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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR NONLINEAR

DIFFUSION EQUATIONS OF POPULATION BIOLOGY WITH

INITIAL DATA IN Lp SPACES

TOR A. KWEMBE

ABSTRACT. The paper considers the existence and uniqueﬁess of
weak global and local solutions ¢f some nonlinear diffusion
equations that arise in:thexspudx of population biology or
ecdlogical phenoﬁeﬁé‘in three dimenéional Euclidean "space. The
results are ohtained in a class df'special‘funCticns defined
on some LP? spaces when the initial data are also in these LP
spéces. The interest of the techniques empldyed here relies on
the fact that it is by succesive approximations and hence ame-
nablé to numerical treatméﬁt.

1. INTRODUCTION

This paper is primarily an application of potential operator's
theory and some results of maximal functions to the sfudy of
ncnlinear diffusion equations evolving from biological and eco-
logical phenomena in three—diménsional spaces as pioneered in
[11. In essense, it is an extension of the work in [1] to
higher order nonlinearity.

Throughout the paper we consider a population evoiving in a

bounded three-dimensional habitat. In what follows x = Dﬁ,xzﬂ%)
will be a point in R> and u(x,t) will denote the population
density at time t at point x.|x| = (x] *+ x

2 1/2 .
5 * x3) will take
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the usual meaning of the distance of the point x from the ori-
gin. At this point we wish to study two types of nonlinear dif
fusion problems that arise in biology or ecology. The Von Ber-
talanffy type and Hoppensteadt's system of nonlinear diffusion
equations arising in oscillatory media. That is, we will con-
sider, respectively, the initial value nonlinear diffusion
equation

u, (x,t)-v%u = a(x)u-b(x)u’ (1.1

u(x,0) = £(x) (1.2)

where a(x) and b(x) are continuous functions of the spatial
variable x and represent the intrinsic growth and death rate,
respectively, due to interaction of population within the
bounded habitat under consideration, and the system of initial
value nonlinear diffusion equations

3
u, (x,t)-v%u = eo(x)3u-iil‘3l“—+ c(x)3v (1.3)
v, (x,t)-v2v = -c () %u (1.4)
u(x,0) = F(x) ; v(x,0) = G(x) (1.5)

where C(x), Cy(x) are continuous functions of x and ey depends
on £(x) which is assumed to be continuous and small valued in
x and has small norm in the spaces under consideration.

This paper is intended to answer the problem [1]: "Suppose the
density distribution of a population u is known throughout R3
and, at an instant t=0, a new bounded habitat G, say, opens
for the species to migrate into it. If we assume a generalized
logistic growth for the species u as well as a predatorial ac-
tion (death or decay) within G, find the density distribution
of the population u in G for all time t > 0, assuming that mi-
gration is governed by diffusion'". As a simplification, we
neglect the description of any natural barrier beyond G, as-
suming that any diffusion of biomass toward infinity can be
interpreted as a loss due to inhospitable sub-habitats and, as
such, it is natural for us to consider the problem on the
whole of R3.

N N L7
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If we now let W(x,t) = (4nt)_3/2exp{-|x|2/4t} be the fundamen-

tal solution to equation (1.1) and ® be the convolution symbol
in time and space and % the convolution in space, then a for-
mal solution to equation (1.1) subject to the initial condi-

tion (1.2) is

u(x,t) = W e [a3u-bu’] + W f. (1.6)
We define the mapping ¢ on R3 x [0,T) by
(6u) (x,t) = W ®[a‘u-bu’] + W« £. (1.7)

Then by using the method of succesive approximations we can
show that the iterations

Uerr = ¢(w)

converge in the norm of definition to the solution of the in-
tegral equation (1.6) and that the mapping ¢ is a contraction
from a ball of radius, say, ry, into itself. Similarly if W
represents a fundamental solution to (1.3), (1.4) (which may
differ only by a constant), then formal solutions to equations
(1.3), (1.4) subject to the initial conditions (1.5) are

3

il

u(x,t) = W ®[€gu—%u +C3] +WaE (1.8)

v(x,t) = -W ®c(3)u + W * G. (1.9)

We then define the mapping Y by

3

Y(u,v) (x,t) = W ®[egu—-§-u +C3v] +WsE (1.10)

where v = -W ®Cgu + W % G.

