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A NOTE ON THE SPACE OF GEODESICS

GUILLERMO G. R. KEILHAUER

ABSTRACT. Let M be a complete C”-Riemannian manifold of dimen-
sion n =2 2, simply connected and without focal points. In this
paper we prove that the manifold of oriented geodesics G of M

is defined, and it is naturally diffeomorphic to the tangent

n-1

bundle TS of the n-1-dimensional standard sphere Sn_l. If

dGn_l denotes the standard volume of G, we also get the global

1 -1 . .
expression of dé™ ™" on TS"™'. Hence concerning geodesics and

in contrast with the horosphere case (see [5]), Integral Geo-
metry or Geometric Probability may be applied to this class of
Riemannian manifolds, in particular to Hadamard manifolds.

INTRODUCTION

Throughout let M be a complete C -Riemannian manifold of dimen
sion n > 2 and inner product <,>. Let TM and T;M denote respec
tively the tangent bundle and the sphere bundle of M, and
be the projection map onto M in either case.

We also denote the fibre of TM and T (M over p €M respectively
by My and S;. Let G be the set of 1eaves of the geodesic spray
restricted to T;M. Since an oriented geodesic regarded as a
1-dimensional (1mmersed) oriented submanifold of M can be iden
tified with a point of G and viceversa, we call G the set of
oriented geodesics of M. Let G be the set of non-oriented geo-

e
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desics, where a point of G is obtained identifying two points
of E in the obvious way. If the geodesic spray restricted to
M deflnes a regular foliation in the sense of Palais (see
[6]), then G becomes a differentiable manifold of dimension
2n-2. We shall say in this case that the manifold of geodesics
G of M is defined.

DEFINITION We shall say that M is G-measurable if the manifold
' G is defined and G is Hausdorff; hence G is also a manifold of
dimension 2n-2.

The reason of this definition is the following:

Let T: TlM > E and &: E - G be the projection mappings and w
the symplectic form restricted to T;M; then one gets (see [4])

PROPOSITION. If M zs G-measurable, there exists a unique 2-

“n-1

> >
form da on G which satisfies T*(dG) = w. Let dG be the

2 “n-1 e Zn-1 .

2n-2-form on G defined by dG = dGA...A dG, then dG is
>

a volume on G and <t is invariant under the group of isome-

>
tries of M acting on G. Moreover, a non-vanishing absolute

2n-2-form |dGn-1| is defined on G with the same invariance
property.

If n is odd, then |dG" !| turns into a form dG*~! which satis-

>
fies E*(dGn-l) = dGn-l; and consequently G is orientable in
this case.

REMARK. Compare the results of the above proposition with
those of Besse (see [1]) obtained under more restrictive con-
ditions on the geodesic flow. Also the concept of measure of
geodesics described by Santald (see [7]).

The main result of this paper is to prove:

THEOREM. Let M be a complete C”-Riemannian manifold of dimen-

sion n =22, simply connected and without focal points. Then M
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% . s . . -1
Zs G-measurable and G is naturally diffeomorphic to TS" 5

where s" 1 s the standard n-1 dimensional unit sphere.

REMARK. From the theorem follows that in order to measure sets
of oriented geodesics of this class of Riemannian manifolds

the manifold TS™™!

1

can be used as a model. The corresponding

N
volume dc"~

main result.

on TS" ! will be obtained as a corollary of our

This work is divided in two sections: the first one sketches
under the heading '"Preliminaries' some basic materials which
are needed, whereas the second one is intended to prove our
result.

Before passing to the first section

REMARK.. The following questions remain unanswered:

1. Is the Hausdorff condition in the above definition super-
flous?. (Indeed it is, if M is compact).

2. If M is G-measurable, the 2k-dimensional submanifolds of
E (k = 1,...,n-1) can be. measured with the non-trivial
form dak. Consequently, assume there exists a Zk-1-forma
on E with k = 1,...,n-1 such that a is invariant under the
group of isometries acting on E. What can be:said about o?
Is a = 07?.

1. PRELIMINARIES

The’reader'ié referred to ([1], Ch.1) and [3] for bééiq facfs
not defined here. o -

For each v € TM, we denote the geodesic with initial velocity
v by <, and the tangent vector to Cy at "t" by c;(t).

Thus the geodesic flow ¢:TMxR = TM is defined by ¢(v,t) =c¢(t}

Let K: T(TM) +'TM'be the tohnection map induced by <,>, aﬁd
T4 the differential map of m. It follows that mexK:T(TM) - TMxTM

N SN SN SN/
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defined by muxK(b) = (ms(b),K(b)) is an isomorphism restricted
to each fibre. In terms of this map, the geodesic spray S is

defined for any v € ™ by S(v) = (n*xK)_l (v Let g be

,Oﬂ(v)).
the Sasaki metric on TM, which is defined for any pair of vec-
tor fields X, Y on TM by g(X,Y) = <mzX,mY> + <KX,KY>.

Orienting TM by its natural charts, the volume on TM induced
by g will be denoted by dTM. For any k-form o on TM (k > 0)
and any vector field X on TM let Cxa be the k-1-form on TM

X ).

