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POL YNOMIALL Y HYPONORMAL OPERATORS 

ON HILBERT SPACE 
1 ,2 

RAUL E. CURTO 

Let dI be a complex Hilbert space and let .t'(eN) be the algebra of bounded 

operators on . dI. An operator T E .t'(eN) is said to be normal if T*T = TT* , 

29 

hyponormal if T*T � TT* , and suimormal if T = N I eN' where N is normal on some 

Hilbert space % � eN. If T is subnormal, then T is also hyponormal: For , if 

N = [ '6  � ]  is a normal extension of T, we have 

o = N*N - NN* = -
[ T* 0 1 [ T A 1 [ T A 1 [ T* 0 1 

A * B* 0 B O B A * B* 

so that T*T - TT* = AA * � O . The converse is false, although examples are not entirely 

easy to construct . 

The notions of hyponormality and subnormality were introduced by P .R. Halmos in 

the early 50 ' s  [Hall ] .  Back then,  two classes of operators had very well established 

theories, the class of compact operators and the class of normal operators . Compact 

operators are norm-limits of finite-rank operators (and they could therefore be studied 

1 These notes are an expanded version of a two-hour talk delivered at the ELAM X on 
August 12 1 1991 .  .The auth<;>r would like to thank the organizers for their kind invitation , 
the splendId selectIOn of tOPICS , the warm hospitality during the entire conference · and the 
excellent choice of location, which made the whole stay in Tanti a truly enjoyable �vent . 

2 Research partially supported by a grant from NSF and by a University of Iowa Faculty 
Scholar . award. 
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using the tools of linear algebra and basic Banach algebra theory), while normal operators 

were described by the powerful and deep Spectral Theorem. Thus, Halmos thought that 

the structure of classes slightly larger than that of normal operators could be described 

with the help of the Spectral Theorem, with some new additional ingredients .  Forty years 

later, and despite the efforts of hundreds of researchers (which include developments of 

great depth, whose discussion would take us too far afield) , both the class of subnormal 

operators and that of hyponormal ones still offer many undiscovered mysteries ( see [CIa] , 

[Con] , [MaP] ,  [Ptn] ) .  

On  one hand, hyponormality reflects the geometric nature of o f  the notion of 

normality, with the corresponding implications in terms of matricial positivity; on the 

other hand, subnormality is intimately related to the notion of analyticity for complex 

functions, through the restriction of the functional calculus to invariant subspaces . For the 

construction of models, hyponormality needs singular integrals and multiplication 

operators on Sobolev spaces , subnormality requires Cauchy transforms and complex 

function theory. Subnormality does imply hyponormality, but the significant distance 

between the two notions is precisely what has caused the two theories to follow separate 

courses . One way to compare both notions is to say that subnormality is to hyponormality 

as the theory of von Neumann algebras is to C* -algebra theory. 

Subnormality is invariant under polynomial calculus (since for a polynomial p, 

p(S) = p(N) 1 $' and p(N) is still normal) ,  but the square of a hyponormal operator may 

not be hyponormal. It is then natural to consider the class of polynomiaUy hyponormal 

operators (those operators which remain hyponormal under polynomial calculus) , which 

obviously cont
,
ains all subnormal operators . Whether these two , clas.ses are ,the same 

remained unknown for over thirty-five years, and it constitutes the central problem of 

these notes. 

Fundamental Problem. Must a polynomially hyponormal operator be necessarily 

subnormal? 

It is not known who posed this problem first , or when, but we do know that during 

the early 60 ' s  the problem circulated informally in operator theory gatherings, and that 
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towards the end of that decade, i t  had already appeared in the literature, in various forms. 

In his famous monograph, Halmos asks. for a hyponormal operator whose square is not 

hyponormal [Hal3, Problem 209] , and he adds IIThis is not easy. It is, in fact , bound to be 
at least as difficult as the construction of a hyponormal operator that is not subnormal 

(Problem 203) , since any solution of Problem 209 is automatically a solution of Problem 

203 . "  At the beginning of the 70 ' s, the complexity of the problem starts to surface, 

through the work of Abrahamse [Abr] , Fan [Fan] , Joshi [Josl ,2] , Lubin [Lubl ,2,3j ,  Putnam 

[Put] , Shields [Shi] and Stampfli [Sta] , and later in the work of Athavale [Ath] , Conway 

and Szymanski [CoS] , and McCullough and Paulsen [McCP]. However, it is not until 

recently that a frontal attack on the problem is launched. 

Two important events facilitate the task. On one hand, the great advances in the 

theory of dilations and extensions for operators , carried out by Agler, Arveson, Choi , 

Effros , Haagerup, Paulsen, Power, and others , make it possible to formulate the problem in 

terms of separation of cones of continuous functions defined on line intervals or on domains 

in the complex plane, especially in terms of separation of cones of polynomials; on the 

other hand, the availability of symbolic manipulation makes it feasible to verify and/or 

obtain new examples , relations, subclasses , et cetera, thus reducing the gap between 

subnormality and hyponormality. Nowadays , there exists a discrete bridge starting· at 

hyponormality, and arriving, after a countable number of steps , to subnormality; there is 

also a similar bridge between hyponormality and polynomial hyponormality. One of the 

great challenges of the present time is to understand exactly how these two bridges are 

related. 