Then by using the method of successive approximations we can
show that the iterations

ul(+l =¥ (UK)

converge in the norm of definition to the solution of the in-
tegral equations (1.8), (1.9) and that the mapping is a con-

traction from a ball of radius, say, T, into itself. Here
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W(uK) = W(uK,uK).
In addition to addresing the posed problem, we will provide
existence and uniqueness of both weak global solutions (global

in time) and local solutions'(local in time) using the techni-
ques of [1,4,5].

2. CLASS OF FUNCTIONS AND FIXED POINT PROPERTY

We will consider measurable functidns defined on R3x [0,T) for
which

lu*l, = (J 5 (sup lu(x,t) DPax) /P < o
R 0<t<T

where u*(x) = sup |u(x,t)
0<t<T

For the initial data, we use the usual LP norm

- P 1/p
Hpr (JR3 | £]Pdx) .

As in [1,2,3], we also consider the following standard estima-
tes for the fundamental solution W as

1/2]—3

W] <Bgl]x] + t ; B> 0 is a constant (2.1)

and
C

< — >
3-8 t6/2

W]
x|

; 0<6<2and C> 0 is a constant (2.2)

In this class of functions, a solution u of (1.6) for allt> 0
will be calied a weak global solution of (1.1), (1.2) whenever
the integrals that are involved exist in the Lebesgue sense.
for all values of t > 0. This definition similarly applies to
the system of diffusion equations (1.3),(1.4),(1.5) when their
formal solutions are given as in (1.8),(1.9).

FIXED POINT PROPERTIES

In what follows we are gding to consider Banach spaces of Le-
besgue measurable functions defined on R3><R+ for which the
perturbed operator ¢ is defined by ' ‘
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¢(u1,u2,u3) =W ®[a3u1-b.u1.u2.u3] + W= f (2.3)

(where ui(x,t), i=1,2,3 are Lebesgue measurable functions on

R3><R+) and satisfies the estimate
il¢(u1,u2,u3)ll <clllu1ll.lluzll.llu3ll + collull + . (2.4)

The norm in (2.4) is that of the Banach space in question.

LEMMA 1, Let ¢(u1,u2,u3) be a general operator of the type (2.3),

mapping the product space BxBxB into B, where B denotes a Ba-
nach space satisfying the estimate (2.4). Suppose that Cis C

and Y satisfy <, >0, 0<c, <1, 0<Y 28 small. Then for

2

u, = u, = u, = u, there exists § > 0 such that if vy < § the

1 2 3

mapping ¢ (u)

U in a ball of radius Y1 Furthermore,

(a) HuOH <y, where y, is the smallest positive root of

d(u,u,u) possesses one and only one fixed point

y = cyd + e,y *y.

(b) IIuOII + 0 as vy >~ 0.
We will prove this Lemma through the following Lemma:

LEMMA 2. GZven ¢, > 0, 0 <c, <1 and a small vy =2 0, the cubic

1 2

polynomial £(y) = cly3 t oyt has at least one positive

fixed point. Furthermore, if we call Yy, the smallest positive
fixed point of f depending on Y then yl(Y) + 0 as y » 0.

Proof. For y = 0, y = cly3 + C,y. Then clearly Yy = 0 and
_ 1-cy 1/2

Yy © <,

are done.

are the two non-negative fixed points and we

Now due to the fact that 0 <c, < 1, the graph of z = c1y3+c2y

2
is underneath the line z = y for 0 <y, <y <y,. This implies

that there exists a 6§ > 0 small enough such that if 0 <y < §
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a portion of the graph f(y) = cly3 + Cc,y + vy is still under-

[}

neath the line z y. A portion such that for some pair Y12,
we have 0 < Y1 <y< y,- We may select Yy, and Yo the optimal
oneé, that is, the two positive roots of y = cly3 *Cy Y.
This automatically implies that for 0 <y < §, y, = yl(d),

thus yl(Y) - 0 as Y‘¢ 0. This concludes the proof.