2 7k-1 122 tk-1

defined by Cxa(Xl,.. X ) = a(X,X
Let N be the vector field on TM defined by

_ -1 . - . .
N(v) = (mgxK) (On(v),v), then dTlM CN dTM induces a volu-
me on TlM'
Let 6 be the 1-form on TM defined by 6(X) = g(S,X), and
w =-d6 the symplectic form on TM; then

w(X,Y) = <miX,KY> - <KX,mgY>.

If o' = wa...Aw then o = n!.(-1)(n/2).dTM; and since
CNw = -0, one gets

n-1 _
(m | w A® =k .dT M

where kn = (n_1)!.(_1)(n/2)+1.

If S and w are restricted to TIM and X is a vector field on

TlM, it follows that

(2) 8(S) = 1 and w(S,X) = 0.

Thus the following equality holds on TIM

(3) W™t = k. Cg dT M.

DEFINITION. Let f: AxR - M be a smooth map, where A is an

open set of R® (m > 0). We shall call f a family of geodesics
depending on m-parameters if for any x € A the curve
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f(x, ): R = M which maps 't -~ f£(x,t) is a unit speed geodesic.

REMARK. Let f'(x,t) be the tangent vector to f(x, ) at "',
and f'(x) = £'(x,0). Then f induces mappings Gf A~ G and

Gf: A > G defined by Gf(x) = F(fa(x)) and Gf = ¢ on. Clearly

if M is G-measurable, then Ef and Gf are smooth mappings.

DEFINITION. Assuming that the manifold E is defined, if f de-

pends on 2n-2 parameters, we shall say that f induces a coor-
-> > >

dinate system on G if the map Gf: A.-» Gf(A) is a chart for G.

The following three lemmas will be needed later on. The first
one follows eaSily from equalities (1) and (2) and the fact
that w is ¢t-invariant. The second follows also ffom this
invariant fact, and the third one can be checked locally.

LEMMA 1.1. Let f: AxR » M be a family of geodesics depending

on 2n-2 parameters. Let dx = dxlA el A dxzn_2 and b¢ be the

function such that (f')*(dTlM) = ef.dXA dt. Then 0 does not

n-1, _
depend on t and (fé)*(m ) = kn.ef.dx.

LEMMA 1.2. Assume that the manifold4a is defined, and let

f: AxXR =+ M be a family of geodesics depending on 2n-2 parame-
ters such that Ef: A~ Ef(A) is a bijective map. Suppose that
for any x € A the differential map of f': AxR » TlM at (XLO)
is an isomorphism. Then f induces a coordinate system on G.

n-1

LEMMA 1.3. Identify T,S with the set of pairs

(v,u) € s*7!

xS®"! such that v 1 u. Let h: T;S"'x(0,+) » TS
be the map defined by h(v,u,t) = (u,t.v). Then h*(dTS"™1)

= ()" 2.ar, 8" 1A dte.
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2. THE NO FOCAL POINT CASE

Here we assume that M is simply connected and without focal
points. We recall that M has no focal points if for any

v € T;M and any Jacobi field Y along c, such that Y(0) = 0

and Y'(0) # 0, <Y'(t),Y(t)> > 0 for any t > 0 where Y' denotes
the covariant derivative with respect to cj. For a fixed

point p € M, let us identify TS, with the set of pairs

(u,w) € prMp such that u l w; and let T: TSp > TlM be the

map defined by t(u,w) = Pw(u), where Pw: Mp -> is the

Mcw(l)
parallel translation along c, from p to cw(1).

For any v € Sp, let vl be the orthogonal subspace of Mp to v;

. 1l 1 -1
and for any t > 0, define Dv,t: vy > v™ by Dv,t(u) = PtﬂﬂYuCO)

where Yu is the Jacobi field along c, which satisfies YuUD =0
and YL(O) = u, Let Y(v,u,t,-) be the Jacobi field along c,

such that Y(v,u,t,0) = 0 and Y(v,u,t,t) = P (u).

t.v

Identifying (Sp)u with Vl we define up: Tpr(0,+m) - R by

4) up(v,u,t) = <Y'(v,u,t,t),Pt;v(u)> . det Dv,t.
Since M has no focal points, it follows that up(v,u,t) >0 if

1 . det D + 1 as t > 0 and
n-1 v,t

t ’
t.<Y'(v,u,t,t),P _(u)> - |u|2

u # 0. Moreover, since

as t - 0, we have

1

(5) lim =7

t>0 t

. up(v,u,t) =1 if (v,u,t) € TIpr(0,+m).

PROPOSITION 2.1. Let P: Tpr(0,+w) > TM be the map defined by
_ _ (.1 yn-1
P(v,u,t) = Pt.v(u). Then P*(CS d TlM) = (-1) .up.d TISpA dt.