When J{ is finite dimensional, a hyponormal operator is automatically normal; 

for, if T is hyponormal, then T*T - TT* � 0 and 

trace(T*T - TT*) = trace(T*T) - trace(TT*) = 0 , 

which forces T to be normal. Thus, the Fundamental Problem is intrinsically an 

infinite-dimensional problem, and this naturally leads to the consideration of the class of 
unilateral weighted shifts (which have been very well studied through the years [Shi]) as a 

source of examples. An important discovery was made by S. McCullough and V. Paulsen 

in 1988 [McCP] , when they determined that in order to solve the Fundamental Problem, it 
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sufficient to consider the class of weighted shifts . 

Also in 1988, a crucial connection between the Bram-Halmos criterion for 

ubnormality and Berger ' s  Theorem for weighted shifts was brought to light . In the 50 ' s , 

f. Bral'n and Halmos proved tbat an operator T is subnormal if and only if 

L(�Xj;T.ixi) � 0 
i , j  

for all finite collections xo' xl' . . .  , xk e tN. ( [Bra] , [Con, nl. 1 .9]) Using the Choleski 

Algorithm for operator matrices, it is easy to see that this is eq�ivalent to the positivity of . ( *j i i *j)k � f [A ] A A the matnces T ·  T - T T i ,j=I ' lor k = 1 , 2 , . . .  : I we ,denote by . . B := . 
B - B 

the commutator of two operators A and B ,  and if we define T to be k -hwonornu&l 

whenever the k x k matrix Mk(T) := ( [T*j,TinL=1 is positive, then the Bram-Halmos 

criterion can be rephrased as saying that T is subnormal if and .only if T is 

k-hy�onormal f.or every k � 1 ( [CMX] ) .  

To expla.ill C .  Berger ' s  characterization .ohubn.ormality f.or unilateral weighted 

shifts we need t.o intr.o4uce some n.otation. Given a sequence .of P.ositive numbers 

a : aO' all � " . (calleq the wtMhts), we de�ote by. Wa . �he operat.or .on t2(1l+ ) defined by 

W aen := . an�n+ � (all, n � O) ,  where {enl:=o is t�e ca�onical .orthon.ormal basi� f.or t2 . 

It �s s,traig4tforward t.o che�k that .Wa c� ��'.'er be n.ormal , .and that it is hypon.ormalif 

and only if an � an+l f.or all n � O . The � of a are defined by 10 :=1 ,  

2 . . . .  . 
1n+l :=  ·an 1n (n � 0) .  Berger ' s  The.orem states that Wa is subnormal if and .only if the 

sequence {1n1 can be interpolated by a pr.obability measure p. supported on the interval 

[0, sup l � l ] j i.e. , 
n 

(all n � 0) 

( [Con, III.8. l6] ,  [Hal2] ) ;  briefly said, Wa is subnormal if and only if the moments of a 

are the moments of some probability measure p.. This immediately establishes a 

connection between unilateral weighted shifts and the classical theory of moments ,  which 

has been quite useful. Oli one hand, all the tools aild techniques available from the work .of 

• 
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Hamburger, Stieltjes , Hausdorff, Nevanlinna, Krein, Nudel ' man, Shohat , Tamarkin, and 

many others (see [AhK], [Akh] , [KrN] , tSar] , [ShT] , [Ston,  can be applied to the theory of 

weighted shifts; on the other hand, results from operator theory can be employed to give 

new interpretations of moment problems,  or to obtain matricial variants of them ( [AtP] ' 
[Atz] , [BeM] ,  [Cas] , [CuF2] , [Emb] , [Lam] , [McG] , [Nar] , [Sch] , [StSz] ' [Tre]) .  

Typical examples of subnormal shifts are the (un-weighted ) unilateral shift U + en 
:= en+ 1 , the Bergman shift B + en :=  (�!�)1/2en+1 ' and the flat shift , whose weight 

sequence is a, 1, 1 ,  1 ,  . . .  (0 < a < 1) .  (The associated measures for the three shifts are 
Jl. = 61 ' dp.(t) = dt , and Jl. = ( l-a2)60 + a261 '  respectively. ) On the contrary, the shift 

whose weights are a, b, 1 ,  1 ,  1, . . .  (0 < a < b < 1) is not subnormal. 

While subnormality is related to a moment problem, k-hyponormality for weighted 

shifts admits a matricial characterization, as follows: Wa is k-hyponormal if and only if 
('Yn+i+j)L=o is positive for all n � 0 ( [Cu2 ,3] ) .  When combined with the 

Bram-Halmos criterion, one obtains that Wa is subnormal if and only if the matrices 
('Yn+i+j)L=o are positive for all n � 0 and for all k � 1 ,  which can be seen to be 

equivalent to the positivity of the two infinite matrices ( "(. + .)� '-0 and ( "(. + '+1)� '-0 '  1 J 1 ,J- 1 J 1 ,J-
By the classical result af Stieltjes, this in turn is equivalent to the existence of a 

probability measure supported on [0,+[1)) which interpolates the sequence { 'Yn} .  This 

provides a new proof of Berger ' s  Theorem. The matricial criterion for k-hyponormality 

also provides a technique for distinguishing between k-hyponormality and (k+1 )-hypo

normality, and it is particularly useful in the study of recursively generated weighted shifts 

( [CuFl ,2J ) .  Another consequence is that we now have a three-way link among operator 

theory, matrix theory and measure theory, as follows: a subnormal shift corresponds to 
two positive Hankel matrices, which in turn correspond to a compactly supported measure 

on [0,+[1)) .  Thus, results in any of these three areas must admit analogues in the other 

two. For instance, we know that if instead of the two matrices ('Y' + .)� '-0 and 1 J 1 ,J-
bi+ j+ lYj ,j=O we postulate only the positivity of the first one, for the resulting measure 

Jl. we can only assert that its support is in (�,+[I)) (Hamburger ' s  moment problem) .  