Proof of Lemma 1. For 0 <c, < 1, c,> 0 and a small y = 0, we

2
have from Lemma 2, tﬁat f(y) = c1y3 e,y ty =y has a smallest
positive root yl(y) such that vy < §, §> 0 is very small. For
y € (O,yl), we have y <y, and so cly3 tC,y +y <y;. Sety=
= Jull, then cllluH3 + czﬂun ty <y, whenever |lull < Y- Thus ¢
maps a ball of radius Y1 into itself. Furthermore, for

y € (O,yl) f'(y) = 3c1y2 +c, and f'"(y) = 6c1y are positive.
Thus f(y) is monotonic increasing and convex in (O,yi). Hence
we can find a;,a, € (O,yl) such that Hf(ul)-f(az)" <

< f'(y)"ul-azn. Now set a; = u, a, = w in a ball of radius Y1
and ¢ = f, then we have ll¢(u)-o (W) < [3clyi + CZ]HU‘W“ =

= Alu-wll .

Since Y1 is very small, so is yi and so 3c1yi +c, = A< 1.
Hence ¢ ‘is a contraction mapping in a ball of radius Y, and,
by the contraction mapping theorem, ¢ has a unique fixed point

u, belonging to this ball. Hence HuOH <Vy;- Finally, from

Lemma 2, y; > 0 as vy + 0 implies that llugll - 0 as vy ¥ 0. This
concludes the proof of Lemma 1. ‘

3. ESTIMATE FOR THE INTEGRAL OPERATORS

In order for us to establish the desired results we will pro-
vide estimates_df the integral operators of (1.7) and (1.10)
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in the form of Lemmas.

LEMMA 3. Let u(x,t) satisfy (1.6). Then if f,a,b € Lg/z(RB) we

% %, 3 3 *
have o (W ¥y, , < cilibllg Hllu*ly , + c,llallg,,Iufly,, + el flly,,

where Cy,C,,C3 are positive constants.

Proof. From (1.7) we have

t
| (6w (x,1) | < jR3jo|wcx-y,t-T)||a(y)|3|u(y,T)|dey .
t 3
+ J 3J [W(x-y,t-1) | |[b(y,T) | |uly,t) | dTdy + |W = £|.
R°‘0

Then on taking the supremum over t > 0 and invoking estimate
(2.1) we have

3 %
(0w * () <5, , 2D gys g

e b lu*;n®y,
R [x-y[~7

3 3-2

R™ |x-y]|

+ sup |W % f| where B, does not exceed Bj (1+t1/2)'3dt.
t>0 0

9/4

If we now let |a(y)l3u*00 €L (R3) and |b(y)|u*(y)3 €

€ L9/4(R3), then for p,q such that 1/q = 4/p - 2/3, we apply
the Hardy-Littlewood-Sobolev theorem to the first and second
terms on the right - hand side to get

1w ™I < gpAta, T Pu* (Ol + BeAGa,BIBO W O,

+ Hf*llq where f*(x) = sup |W % f| and A(q,g), A(q,g) are the
t>0

constants resulting from the Hardy-Littlewood-Sobolev theorem.
Finally, applying Schwarz's inequality twice to each of the
first and second terms on the right - hand side and on noting
that II£*I < B |Ifll we have

q q q

* * 3 3, % '
< 3.1
Il (pu) IIq CIHprHu Hp + CZHaHpHu Hp + Bq"f"q ( )

where C; = BA(d,}), C, = BjA(a,]).
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Now if p = q then from 1/q = 4/p - 2/3 we see that p=q = 9/2.
On substituting p=q = 9/2 into (3.1) and noting that Cy = B9/2’
we have the required result.

LEMMA 4. Let u,v satisfy (1.8),(1.9). Then if €42€,C(x),Cq (x),

9/2

F,G all belong to L (Ra) we have

3
9/2

3

*
521

e Cu,v) ¥y, < dyllelly liufly , + dyllel s aglal) vy, +

9/2 9/2 /2

T

. )
* Al and IV < ASICHIT HIutlg v dgliGlg .

Proof. As in the proof of Lemma 3, we have from (1.10) that
. By '
2- 3 0 2-3 3
v(u, )" < BOJ S 1%y 122 e ) Pt )dy + 3 Py T lem ;T +
R R

-
v 8| IxyI*1em) IV ddy + sup Wl

R} t>0

Now if we let [e,() 2wt (), le®) [u* ()3, 1co) IPv* ) € P/“®)  then,

for p, q such that 1/q = 4/p - 2/3, we have on applying the
Hardy-Littlewood-Sobolev theorem on the first three terms of
the right - hand side after taking the LY norm of both sides

Bom
Iy (u, )™ < Bonabgmueo(J|3u*(Jup,4-+—§D0L§bn|eo)|u*o)§up/4 +
+ 8eD(a. I lcCH PV N, + B IFI .

