A CONVERSE OF THE ARITHMETIC MEAN-GEOMETRIC MEAN INEQUALITY

HORST ALZER

SUMMARY. In this note we prove: Let (x_v) (v = 1,2,...) be a sequence of positive real numbers. If (x_v) (v = 0,1,...) with $x_0 = 0$ is concave, then

$$\frac{1}{n} \sum_{\nu=1}^{n} x_{\nu} < \frac{e}{2} \prod_{\nu=1}^{n} x_{\nu}^{1/n}$$

where the constant e/2 is best possible.

For the famous inequality between the (unweighted) arithmetic and geometric means of positive real numbers x_1, \ldots, x_n , i.e.

$$G_n = \prod_{v=1}^{n} x_v^{1/n} \le \frac{1}{n} \sum_{v=1}^{n} x_v = A_n$$

with equality holding if and only if $x_1 = ... = x_n$, one can find in literature many proofs, extensions, sharpenings and variants [1], [3], [6].

In several interesting papers different authors have published upper bounds for the difference A_n - G_n as well as for the ratio A_n/G_n . The resulting inequalities are called complementary or converse inequalities; see [3].

In 1933 J.Favard [4] discovered a remarkable inequality which is complementary to the inequality between the arithmetic mean and the geometric mean of a positive, integrable function. He proved:

If $f: [a,b] \rightarrow R$ is positive, continuous and concave, then

$$\frac{1}{b-a} \int_a^b f(t)dt \leq \frac{e}{2} \exp \left[\frac{1}{b-a} \int_a^b \log f(t)dt\right]$$

where the constant e/2 cannot be replaced by a smaller number.

Interesting extensions of this result were given by L.Berwald [2].

It is natural to ask: Does there exist a discrete analogue of Favard's inequality? The following proposition gives an affirmative answer to this question.

THEOREM. Let (x_v) (v = 1, 2, ...) be a sequence of positive real numbers. If (x_v) (v = 0, 1, ...) with $x_0 = 0$ is concave, then

$$\frac{1}{n} \sum_{\nu=1}^{n} x_{\nu} < \frac{e}{2} \prod_{\nu=1}^{n} x_{\nu}^{1/n} \tag{1}$$

where the constant e/2 is best possible.

Proof. We establish (1) by induction on n.

For n = 1 inequality (1) is obviously true.

Next we assume that (1) holds. Then we obtain

$$\prod_{\nu=1}^{n+1} x_{\nu} = x_{n+1} \prod_{\nu=1}^{n} x_{\nu} > x_{n+1} \left(\frac{2}{e} \frac{1}{n} \sum_{\nu=1}^{n} x_{\nu} \right)^{n}$$

and we have to show that

$$x_{n+1} \left(\frac{2}{e} \frac{1}{n} \sum_{\nu=1}^{n} x_{\nu}\right)^{n} \ge \left(\frac{2}{e} \frac{1}{n+1} \sum_{\nu=1}^{n+1} x_{\nu}\right)^{n+1}.$$
 (2)

Because of

$$e > (1 + \frac{1}{n+1})^{n+1}$$

inequality (2) is proved if we can establish

$$\frac{x_{n+1}}{2} \left(1 + \frac{1}{n+1}\right)^{n+1} \left(\frac{1}{n} \sum_{\nu=1}^{n} x_{\nu}\right)^{n} \ge \left(\frac{1}{n+1} \sum_{\nu=1}^{n+1} x_{\nu}\right)^{n+1}$$

which can be written as

$$\frac{1}{2} \frac{(n+2)^{n+1}}{n^n} \frac{x_{n+1}}{\sum_{v=1}^{n} x_{v}} \ge \left(1 + \frac{x_{n+1}}{\sum_{v=1}^{n} x_{v}}\right)^{n+1}.$$
 (3)

Now we prove the inequalities

$$\frac{1}{2n} \leqslant \frac{x_{n+1}}{\sum_{\nu=1}^{n} x_{\nu}} \leqslant \frac{2}{n} . \tag{4}$$

Since (x_y) is concave we obtain

$$\sum_{i=0}^{2k-2} (x_{n+1-k+i} + x_{n+3-k+i}) \le 2 \sum_{i=0}^{2k-2} x_{n+2-k+i}$$
 (k = 1,...,n+1)

which is equivalent to

$$x_{n+1-k} + x_{n+1+k} \le x_{n+2-k} + x_{n+k}.$$

This means that

$$k \mapsto x_{n+1-k} + x_{n+1+k}$$
 $(k = 1, ..., n+1)$

is decreasing and we get

$$x_{n+1-k} \le x_{n+1-k} + x_{n+1+k} \le x_n + x_{n+2} \le 2x_{n+1}$$

which implies

$$\sum_{k=1}^{n} x_{n+1-k} \le \sum_{k=1}^{n} 2x_{n+1} ,$$

i.e.

$$\frac{1}{2n} \leq \frac{x_{n+1}}{\sum_{i=1}^{n} x_i}.$$

Next we note that the sequence (x_{ν}/ν) (ν = 1,2,...) is decreasing. Indeed, since

$$\frac{x_0 + x_2}{2} = \frac{x_2}{2} \le x_1$$

and because of

$$(v+1) \left[\frac{x_{v+1}}{v+1} - \frac{x_{v}}{v}\right] \le (v-1) \left[\frac{x_{v}}{v} - \frac{x_{v-1}}{v-1}\right]$$

the assertion follows immediately by induction.