Problem 1. What is the operator-theoretic notion that goes with measures supported in 

(�,+[I)) , along the lines of Berger ' s  Theorem. 
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Although k-hyponormality for weighted shifts admits a nice characterization, the 

same cannot be said of polynomial hyponormality. Despite the fact that the latter can also 

be interpreted as a limiting case of the notion of weak k-hyponormality (where the 

positivity of the matrix ( [T*j,rriDL=1 is replaced by its weak pOllitivity, i .e . , by the 

condition that ([T*j,rrinL=l be positive on vectors of the form (A1x, . . .  ,Akx), Al ' . . .  ,Ak 
E G:, x E eN), no significant description of polynomial hyponormality is available at 

present . Only quadratic hyponormality (which corresponds to weak 2-hyponormality) has 

lent itself to a detailed analysis, because of the existence of a peculiar characterization in 

terms of recursively given determinants . We' ll discuss this characterization a bit later, 
but first we want to pause to indicate how the notions introduced so far are related: 

S'�Onnal <=> .-hYJlOn. => . . .  => 3-.hy . => 2--hYJlO� 
hypon. 

polyn. hypo � W . lIl-hyp. � . . .  � W . 3-hyp. � W . 2- yp. 

';; .. 
When W a is hyponormal, each upper-left-hand corner of the infinite matrix 

[(Wa + sW!)* 'Wa + sW� is given as 

P n[(W a +SW!)* ,W a +SW�P n = 

<lo 1'0 0 . . .  0 0 
r O ql 1' 1  . . .  0 0 
0 r 1 q2 "  . 0 0 

o 0 0 . . .  �-1 1'n_l o 0 0 . . .  rn_1 qn 

where P n is the orthogonal projection onto the subspace generated by {eO , . . .  ,en} ,  
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and, for notational convenience, a_2 
= a_I := o. The determinant dn of the 

tri-diagonal matrix above satisfies the following 2-step recursive formula: 

2 if we let t := I s I , we observe that dn is a polynomial in t of degree n+ 1 ,  and if we 
write 

n+I  
'r' . 

dn = , c(n,i)tt, '; . J  
i =O 

then . the coefficients c(n,i) satisfy a do�ble-indexed recursive formula, namely 

c(n+2,i) = Dn+2c(n+l,i) + vn+2c(n+I,i-I) - wn+1c(n,i-I) 

(n � 0 ,  i � 1) .  Using (*) in a judicious manner, one can obtain a number of results about 

quadratic hyponormality, which we shall explain in a moment . We want to pause, 

however, to mention that the only known technique to verify the quadratic hyponormality 
, . 

of an operator (other than showing that it belongs to a more restrictive class) is to check 

that all the coefficients c(n,i) are non-negative. (When this is the case, dn(t) :::' 0 for all 

t > 0 ,  and Choleski ' s  Algorithm implies that [(Wa + SW!)\ Wa + sW� � 0 .) 

In particular, the follOwing question remains open. 

Problem 2. Does there exists a quadratically hyponormal weighted shift with at least one 

c(n,i ) negative? 

To discuss the usefulness of (*) , let us first recall an old result of J. Stampfli [Sta] : 

If aO � al � � � . . . , and an = �+ I  for some n, then Wa is subnormal if and only if 

al = � = aa = . . .  , i .e . ,  if and only if Wa is flat . In an effort to start umaveling the 
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structure of quadratically hyponormal and 2-hyponormal shifts, we can ask: Are there 

similar results for these classes? 

For 2-hyponormality, we can use the matricial characterization mentioned· before 

to see at once that when Wa is hyponormal and an = an+1 for some n, then Wa is 

2-hyponormal if and only if Wa is flat , which shows that Stampfli ' S  result really 

pertains to the class of 2-hyponormal shifts .  Concerning weak 2-hyponormality, A. Joshi 

proved in 1971 that the shift aO = a1 = a, � = a3 = . . .  = b, 0 < a < b, is not 

quadratically hyponormal [.1os1 ,2] , and later P .  Fan established that for a = 1 , b = 2 ,  

and 0 < s < .[5/5, W + sW2 is not hyponormal. With the aid of symbolic a a , 
manipulation, and the recursive relations for dn, it was shown in [Cu2 ,3] that a 

hyponormal weighted shift with three equal weights can ' t  be quadratically hyponormal 

without being flat . A natural question then arises : Can ,a quadratically hyponormal shift 

have two equal weights without being flat? 