Proof. Equality will be shown locally. Let (V,y) be a chart
for Sp and WyseeosW be the induced coordinate vector fields

on V. If v € V, let fij = <wi,wj> and gp(v) = det Hfij(v)H.
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Let (TV,Ty) be the induced chart for TSp with

Ty = (yl""’yn—l’&l""’&n—l); then

-1 ‘

-1 n k+l - -k

dT, S = (-D" g Ay a( ) (- Ty .dy)
L 7p P k=1 K

where dy = dy, a...a dyn_l,d)'fk = d&l Ao Aéﬁa(A co.oady

n-1"
The symbol A over d&k indicates that d&k is omitted.

Applying the Gram-Schmidt procéss to Wi, ,W we get ortho-

-1
. 3
nOI‘mal fleldS 81,...,6 1 on ].

n-1
If wi(v) = jzl hij(v).ei(v), let B(v) = Hbij(v)H. For anyA

v €V, let Yi(v,-) be the Jacobi field along <, such that

Yi(v,O) = 0 and Y;(V,O) = ei(v). If‘ei(v,t) = Pt'v(ei(v)) and

n-1
Y. (v,t) = jzl a; (v,t) . ej(v,t), let A(v,t) = Haij(v,t)H.
Thus, det Dv e = det A(v,t).

Let exp: Mp -~ M be the eXponential map and for any o € D =
= y(V) and t > 0 let us define w'l(u,t) = exp(w"l(a);t). If
U = ¢ 1 (Dx(0,+=)), let (TU,Ty) be the induced chart for TM

with Ty = (xl,...,xn,i .,iﬁ). Then

177

. n
dT M = (-1)™.g.dxa ( (-1 % Ldx®) where
k=1

. . /N . o
dx = dx1 A oo ndx ,dxk = dXx, A ...ndX, A...adx 3 and. the
n 1 k n :
function g satisfies g(P(v,u,t)) = gp(v).detzDV ¢ if
P(v,u,t) € TV. An easy check shows now that for any

(v,u,t) € TVx(0,+x)

xioP(v,u,t) yi(v)‘if i=1,...,n-1, xnoP(v,u,t) = t,
inoP(v,u,t) = 0 ; and (iioP(v,u,t),...,in_loP(V,u,t)) =

(), ey (W) .B(v).AT (v, 1) BT (v).
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Moreover, if a: TU - R is the function defined by a(w) =
= S(w)(in) then a(P(v,u,t)) = <Y'(v,u,t,t),P__(u)>. Equality
on TUx(0,+«) follows now, using the properties of the contrac-

tion operator CS with respect to the exterior product.

From the previous proposition and equality (3) we get

COROLLARY 2.2. Let P: Tlspx(0,+m) > TM defined by P(v,u,t) =
- Pt.v(u)'

n-1, _ n-1
Then P*(w ) = kn.(—1) .up.dTlspA dt.

From equality (5), lemma 1.3. and the previous corollary fol-

lows

COROLLARY 2.3. The function T:TSp > T, M satisfies T*(wn—l) _
-k

= 68,-dTS,, where 6,(u,0) = -k, and 6, (u,w) = tn_nz-up(v,u,t)

if |w|] =t >0 and v = t™ 1w,

REMARK. Since M is simply connected and without focal points
it follows (see [2]) that for any geodesic ¢ of M (where o is
regarded as a 1-dimensional submanifold of M) and for any point
qQ € M not lying on o, there exists a unique geodesic through
q which intersects o perpendicularly. Due to this fact, for
the fixed point "p'", let us define the family of geodesics
depending on 2n-2 parameters f: TprR + M by f(u,w,t) =
= TmTo¢(t(u,w,t).

-> >
Hence f':TprR > TlM and Gf: TSp + G are bijective mappings.

. 1 -1 . . . .
Since S" is isometric to Sp, we can state our main result

as follows

-> -> ->
THEOREM 2.4. The manifold G of M Zs defined, and Gf: TSp + G

is a diffeomorphism , hence M is G-measurable.

Proof, Since f'(u,w,t) = ¢(t(u,w),t) then f6 = T; hence by

lemma 1.1 and the previous cerollary we get



172

-1
1) % =
(f") (dTlM) kn .GpdTSP Adt.
Since f' is a bijective map and k;l.ep < 0, it follows that f'

is a diffeomorphism; consequently the geodesic spray restric-
-
ted to TlM defines a regular foliation. Hence the manifold G

is defined.

>

Since Gf is a bijective map, by virtue of lemma 1.2 we get
->

that Gf is a diffeomorphism.

>

Zn-1 .
on G is represented on TSp

COROLLARY 2.5. The volume dG
-
(via Gf) by the volume ep.dep.

’ ->
Proof. Since Gf =T °f6 one gets

(GE)*(AG™™) = (£))* oT*(dE™Y) = (£)*(W™ Y = tr@™h)

= 0 _.dTS_.
P P
EXAMPLE. If M has constant sectional: curvature K = r?
(r =2 0) then in the Euclidean case (r = 0) we get ep = -kn.
In the hyperbolic case (r > 0) we get ep(u,O) = -kn and

-2
0,(u,w) = -k .Ch(r.t) . SREEH™ e jw| =t > 0.
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