We prove the second inequality of (4) by induction on n. For n=1 the inequality is obviously valid. From the monotonicity of (x_n/v) and from the induction hypothesis we obtain

$$(n+1)x_{n+2} - 2 \sum_{\nu=1}^{n+1} x_{\nu} \le (n+2)x_{n+1} - 2 \sum_{\nu=1}^{n+1} x_{\nu} =$$

$$= nx_{n+1} - 2 \sum_{\nu=1}^{n} x_{\nu} \le 0$$

which completes the proof of double-inequality (4).

We denote by of the function

$$\delta(x) = \frac{1}{2} \frac{(n+2)^{n+1}}{n^n} x - (1+x)^{n+1} .$$

Because of

$$f''(x) = -n(n+1)(1+x)^{n-1} < 0$$

we conclude that f is concave which implies

$$f(x) \ge \min \{ f(\frac{1}{2n}), f(\frac{2}{n}) \}.$$
 (5)

We have

$$6(\frac{2}{n}) = 0$$

and we will prove

$$\{\left(\frac{1}{2n}\right)^{-1} - \frac{1}{4} \left(\frac{2n+1}{2n}\right)^{n+1} \left[\left(\frac{n+2}{n+\frac{1}{2}}\right)^{n+1} - 4\right] \ge 0 . \tag{7}$$

In order to establish (7) we show that the sequence

$$L_n = \left(\frac{n+2}{n+\frac{1}{2}}\right)^{n+1}$$
 $(n = 1, 2, ...)$

is increasing. We define

$$g(x) = (x+1) \log \frac{x+2}{x+\frac{1}{2}}, x \ge 1.$$

Differentiation yields

$$g'(x) = \log \frac{x+2}{x+\frac{1}{2}} - \frac{3(x+1)}{2(x+\frac{1}{2})(x+2)}$$
.

Replacing in

$$\log (1 + \frac{1}{y}) > \frac{2}{2y+1}$$
, $y > 0$,

(see [6,p.273]) y by $\frac{2x+1}{3}$ we obtain for $x \ge 1$:

$$\log \frac{x+2}{x+\frac{1}{2}} > \frac{2}{\frac{2}{3}(2x+1)+1} \ge \frac{3(x+1)}{2(x+\frac{1}{2})(x+2)}$$

which yields

$$g'(x) > 0$$
 for $x \ge 1$.

Hence we get for $n \ge 1$:

$$L_n \ge L_1 = 4$$

and therefore

$$f\left(\frac{1}{2n}\right) \geq 0.$$

From (5), (6) and (7) we conclude

$$f(x) \ge 0$$
 for all $x \in \left[\frac{1}{2n}, \frac{2}{n}\right]$.

This proves inequality (3).

Finally we have to show that in (1) the constant e/2 cannot be replaced by a smaller number.

We assume that the inequality

$$\frac{1}{n} \sum_{\nu=1}^{n} x_{\nu} < c \prod_{\nu=1}^{n} x_{\nu}^{1/n}$$
 (8)

holds for every sequence (x_{ν}) (ν = 1,2,...) of positive real numbers such that (x_{ν}) (ν = 0,1,...) with x_{0} = 0 is concave.

Let $x_{v} = v/n$ ($v = 0,1,...;n \in \mathbb{N}$). Then we obtain from (8):

$$\frac{n+1}{2n} < c \frac{(n!)^{1/n}}{n}$$
 or $\frac{n+1}{2(n!)^{1/n}} < c$.

Burn granden bereits was be-

SUSTANCES NO

If n tends to ∞ we get:

e/2 ≤ c.

Hence, the constant e/2 is best possible in (1).

REFERENCES

- [1] E.F.BECKENBACH and R.BELLMAN, Inequalities, Springer Verlag, Berlin, 1961.
- [2] L.BERWALD, Verallgemeinerung eines Mittelwertsatzes von J.Favard für positive konkave Funktionen, Acta Math. 79 (1947), 13-37
- [3] P.S.BULIEN, D.S.MITRINOVIC and P.M.VASIC, Means and Their Inequalities, Reidel Publ. Co., Dordrecht, 1988.
- [4] J.FAVARD, Sur les valeurs moyennes, Bull.Sci.Math.(2)<u>57</u> (1933), 54-64.
- [5] G.H.HARDY, J.E.LITTLEWOOD and G.PÓLYA, Inequalities, Cambridge Univ. Press, Cambridge, 1952.
 - [6] D.S.MITRINOVIĆ, Analytic Inequalities, Springer Verlag, New York, 1970.

Morsbacher Str. 10 5520 Waldbröl Germany

and the found in the second of the second o

The first of the second second

Recibido en octubre de 1989.