The existence of such shifts was established in [Cu2] , and it ,led to an essential 

distinction between 2-hyponormality and quadratic hyponormality, which eventually 

became the starting point for an inductive procedure to separate subnormality from 

polynomial hyponormality. Surprisingly enough, such examples can be constructed by , ' , . ' . ' 

considering suitable rank-one perturbation of the Bergman shifts .  For x > 0 ,  let W be 
" , . . , ,, ' . .  .. .. , ; ' x 

the weighted shif� with weights llo == x, a1 = ll, � = 1l, aa = 11, . . · (x >  0) .  Wx is 

a close relative ofthe Bergman shift B+ (obtained when x == H ). As shown in [Cu2] , 

W x is subnormal
"
� 0 <

, 
x � a, 

W x i s  2-hyponormal � 0 < x � 1, 
. , 

and, more generally, there exists a sequence Pk}1D of positive numbers such that 
k=1 

Ak > Ak+l for all k � 1 ,  

l�m Ak = a, 
and 

W x is k-hyponormal � 0 < x � Ak, (k � 1) .  
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Also, 

W x is quadratically hyponormal <===* 0 < x � a. 
As a direct consequence of this, we see that the shift with weights 

is quadratically hyponormal. The 4-decimal expressions for the specific values for 2-, 3-, 
4-, and 5-hyponormality are . 7500 , . 7303, .7217 and . 7171 ,  respectively, and for 

quadratic hyponormality .8165; however, it is not yet known what the value for cubic 

hyponormality is . Part of the difficulty is related to the fact that the corresponding 
recursive algorithm to compute determinants for penta-diagonal matrices consists of five 

steps (as opposed to two for quadratic hyponormality) ; the other major difficulty is the 

presence of two parameters , u and v, associated with the self--{;ommutator of 

Wx+uW;+vW!. In analogy with the definition of "k above, let \ denote the 
"modulus of weak k-hyponormality" (k � 1) .  

Problem 3. Calculate explicitly the value of X3 . 

For higher values of k, the detection of weak k-hyponormality becomes quite hard, 
mainly because no recursive algorithm for calculating determinants of hepta-diagonal 

matrices (and nona-diagonal, etc . )  is known. However, in the case at haud, it would 

suffice to check whether l�m Ak > H to produce a concrete example of a non-subnormal 

polynomially hyponormal shift . This ,  however, seems to be quite inaccessible at present . 

Connected with the above e::cample is the problem of finding adequate descriptions 

of quadratic hyponormality. For instance, one would like to parameterize all quadratically 

hyponormal shifts whose first two weights are equal to 1 .  Symbolic manipulation shows 
that there are no such shifts with 1 < a2 = a3 , that � is always less than {2, and that 

a3 � (2-�)+ 
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Problem 4. Describe all quadratically hyponormal shifts with aO = al = 1 .  

There i s  another class of unilateral weighted shifts that has played a key role i n  the 

recent solution of the Fundamental Problem. We are referring to the ;class of recursively 

generated weighted shifts ,  especially those known as "abc" type, which we now proceed to 

describe. Back in 1966, Stampfli showed that for arbitrary aO < al < a2, there always 

exists a subnormal unilateral weighted shift T whose first three weights are aO ' aI ' �; 
he also proved, that given four or more weights ,  it  may not be possible to find a subnormal 

completion. Stampfli ' s  proofs were of "geometric" nature, in the sense that he built the 

normal extension directly out of the weights aO' al and �; the procedure also allowed 

him to conclude that four arbitrary weights cannot be subnormally completed, in general. 

In search for an explanation of this phenomenon, one is naturally led to the 

following problem. 

Subnormal Completion Problem. Given an initial segment of weights a : aO, . . .  , am, find 

necessary and sufficient conditions for the existence of a E t III (71 +) such that a c a and 

Wa is subnormal. Equivalently, find necessary and sufficient conditions for the existence 

of a compactly supported probability measure IJ. on [0, +1Il) which interpolates 

'O' . . . " m+l ' i .e. , 

J tn dp,(t) = 'n (0 � n � m+l ) . 

The answer is surprisingly simple, and it involves the positivitJ' of two Hankel 

matrices . The Subnormal Completion Criterion, obtained in [CuFl] , distinguishes two 

cases , according to whether m is even or odd. In the former case, say m = 2k, there 

exists a subnormal completion if and only if 
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and the vector 
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11 ' , ' '\ 1k+ l 
12 ' � ' '\+1 '\+ 2 
'Yk+l '  , ' 12 k  12 k+l 

1k+ l 
v(k+l ,k) := 1k+ 2 

� 0 ,  

belongs to the range of  the matrix A(k) . When m = 2k-l , the criterion requires that the 

matrix A(k) be positive, that 

and that the vector 

'Yk+1 
v(k+1 ,k-l) := 'Yk+2 

belong to the range of B(k--l ) .  Along the course of the proof one discovers that when 

a : aO , . . .  , am admits a subnormal completion, then it admits one whose associated measure 

II- is finitely atomic .  If i is the rank of A (k) , then it is possible to obtain an extremal J.L 

(with exactly i atoms, whose moments are minimal in the class of finitely atomic 

interpolating measures ,  and which generates a shift completion of minimum norm) ; this J.L 

gives rise to a recursive completion, in the sense that there exist scalars !PO' ' ' '  , !Pi-l such 
that 
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or, at the level of the weight,s, 

2 'Pi-2 'PO ( ) Il'2k+j :=  'Pi-l + 
2 + . . .  + j�1 . 

a2k+j-l �k+j-l ' "  " �k+j-i+1 

A special case is obtained when m = 2, and it leads to the "abc" type mentioned 
2 2 before. For simplicity,  assume further that aO < al < a2, and let a := aO' b := al and 

