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LOCAL SOLVABILITY OF PARTIAL DIFFERENTIAL EQUATIONS 

JORGE HOUNIE * 

1. Where it all begins 
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The most primitive question one can ask concerning a partial differential equation i s  i f  there 
exists ,a solution, at least locally, and not subjected to any additional condition. For ordinary 
differential equations, very satisfactory theorems stating local existence of solutions under 

very mild hypothesis of regularity had been known since long ago, and it came as a surprise 
when Hans Lewy discovered , in 1956,  his now famous example of a first-order linear equation 
whose coefficients are polynomial of degree at most one, failing to have local solutions. Indeed , 
if f E COO( R 3 ) is conveniently chosen, the equation 

(8x + iOy - (x + iy)8z )u = f (x , y , z )  E R3 

does not have distribution solutions in any open subset of IR 3 ( [L] ) .  
For elliptic equations local solvability was known and Hormander had proved in  i s  thesis 

that linear operators of real principal type were locally solvable. Let us recall some definitions 
and notation. A linear partial differential operator in an open subset n of IR n has the form 

P(x, D)u = L a", (x)D"' u ,  
l "' l �m 

u E C�(n) ,  (Ll)  

where a = (a l , . . .  , a n ) E Z+ denotes a multi-index, l a l = a l  + . . .  + a n  its length, DOl = 
Dft . .  · D�n and Dj = 8/i8xj . The principal symbol of P(x , D) is the function 

Pm (x , e) = L a", (x)e"' , x E n,  
l "' l=m 

Here, e'" = eft . . . e�n . If we interpret Pm (x ,  e) as defined on the cotangent bundle T* (n) 
rather than on the modest cartesian product n X IR n , the principal. symbol becomes invari­
antly defined under change of coordinates . A linear partial differential operator is elliptic 
if its principal part has no real zeros e =1= 0 (of course, Pm (X, O) = 0, x E n, because it is 

a homogeneous polynomial in e, but these zeros , being trivial, do not count) .  The main 

difficulty in finding a right inverse for a linear PDE comes from the real nontrivial zeros of 
the principal part . In the elliptic case those zeros simply not occur. The best thing next to 

* Partly support ed  by CNPq 
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no zeros is simple zeros . An operator is said to be of principal type if 

Pm (x , �) = 0, � E Rn \ 0 implies 'VPm(x , �) -1= o .  

At this point it is perhaps convenient to introduce a formal definition. 

Definition 1 .  A partial differential operator P(x, D) in n c R n is locally solvable if every 
point Xo E n has a neighborhood U C n such that the equation 

P(x, D)u = f ( 1 .2) 
can be solved in 'D' (U) for every f E C:;O(U) . 

If the coefficients of Pm are real then the operator is of real principal type and by the 
theorems of Hormander [HI] it is locally solvable. Notice that Lewy's operator ax + iay - (x + 
iy)EJz is of principal type but does not howe real coefficients .  A few years later Hormander 
( [H2] , [H3] ) generalized Lewy's example in the following way. Denote by P(x,  D) the operator 
obtained from P(x , D) by replacing each coefficient by its complex conjugate and consider 
the commutator 

C(x , D) = [P(x , D) ,  P(x , D)] = P(x, D)P(x,  D) - P(x,  D)P(x , D) 

which is an operator of order 2m - 1  with principal symbol C2m-l (X ,  O .  If P(x ,  D) i s  locally 
solvable in n then C2m-l (X , � ) must vanish at every zero ofPm(x , O in n x Rn . An operator 

satisfying the latter condition will be said to satisfy condition (1i). For the Lewy operator 
condition (1i) is violated at every point . If the coefficients of P(x,  D) are real or constant 
C2m-l (x ,  0 vanishes identically. This was a most remarkable advance because explained what 
appeared as an isolated example in terms of very general geometric properties of the symbol 
(an invarianlty defined object) .  However, it was not accurate enough to discriminate solvable 
from nonsolvable among some examples considered by Mizohata [MJ , which we now describe. 
Let k be a positive integer and consider the operator in R 2 defined by 