Applying the Schwarz's inequality twice on each of the first
three terms on the right - hand side we have

* %, 3 3, % 3, % '
¥ (u,v) ||q < dlllellpllu ||p + dzlleollpllu ||p + d3llcllp||v up + d4IIFIIq where
Bo

~ ¢ .
4y = 5 bha) » 4, = 8D(Rha) » dy = Bd(fa) , end g, = E .

On letting q = p in 1/q = 4/p - 2/3, we have p q = 9/2 and
the first estimate follows. By invoking the same approach on

vix,t) = -W’®Cgu + W ax G, we have
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%
Il

< dglic, 13 lu + dgllGlly ,, where again dg = Boﬁ(E,q) ,

v
9/2 9/2 9/2

~

and d6 = Eq, are the Hardy-Littlewood-Sobolev constants. This

completes the proof of Lemma 4.

STATEMENT OF RESULTS

The main results of this section are contained in the following
theorems.

9/2

THEOREM 1. Suppose that f, a,b €L (R3), and furthermore, sup

pose that B A(2,8) < llall, Then <f B(9/2)I £l <6; §>0

9/2 9/2

is very small. Equation (1.1) with initial data (1.2) posses-
ses one and only one solution u(x,t) such that Hu*H9/2 < VYo

where yodepends on 6.

THEOREM 2. Suppose that so,e,C(x),Co(x),F,G all belong to

L9/2 are small such

(R), and furthermore that IFI 16l

9/2° 9/2
that there exists a small 6g> 0 satisfying

(d,d HCHQ/ZHGH + d4HFH9/2) § 84

9/2

Then if (d He + d d "C" IIc H ) <1, the system of

9/2 9/27~0"9/2
initial value problem (1.3)-(1.5) has one and only one pair of

weak global solutions u(x,t) , v(x,t) satisfying

(8 lu'lly, <s;  and () v™lly,, <bg
where SH and b0 depend on 84> (d lle Ilg/2 d d HCl|9/2|lC ||9/2) and
d1"€”9/2

Proof of Theorem 1. If suffices to prove that the perturbed in )
tegral operator (1.7) possesses a unique solution hlthelﬁlzaé)

norm. By Lemma 3, we see that ¢ satisfies the inequality (2.4).
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. . . 9 9
Since B(9/2)Ilf||9/2 <§, §> 0 is very small and BOA(7’§) <

3
9/2

3

< lall >/2

implies that BOA(%,%)HaH < 1. On letting

Y =-B(9/2)I|i:'||9/2 and C, = BoA(%’%)"a"z/z we see from Lemma 1

that ¢'possesses one and only one solution u(x,t) satisfying

Ilu"‘llg/2 <Yy where Yo depends on 8.

Proof of Theorem 2. It suffices to prove that the perturbed ope-
rator ¥ of (1.10) possesses a unique pair of solutions defined
in the Lg/z(R3).norm. Injecting the second inequality of Lemma

4 into the first we have

* %3 3 3 . 3 %
e Cu,w)*ilg , < dpliellg g, + [dylledly , + dydgliClg , HCgly My o+
3
+ (d,dqlCly Gy, + dIFlg,,).

_ 3 3 3
Let a; = d)llellg/,, a, = [dylieglig,, + d3d5HCH9/2HC0H9/2] and

3

326l

1. Then we see that o, > 0 and

y = ld dlc .

+ d,IIFI

9/2 9/2

by the hypothesis of the theorem 0 <o, < 1 and y < §.,. Hence

2 0
by Lemma 1 ¥(u) = ¥(u,u) possesses one and only one solution

. ) . - *
u in a ball of radius So so(do) such that llu I|9/2 < 60.

3

*

*
Then from llv 9/2 <}15HCOH Nu”l + d6HG||9/2 we have -

3
9/250

9/2

¥y ,, < dglicgl + dgllGlly,,. Since Gy, is assumed

small, dSHC can be made as small as possible so that

H3 s
0°9/270
3

9/250 <b

there exists a small b0 such that dSHCOH + d6IIGII9/2 0

Hence llv™ll < b,, the uniqueness of v depending on u. This

9/2
concludes the proof of the theorem.
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4. EXISTENCE AND UNIQUENESS OF LOCAL SOLUTIONS

In this section we will consider the case when the coefficients

of problems (1.1)-(1.2) and (1.3)-(1.5) belong to L™(R3). we
shall see that in order to achieve the conditions of Lemma 1 we
need only consider the solutions for small time T (the size of
T determined by Lemma 1).