2 c := �. Here 

A(I ) = [ 1 a l ' 
a ab 

B(I ) = . [ a ab 1 
ab abc 

and v(I,2) = 

[ 
ab 

l ' abc 

and since det A(I) = a(b - a) > 0, we see at once that a subnormal completion always 

exist (this provides a new and simple proof of Stampfli ' s  result) .  The recursion coefficients 

are given by 

and the extremal interpolating measure is Jl. = POsO + PI s1 ' where So and sl are the 

two different roots of the equation t2 - 'PI t - 'PO = 0, and Po and PI are the unique 

solutions of the Vandermonde system 

For instance, if aO := 1 ,  al :=  � and � := fa, we get 'PO = - 2 ,  'PI = 4, and 

2 2 an+l = 4 - £iI' 
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The corresponding Berger measure is 1-£ = POSo + PI s1 ' with Po = ¥, So = 2 - �, 

PI = ¥ and 51 = 2 + .(2. 
Recursive shifts can be regarded as elementary building blocks in the study of 

k-hyponormality and subnormality for weighted shifts ,  as the following result shows: 

( [CuFl] )  Every subnormal unilateral weighted shift is the norm-limit of recursive 
shifts . 

Before we proceed, we would like to indicate briefly the main ideas entering into the 
proof of the Subnormal Completion Criterion. (For details about the actual construction of 

interpolating measures and for an account of their basic properties , we refer the reader to 

[CuFl,2) . ) We start with an old result of J.L. Smul ' jan [Smu) : 
Let 

Then 

A := , A e M «), b e (n, c e ( . 
- [ A  b ] 

b* c n 

A � 0 {=:::} A � 0, b = Aw and c � w* Aw. 

-
As an immediate consequence, we see that if A � 0 and rank A = ra!lk A, then A � O . 
This simple criterion for preservation of positivity when augmenting a matrix by one row 

and one column is crucial for us; the same can be said of the following result of Frobenius 

and Gundesfinger [Ioh, Chapter I) : 

If A = (a . . )� '-0 is positive and if A(k) := (al·Jl1· J'-O' then � I J- , -
(i) det A(k) = 0 => det A(k+1) = 0 

(ii) rank A(k+l ) � rank A(k) t 1 .  

We also require a rank principle, which states that if a positive Hankel matrix 

A := (-y. .)� . 0 has finite rank k then A(k-l) := (-y.+ .)�-� 0 must be invertible l+J I ,J= ' 1 J I , J = 
[CuFl ,  Proposition 2 . 12) . Next , a propagation result for square matrices is needed: 
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For n � 2, let C e Mn«() ,  C � 0, and suppose that 

C = [ R * ] = [ * S ] * * * * ' 

where R, S e Mn_1 «() .  Then rank(S) � rank(R) .  

Finally (and most importantly) , we require a structure result for positive Hankel matrices 

which is naturally and intrinsically tied to the notion of recursiveness .  It states that if A 

= (-y.+ l� · 0 is a positive Hankel matrix, and if A(k) : = (1·+ l ·  0 is the first I J I ,J= I J I ,J= , 
compression with determinant 0, then every entry of A, with the possible exception of 

12n ' is completely determined by A(k-l) .  

Our techniques are elementary and general, and they also allows us  to  obtain 

solutions to the truncated Hamburger, Hausdorff, and Toeplitz moment problems 

(d. [CuF2] ) .  Here, however, we are mainly interested in the applications to unilateral 

weighted shifts ,  which will lead us to the conclusion that the classes of quadratically 

hyponormal and 2-hyponormal shifts' are indeed quite different . 

As mentioned before, there is a simple characterization of 2-hyponormality (W Q 

is 2-hyponormal if and only if bn+i-I}tj=O � 0 for every n � 0), but the same cannot 

be said of quadratic hyponormality. As a matter of fact , here are two of the main problems 

still unresolved in this topic. 

Problem 5. Is there a characterization of quadratic hyponormality along the lines of the 

above mentioned characterization of 2-hyponormality? 

Problem 6. Find models for quadratic hyponormality. 

One approach to the second problem is to think of quadratically hyponormal shifts 

as perturbations of subnormal shifts ,  and to recall that these are norm-limits of recursively 

generated shifts ;  thus, one is led to the consideration of perturbations of recursive 

subnormal shifts ,  those given by finitely atomic measures on [O ,+m) .  A concrete situation 

i s  the following: 
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Assume that aO < a1 < a2 are given. For which x ' s  is W ( ) � x aO, a1 '� 
quadrati cally hyponormal? 

(Recall that by W( ) " we mean the shift whose weights are calculated according aO' a1 ' a2 
to the recursive relation an+1 = \01 + �, where \Oo = _ �btc

_
-

a
b) and 

n 
\0 = b�c - al . w( ) � is subnormal, and we perturb it by inserting x as the 1 - a '  aO, a1 '� 
zeroth. weight . )  

To  start , we would like to  find the range of x ' s  for which W x i s  2-hyponormal. 

By a special case of the Extension Principle ( [CuF1 ,  Theorems 5 . 7  and 5 . 10] ) ,  this 

happens precisely when the shift W ( ) � is subnormal, or equivalently when x aO,a1 '� 
2 P P -1 x $ ( t + t )  , where /l = P Os + P OQ is the measure associated to W( ) � . 

o 1 0 0 1 " 1 aO,a1 'a2 
For the example a = 1 ,  b = 2, c = 3, one obtains that the corresponding shift is 

2-hyponormal if and only if x2 $ j. 
For quadratic hyponormality, the actual calculation of the range of x ' s  is much 

more difficult , and it involves heavy use of symbolic manipulation. 