If k = 1 condition (1i) is violated at all points of the x axis so, in particular, Ml is not 

locally solvable at the origin. For k 2': 2 condition (1i) is satisfied everywhere. On the other 

hand, it turns out by relatively simple arguments that Mk is locally solvable at the origin if 

and only if k is even ( [Gr] , [Gal ) .  The principal symbol of Mk is ml = -i(ry - iykO.  The 

crucial difference between k odd and k even is that in the first case the function yk changes 

sign and in the second case doesn't .  Nirenberg and Treves [NTl]  elaborated over these 

examples and came up with which turned out to be the right condition for local sol
.
vability of 

operators of principal type. 'Write the principal symbol in terms of real and imaginaI"f parts ,  

Pm (x , O  = a(x, 0 + ibex , O· A null bicharacteristic of a(x, 0 is a curve satisfying the system 

of ordinary differential equations 
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x(O) = xo , 
�(O) = �o , 

with initial conditions verifying a(xo , �o )  = O. The operator ( 1 . 1 )  satisfies condition (P) if 

b( x, 0 does not change sign along any null bicharacteristic of a( x , 0 (if the projection of the 
bicharacteristic into n is singular one has to interchange the roles of a and b which amounts 
to multiplying P(x,  D) by i ) .  This formulation is invariant by coordinate changes . When 
condition ('H) is violated the change of sign occurs at a simple zero, but (P) detects changes 
of sign at zeros of higher order, as in the Mizohata operators Mk for k >  1 odd, including 
infinite order. For first-order operators of principal type with real analytic coefficients in the 
principal part they proved that (P) is equivalent to local solvability. That was in 1963 and 
seven years later they were able to extend the same result to operators of arbitrary order m 

[NT2] . The proof of the sufficiency involved a microlocalization used to split the operator 
as a finite sum of simpler operators . Each simpler operator could be further reduced by 
factoring out an elliptic operator of order m - 1 .  The remaining factor had order one: and 
still verified condition (P) .  It should be said, however, that the new operators introduced 
by microlocalization were no longer differential but pseudo-differential operators . Each first­
order pseudo-differential factor was again simplified by conjugation with a Fourier integral 
operator. Property (P) can be used at this stage to obtain a priori estimates. They are 
sufficiently strong to survive the microlocalization and can be patched together to obtain a 
local estimate for the original operators. This implies that the transpose of P(x, D) is locally 
solvable (interchanging the roles of P(x, D) and its transpose one proves that P(x, D) itself 

is locally solvable) Three years later R. Beals and C. Fefferman [BF] proved that smooth 
coefficients were enough to show that (P) implies local solvability. In fact , they started 

from the reduced operators of Nirenberg and Treves and used a finer technique of pseudo­
differential operators that included the Calderon-Vaillancourt result that a pseudo-differential 
operator with symbol in the class S�/2 , 1 /2 is bounded in L2 [CV] . 

Concerning the necessity of (P) Moyer [Mo] removed in 1978 the analiticity hypothesis 
for operators in two variables and his technique was applied by Hormander [H4] to extend the 
result for operators in any number of variable with smooth coefficents .  Finally, the conjecture 
of Nirenberg and Treves that (P) was equivalent to local solvability for operators with smooth 
coefficients had been proved over a span of 15 years . The technique of Nirenberg-Treves and 
Beals-Feffereman actually gave more than solvability in the class of distributions: if one takes 
f E H�(U) , s > -n/2 in ( 1 .2) then one can choose- u in Hs+m-l . This is not enough to 
furnish smooth solutions when f E C�(U) because the diameter of U shrinks as s grows 
in the proofs .  On the other hand Hormander [H5] gave a different proof by studying the 
propagation of singularities of operators that verify (P), which allowed to obtain semi-global 
solutions , i . e . ,  solutions defined on a full compact set (under the geometric assumption that 
bicharacteristics do not get trapped in the given compact set ) .  Furthermore, the solutions 
can be taken smooth if f is smooth. 
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2. Nonlinear equations 

A fully nonlinear operator of order m acting on functions u is of the form 

u(x) I-t F(x, 8"u(x) ) , J a J :::; m.  (2 .1 ) 

Two different situations arise. If F(x , ( ) is a function defined in n c R n x RN (where N is 
the number of a 's E Z+ such that Ja J  :::; m) only real functions u are allowed in (2. 1 ) . On the 

other hand, if n C R n X eN and F( x, ( ) is a holomorphic function of ( ,  the natural functions 

u(x) in (2 . 1 ) are complex valued. At any rate, the linearization of a nonlinear operator F(u) 
at a function u is the linear differential ()perator F' ( u) defined by 

F' (u)v = d
d 
F(u + tv) 1 . 

