)^{-n}e\| = 2^{-n}.$$

Thus, $\sup_{n \in \mathbf{Z}} \|A^n RA^{-n}\| < \infty$ and $\|A^n RA^{-n}\| \to 0$ $(|n| \to \infty)$.

REFERENCES

- [1] R.P.BOAS, Entire functions, Academic Press, New York, 1954.
- [2] I.COLOJARA and C.FOIAŞ, Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
- [3] J.A.DEDDENS, Another description of nests, Hilbert space operators, Proceedings, Long Beach, California, 1977, Lect. Notes Math. 693, Springer-Verlag, Berlin-Heidelberg-New York, 1978, 77-86.
- [4] H.ELSON, Boundedness from measure theory, Linear operators and approximation (Proc.Conf.Oberwolfach, 1971), Internat.Serv.Numer.Math., 20, Birkhäuser-Verlag, Basel, 1972, 129-137.
- [5] D.A.HERRERO, On iterated similarities, Proc. Amer. Math. Soc. 72 (1978), 519-520.

- [6] D.A.HERRERO and H.-W.KIM, A derivation range whose closure includes the thin operators, J.Operator Theory 21 (1989), 133-138.
- [7] P.G.ROTH, Bounded orbits of conjugation, analitic theory, Indiana Univ. Math. J. 32 (1983), 491-509.
- [8] W.RUDIN, Real and complex analysis, second edition, Mc Graw-Hill, New York, 1974.
- [9] J.G.STAMPFLI, On a question of Deddens, Hilbert space operators, Proceedings, Long Beach, California, 1977, Lect.Notes Math. 693, Springer-Verlag, Berlin-Heidelberg-New York, 1978, 169-173.
- [10] B.Sz.-NAGY, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged) 11 (1947), 152-157.
- [11] J.P.WILLIAMS, On a boundedness condition for operators with a singleton spectrum, Proc.Amer.Math.Soc. 78 (1980), 30-32.

Arizona State University Tempe, AZ 85287, USA.