Quadratic Hypononnality Criterion. ( [CuF1]) Let 

h +2 := sup {x > 0: W ( ) � has c(n,i) � 0 ,  all n,i } ,  x aO, a1 '� 

2 2 2 and write a : == aO ' b := a1 ' c : = Cl2. Then 

2) hT = ( a2b2 c + ab2(c-a ) K + a b(c-b)K 2 , ) �, 2 a 3b + a b (  c-a)K + ( a  2+bc-"2ab ) K2 
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and 

When a = 1, b = 2 and c = 3, we get h� � 0.8563 and H2 = a � 0.8165 .  

Of course the most important of the three statements is the last one, since i t  tells us  that 

no matter how we choose a, b and c, we can always find x ' s  (a whole interval of 

them! ) such that the shift W ( ).A is quadratically hyponormal and not x aO, a1 '� 

2-hyponormal. Similar techniques can also be used to show that there exists E > 0 with 

the following property: For every 1 < al < 1 + E there exi s t s  � > a1 such that 

WI ( 1  ) A  is quadratically hyponormal. (Recall that WI ( 1 ) A can't be 
, a1 ' � , a1 '� 

2-hyponormal. ) This shows that non-trivial quadratically hyponormal shifts with two 

equal weights are quite common, and deserve to be fully classified. 

Although the proof of the Quadratic Hyponormality Criterion is quite involved, we 

would like to give some idea of how symbolic manipulation was used. First , part 1 )  

follows from the Extension Principle. As  for part 2) , direct calculation shows that 

c(n,i) � 0 for n� 2 and all i. For n � 3 , and 0 � i � n+l ,  the recursive formula 

(n � 0 , i � 1) (associated to the calculation of the determinant of tri-diagonal matrices) 
and the recursiveness of the weights an readily imply that 

Let 

and 
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An inductive argument gives c(n,i) � 0 for n � 5 and i # n-l. To handle the coefficients 
un 

c(n,n-I) ,  we let zn :=  -, prove that zn increases to K ,  and that vn 

R(z) :=  a2b2 c + ab2(c-a ) z  + a b(c-b)z2 
a3b + a b ( c-a)z + ( a 2+bc-2ab)z2 

is a decreasing function of z. A careful analysis of c(n,n-I) reveals that 2) holds 

provided one can establish that 

1 
X � (R(K)) 2  � c( 4,3) � 0, c(3,2) � O. 

This is done as follows: We let 0 := b-a, f := c-b, x3 2 :=  sup { x > 0: c(3,2) � 0 } , 
and x4 3  :=  sup { x > 0 : c(4,3) � O } , and we compute , 

+(  I5a07 +35a 2 06+ 25a 3 05+5a 404) f5 

+ (20a08+50a 207+40a 306+ lla 405+a 504) f4 

+ (15aC9+40a2OS+35a 307+ I2a 406+2a 505+a 604)f3  

+ (6ao10+ 1 7a209+16a 308+6a 407+a506) (2 

+ (  aol l+3a 2010+3a 309+a (08) f, 

which shows that x3 ,2 > x4,3 . Similarly, x� ,3 - R(K) can be reduced to a sum of some 

240 positive terms. Finally, 3) is just a "brute force" calculation. 

In addition to providing many concrete examples of non-subnormal quadratically 

hyponormal operators , the above criterion gives strong evidence that the classes of 

polynomially hyponormal and subnormal operators are different . Actually, and since 
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2-hyponormality and subnormality have identical moduli for W x( a a a..) " ' the results 
0' 1 ' - ;,:  

seem to indicate that perhaps something much stronger is true, namely that the classes of 

polynomially hyponormal and 2-hyponormal operators are different . Let ' s  visualize this 

in the following diagram: 

Fund. Prob. _ - -::::!!l -- -:::. ::::. -- --- - -- - -..--- -::::. ---

subnormal 

li _ -::::::;. :::::' - s t r o n g e r  p r o b l em 
POlYn. h� � � ��nonnal 

qUadIaIiC] hypononnal 

hyponormal 

The following theorem answers the stronger problem in the negative, and it 

therefore solves the Fundamental Problem. 

Theorem. ( [CuP1 ,2] ) There exists a polyhomially hyponormal operator T which is not 
2-hyponormal. 

By combining this with the main result in [McCP] one gets at once the following 

result . 

Corollary. There exists a unilateral weighted shift which is polynomially hyponormal and 

not subnormal. 

We briefly indicate below the main technical steps leading to the solution of the 

Fundamental Problem; details can be found in [CuP2) . First , we recall that Agler found 

in 1985 a 1-1 correspondence between contractions with a cyclic vector and certain linear 

functionals on ( [z,z) .  If T E $(dif), I ITI I $ 1, 'Y E dif, and p E ( [z ,z) , 
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p(z,z) = E amnzmzn, we define the so-ealled hereditary junctional calculus by letting 
m , n  

p(T, T*) := E amn T
*nTm, and a linear functional AT : { [z,z] ---+ ( by AT(p) 

m , n  , 
:=  (p(T,T*)?'1) , p E ( [z,z] . AT satisfies two important properties: (i) AT(pp) � 0 ,  and 

(ii) AT« l - zz)pp) � o. Conversely, if A : qz,z] ---+ { is a linear functional satisfying 

(i) and (ii ) ,  we let .A' := {p E ( [z] : A(pp) = O } ,  and observe that A.A' � .A', and that 

( [z]/.A' is a pre-Hilbert space with the inner product (p,q) : = A(pq),  p,q E { [z] . 