t t=o 
In general, an equation such as F(x, 8"u(x) ) = f(x)  may fail to have a solution by very 
simple reasons: if the set of values of F and the set of values of f are disjoint (for instance, 
if F > 0 and f :::; 0) there can be no solution. So a better problem is the following: given U o 

and setting fo (x) = F(x , 8"uo(x) ) , try solving 

F(x, 8"u(x)) = f(x) (2 . 2) 

for f sufficiently close to fo in some topology, if possible, with u close to U o . Now this is an 
implicit function problem and a very powerful tool to handle it is the Nash-Moser implicit 
function theorem [Na] , [Mos] , [Ha] . In order to apply it one has to construct an operator 
Q( u)v acting on some tame scale of spaces (typically, the scale of Sobolev spaces H S ) such 
that 

F'(u)Q(u)v = v , v E HS , s > So 
J JQ(u)v l l s  :::; Cs ( J J u J J s+r l l v J J so + 1 I 1l I l s o l l v J J s+r) , 

(2 .3) 
(2 .4) 

There are other hypotheses in the Nash-Moser theorem but they are almost automatic when 
dealing with differential operators like (2 .1 ) . Note that (2 .3) states that the linear differential 
operator F' ( u) has a right inverse, so if F' ( u) is locally solvable for each u we might be 
able to construct some right inverse Q(u) . It is with condition (2 .4) that the trouble really 
comes: the coefficients of the linear operator F' (u ) depend on u and the norm of Q( u ) 
must grow in a specific way (tamely) .  In order to obtain tame estimates one usually needs 
explicit expressions , involving pseudo-differential and Fourier integral opertors (the usual 
techniques to get a priori energy estimates do not seem useful when it comes to obtaining 
tame estimates) .  Fortunately, there exists a tame calculus for pseudo-differential and Fourier 
integral opertors that makes of them an appropriate tool for the task when they can be used 
( [GYJ , [ARD. In the important case in which F is smooth in all arguments and F'(u) is of 
real principal type for every u, this approach allows to solve (2 .2) locally, with u smooth if f 
is smooth [GY] . This has interesting applications, particularly to nonlinear equations arising 
Riemannian geometry. 
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For the case of complex equations much less is known. There are results only for two 

variables [D] , [AH] and the assumptions on F' ( u) are considerably more stringent than simply 

assuming that it is locally solvable. For instance, if b(x ,  t) is a smooth real function in lIP such 

that t -+ b(x , t) does not change sign, then L = Ot + ibex , t)ox is linear and verifies (P) but it 

does not seem to be known if there exists a right inverse Q for L such that I 1 0f l l .  :::; C. l l f l l .+r 
for any positive s and f smooth and supported in a fixed neighborhood unless b(x ,  t) does not 

change sign at all ( [AHl ) .  In the general case, the parametrices constructed by the methods of 

Treves [Tl ] , [T2J or even those which are valid in a more restricted set-up [AH] , [H02] , seem 

to verify only the weaker estimates I 1 0f l l .  :::; C. l l f lb+r which are not enough to guarantee 
the convergence of the Nash-Moser scheme. 

3. Nondetermined systems of vector fields 

The solvability theorems valid for one equation of principal type can be extended to 
determined systems (principal type for a system means that the determinant of the matrix 
principal part has at most simple (nontrivial) real zeros) . For nondetermined systems the 
theory is at a primitive stage of developement and only special equations involving vector 
fields and related to the familiar gradient and divergence equations can be dealt with in some 
generality. Important classes of such equations arise naturally in the theory of holomorphic 
functions of several variables (8 and 8b equations) . 

Let Lj , j = 1 ,  . . .  , n  be linearly independent complex vector fields defined on the open 
set n e RN , i .e . ,  

like 

or 

N 0 Lj = L ajk (x) 
OXk ' k=l 

The basic question is to determine when overdetermined or underdetermined equations 

{ L1U = h ' 

. �2.� .�. �� , 
Lnu = fn , 

f E COO(n) , 

(3 . 1 ) 