Now if a(x)3 = al(x), b(x) € L” n LP(R3); 3<p<wand

6/6

£ e .%%@®R3), we have from (1.7) that

\
| (ou) (x,t) | <H%HJW®u|+thJW®uﬂ + |W o« £f].

If we let M(u) be the maximal function then

1-- *
sup | (ou) (x,t)| <lla Il TM(u*) + C T 2IIbIIwJ 3 ——E—i§%§ dy +
0<t<T R [x-y|

+ sup |W & f|
0<t<T

where we have utilized estimate (2.2). If we now let
u*(y)3 € Lp/3(R3), for p such that 1/p = 3/p - 6/3 ; 0<08<2,

we have on taking the LP norm of both sides after invoking the

Hardy-Littlewood-Sobolev theorem that
0

* * 1-7 ®. .3
I ($u) llp < IIalllmTIIM(u )IIp + CyT bl Jlu™ ()~

+ llsup |W = £|II _.
p/3 0<t<T | | P
Since f € Lp(RB), we have that
)
IWOH*H<HaHTMﬁH +CT1_5Hw Ia¥I> + ANEl 5 p=6/8; 0<68<2 4.1
p  Ll="""p 78 o4 lp T AN 5 P ’ B

Then the following theorem holds:

THEOREM 3. Suppose that a(x)2,b(x) € L nLP(R%), 3 <p <=
and W satisfies estimate (2.2). Suppose further=thatf’€lﬁ/eﬂé)
and that the norm "f”6/9 is very small, then equations (1.1)-
(1.2) admit a unique solution u(x,t) defined on R3 « (0,T) for
very small values of T, satisfying IIu*IIB/e < s, where s depends

on T and ”f”6/6'
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Proof. From inequality (4.1) we see that if we 1let a, = HalﬂwT,
)
1__
= 2 - .
a, = CeT Ibll, and v As/e”f“6/e’ 0 <8 <2, then for all
L8
values of T satisfying T 2 <.E—H%H— we can see that
" "V

0 <o, <1 and a; > 0, so that if A6/e"f“ﬁ/e is small, we con-

clude by Lemma 1, that the integral equation (1.7) possesses
one and only one solution u in a ball of radius s such that

llu*| < s where s depends on T and HfH6/e. This completes

6/6
the proof of the theoremn.

Consider the system of equations (1.3)-(1.5). If we also as-
sume that eo(x)3 = e(x),C(x)3,Co(x)3 all belong to LmrﬁLpﬂé),

3 <p <», then we have as estimate of the integral'equation
(1.10)

¥ (u v)*u <llell Tiu®I + TICH v + d'Tl_%ﬁeH Ilu*ll3 +
’ 6/6 " oo 6/9 o 6/6 e o 6/
4.2)
-+ B()/’BIIFII()/e ;0 <® <2
and : '
* pd * .
v ”6/9 < THCOlIwHu "6/9 + Eellcllwe ~ (4.3)

where we have reﬁlaced C(x)3 by a(x) and CO(X)3 by EO(X). Ine-

qualities (4.2) and (4.3) are derived in the same manner as
inequality (4.1).

THEOREM 4. Let eo(x) = e(x),C(x)3,C0(x)3 all belonging to

L n LP(RB), 3<p <o, and W satisfying the estimate (2.2).

/8 (R3) such that both IIFllgq

6/ are very small. Then the system of nonlinear dif-

We suppose further that F,G € L
and | Gll

fusion equations (1.3)-(1.5) admits a pair of unique solutions
U(x,t),v(x,t) € R3x (0,T) for very small values of T and sa-

s * %
tisfies llu "6/6 <r,, tv il <r, , where vy and r, depends

and |Gl

6/9

on T, IlFIll

6/6 6/6°
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The proof of this theorem follows from inequalities (4.2) and

(4.3) and is concluded in the same manner as theorem 2.

Finally, I wish to acknowledge that some of the results of

this paper are from my Ph.D. thesis submitted to the Graduate

college of the University of Illinois at Chicago. I also wish

to express my gratitude to professor Calixto P.Calderdn for

suggesting this problem to me.
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