Moreover , z.A' � .A'. If we now let T := Mz on elf := ({ [z] /.A'r , we see that T is a 

contraction operator with cyclic vector 1 + .A'. 

Next , we recall that for T cyclic with vector 1, 

Similarly, 

T is 2-hyponormal ¢::::} 

, . [ I r ( T )* ] 
T is polynomially hyponormal ¢::::} 

* 
� 0 reT} r(T ) reT) 

. [ I r ( T ) * ] [ P(T)'Y ] [ P(T)'Y ]  
¢::::} ( reT) r(T ) * r eT) q(T) 'Y ' q(T)'Y ) � 0 

(p, q E ( [z] ) .  
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We are thus led to consider two cones of polynomials: �, generated by all polynomials of 

the form (1 - zz) 1 P 1 2 and 1 PO + P1 z + p
2
z2 1 2, and 11', generated by those of the form 

( 1  - zz)l P 1 2 and 1 p + q'f 1 2 . The above calculations show that T is 2-hyponormal if 

and only if AT 1 � � 0, and that T is polynomially hyponormal if and only if 

AT 1 11' 
� o� From this viewpoint , the Fundamental Problem will be resolved if we can 

accomplish the following 

Goal. Find A :  ( [z,z] --I ( and p E � such that A I 11' � 0
' and A(p) < o. 

Once this linear fU!lctional has been found, we can build T in such a way that 

AT = A .  To construct A, we introduce some auxiliary cones . First, we shall denote by r 

the cone generated by polynomials of the form 1 p + q'f 1 2 , and for m � 0, we shall denote 

by ( [z ,z)m the cone of polynomials whose tptal degree in z and z is at most m, by 

( [z ,z)h the collection of homogeneous polynomials, and by f.[z,z)! the set of 

homogeneous polynomi8Js of degree m (with similar definitions for lR[x'Y)m' lR[x,y)h and 

lR[x,y)!) . Finally, for K a cone in ( [z ,z) ,  we shall let Km := K n ( [z , z)m' 

Kh :=  K n { [z,z)h, and K!. := K n ( [z ,z)!.. Observe that r is smaller than 11', but 

easier to handle; oUI strategy will exploit this, together with the fact that r: is actually 
h equal to 11'4. 

The first observation is that { p(z,z) E ( [z ,z)!: p = p } = lR[x,yl!, via the usual 

·d t ·fi t ·  z + z z - z h . ffi al l· I en I ca IOn -2- = x, 21 = y, so t at It su ces to construct a Ie mear 

functional A on lR[x,y) . Next , we recall that if E is a (real, finite dimensional) vector 

space, if K is a convex subset of E with int(K) # 4>, and if M is a linear manifold in E 

such that M n int(K) = 4>, then there exists a hyperplane H 2 M such that H n int(K) 

= 4> (cf. [CoCi, 1 . 3 . 1 . 3] ) .  

To build A,  we plan to  use the fact that quadratic hyponormality and 

2-hyponormality are far apart , and therefore it should be possible to separate � from 

11'4. For technical reasons , it is more convenient to consider r: first . Thus, we shall 

at t empt to def ine A: : lR[x,y): --I IR  such that A: 1 h � 0, A: I . h > 0, and 
r 4 mt(r 4) 
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h . .2 h h A4(p) < 0 for some p E <fr n lR[x,y]4. Once this is done, we shall try and extend A4 to 

lR[x,y]4' then to lR[x'Y]5 ' to lR[x,y]6 ' etc. The corresponding convex sets to be considered 

are r�, Yr�, Yr 4' if" 5 ' Yr 6 ' etc. Two results are needed to make the extension strategy 

work: on one hand, int (r�) , int (Yr�), int(Yr 4) '  int(Yr 5) '  int (Yr 6) '  etc . ,  must all be 

nonempty; on the other hand, we must verify that Yr� = r�. This is accomplished in 

Steps 1 and 3 below; Step 2 is required in the actual construction of A �. 

(i) For m � 0 ,  lR[x'Y]m = Yr m - Yr m (� int .Yr m # <p) . 
(ii ) For m � 0 even, lR[x,y]m = r m - r m = Yr m - Yr m· 

h h h . h (iii ) For m � 0 even, lR[x,y]m = r m - r m (� mt .r  m # <p) . 

Step 2 .  r 4 is generated by all polynomials of the form 

where c4 = 0 or c5 = o.  

Step 3 . Yr� � r�, that is ,  the ( 1 - l z I 2) � I s/z) 1 2 component of an homogeneous 
J 

polynomial of total degree · 4 can be eliminated. 

h . h Step 4.  Define A4 : lR[x,y]4 --+ IR by 

Then 

A�( l c3z2 + c4zz + c5z2 1 2 ) 

h( 2 2 3 _ 4 - -3 + - 2-2 
= A4 c3c3z Z + c3c4z Z + c3c5z + C4C3ZZ c4c4z z 

= ( b I b  C4 , C4 ) .  [ 1 b 0 1 [ C
3 l [ c 3 l 

O b I  C s C s 
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The eigenvalues of this matrix are 1, 1+.[2"b and 1-.f2b. For g: < b < 1, there is a 

negative eigenvalue, with eigenvector ( 1 ,-.[2",1) ,  which corresponds to the polynomial 

However, the compressions of the matrix to c4 = 0 and to c5 = 0 are positive; therefore 

(by Step 2) A� 1 h � 0, and of course A� I . h > O. 
f4 lnt( f4) 

Summarizing, we have found p e e? such that A �(p) < 0 and A � 1 h > O. In 
int (Y 4 ) 

E = lR[x,y]4 we let K = Y4, M = ker A� and then have M n int(K) = ker A� n int(Y4) 

= ker A� n int(Y�) = </J, and int(K) = int (Y 4) f </J, so there exists A4 on lR[x,y]4 such 

that ker A4 n int(Y 4) = </J. We now switch to E = lR[x'Y]5 and consider K = Y 5 and 

M = ker A4· Since ker A4 n int(Y 5) = ker A4 n int(Y 4) = </J, and int(Y 5) f </J, we see 

that 3 A5 on lR[x,y]5 such that ker A5 n int (Y 5) = </J. Next , we consider E = lR[x,y]6 ' 

K = 7r 6 and M = ker AS' and continue this process ad infinitum. The resulting linear 

functional A has the right separation properties . 

The solution of the Fundamental Problem, establishing a separation between 

subnormality and polynomial hyponormality, gives rise to a number of open questions and 

provides a new viewpoint for subnormal and hyponormal operator theory . On one hand, 

one can now study the class of polynomially hyponormal operators on its own, and seek to 

extend well-known properties of subnormal operators , or try to find useful characteriza

tions . On the other hand, even if one were to argue that the new class remains a bit 

artificial (mainly because no concrete nontrivial examples exist ) ,  it is clear that its study is 

relevant in gaining a complete understanding of the relationships between subnormality 

and hyponormality. Either way, a multitude of problems arise, which we proceed to list . 

Problem 7. Find a concrete example of a polynomially hyponormal operator which is not 

2-hyponormal ? 
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Problem 8. Find a concrete example of a non-subnormal polynomially hyponormal 

weighted shift? 

We notice that the separating linear functional constructed above cannot correspond 

to a weighted shift , since in this case, A(zizj) must equal (TieD , Tjeo) and so it must be 
zero when i f  j. One possible candidate for Problem 7 is the shift studied in [CMX] (see 

also [Cu2, Remark 6 .3] ) ,  given by 

Problem 9. Does there exist a polynomially hyponormal weighted shift that is not 

2-hyponormal ? 

McCullough and Paulsen used in [McCP] a symmetrization process which does not 

allow one to keep track of the degree of hyponormality, so a new idea seems to be needed 

for Problem 9. One possibility is to try to generalize Berger ' s  Theorem, by considering 

linear functionals more general than probability measures . 

Problem 10. Is there an analogue of Berger ' s  Theorem for polynomially hypo normal 

weighted shifts? 

An important breakthrough in the theory of subnormal operators was made by 

S. Brown in 1978, when he showed that they all possess nontrivial invariant subspaces 

[Brol] ( see also [Tho]) .  Later, he also established that hyponormal operators with thick 

spectra satisfy the same property [Br02] ,  a fact that has been extended to other operators 

acting on Banach spaces (see for instance [AlC] , [AlE] , [Esc], [EsP]) .  

Problem 11. Do polynomially hyponormal operators have nontrivial invariant subspaces? 

In connection with M. Putinar ' s  model for hyponormal operators [Putl ,2] ,  one can 

ask the following question. 
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Problem 12. What special properties does the 2-subscalar model have when the operator 

is polynomially hyponormal? 

An important invariant for operators with trace-dass self--eommutator is the 

principal function introduced by J.D. Pincus (see [CIa] , [MaP] ' [Pin], [Xial]) ;  for 

subnormal operators ,  this function is integer-valued [CaP] .  

Problem 13. Is the principal function of a polynomially hyponormal operator with 

trace--elass self--eommutator integer-valued? 

The subnormal operators with finite-rank self--eommutator have recently been 

classified by R. Olin, J. Thomson and T.Trent [OTT] , and independently by D. Xia 

[Xia 2]) .  

Problem 14. Is there an analogue classification for polynomially hyponormal operators 

with finite-rank self--eommutator? 

Our final problem deals with the notions of subnormality and hyponormality on 

C* -algebras . As the reader might guess,  we can define an element t of a C* -algebra Jt 

to be hyponormal if t*t � tt* ; similarly, we can use Agler ' S  criterion for subnormality 
M 

[Ag2] to say that an element t E Jt with I Itll � 1 is subnormal if E (_l)k(M)t*ktk � 0 
k= O k 

for every M � 1 .  Since every C* -algebra can be regarded as a C* -subalgebra of .i'(.Jg') 
for some Hilbert space .Jg', it follows that a subnormal element t is always hyponormal. 

Problem 15. Find a purely C· -algebraic proof (which avoids the GNS construction or 

similar devices) of the implication lit subnormal :::} t hyponormal. lI 
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