(3 .2) 

can be solved for any choice of the right hand side satisfying the proper compatibility con­
ditions . For instance, if the vectors Lj commute pairwise, the compatibility conditions will 

be Lj/k = Lkfi for the system (3.1 ) and void for (3 .2.) . In the case of a single vector field , 
(n = 1 ) , (3 . 1 ) and (3 .2) coincide and the answer depends on condition (P) of Nirenberg 
and Treves ( [NT1 ] ) . Since it is possible to obtain equivalent equations by replacing each Lj 
by a linear combination of the vectors L j, so that corresponding matrix is non-singular, we 
realize that the relevant geometric object 'Yill be the vector bundle £, C C 0 Tn generated by 
L1 , . • •  , Ln . We say that a sub-bundle of C c C 0 Tn is involutive (or formally integrable) 

if it satisfies the Fro beni us condition 
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[£ , £ ]  � £ .  (3 .3) 

In this case, if £1. denotes the orthogonal of £ relative to the duality between tangent vectors 

and differential forms of degree 1 (£1. is a sub-bundle of the complexified cotangent bundle) , 

the exterior derivative defines, by passage to the quotient, a complex of diferential operators 

Dp 1. c=(n, AP(C 0 T*n/ £1.))  ---+ c=(n, AP+l (C 0 T*n/ £ )) , p = D ,  1 ,  . . .  , n - 1 .  

(3 .4) 

In local coordinates , equations Do u = f and Dn- IU  = f can be expressed in the form (3. 1) 

and (3 .2)  respectively. 
The cohomology groups of sequence (3 .4) 

q = D, I , . . . , n  

are called the cohomology grups associated to £ on n and a natural problem of the theory 
is to determine when they vanish for a given structure £ .  The localized problem is also 
relevant . If we fix a point A E n we may consider the associated complex 

Dp 
C=(A, AP (C 0  T*n/£l.))  ---+ C=(A, AP+l (C 0 T*n/£1.)) ,  (3 .5)  

where D :::; p :::; n - 1 and C=( A, AP (C 0 T*n/ £1.))  denotes the space of germs of sections of 
AP(C 0 T*n/ £1.))  at the point A. The cohomolgy groups of (3 .5) are denoted by 

q = D ,  . . .  , n . (3 .6) 

Results of a general nature are known only under the assumption that £ is locally integrable, 

i .e . , when £1. is locally generated by the differentials of m = N - n functions of class C=. 
Little is known so far about the groups (3 .6) ;  there are complete descriptions in the following 
cases : i) when £ defines an elliptic structure ( [T3] ) ,  ii) when the structure £ is real analytic 
and the e Levi form is non degenerate ( [T5] ) , iii ) when n = 1 ( [NTl ] ) ,  iv) when the structure 
£ is real analytic, m = 1 and q = 1 ( [T6] ) or q = n ( [CH2] ) . Recently Treves extended the 
r
.
esults in [CH2] to the Coo case in [T7] and this technique, related to the study of solutions 

�ith compact support [CHI ] , may shed some light on how to obtain the cohomology groups 
for other structures, like tubes ( [T4] ' [T8] ) . Analogously, the results in [T6] where extended 

to the C= case [MT] . The problem of finding solutions to (3 .2) with compact support is also 

of interest ( [CHI ] , [HT] )  and related to the extension property of Hartogs for solutions of the 
homogeneous equation. 

In the locally integrable case of co-rank one, i .e . , when m = 1 and then� is smooth 
function defined in a neighborhood of A 

whose differential generates £1. /U A ,  there is a conjecture of Treves that can be stated as 
follows : 
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Conjecture Given 1 � p � n ,  Ker 6p = 1m 6p-1 in the complex (3.5) if the following 

holds: 

For every point B in a neighborhood of A there is a decreasing basis of 
open neighborhoods of B in U A, {Vv } such that, for every l/ E Z+ and 
every ( E C the natural map 

is trivial. 

(here H* denotes reduced homology with complex coefficients) . 
The conjecture is valid when p = 1 or p = n ( [CH2] , [T6] , [T7] , [MT] ) . The cases 

1 < p < n remain open. 

4. Operators with nonsmooth coefficients 

If P(x, D)  is a principal type differential operator of order m with smooth coefficients sat­
isfying condition (P) ,  the Beals-Fefferman theorem allows to locally solve the equation 
P(x, D)u = j, j E L2 , with u E Hm-1 . This is the optimal regularity one can expect of u 

if P(x, 'D) is not hypoelliptic. A natural question is : how much regularity must one demand 
on the coefficients of P(x,  D) to obtain the same result , if they are not smooth? Counting 
on the fingers the number of derivatives used in the known constructive proofs of solvability 
gives a large number that grows with the dimension. This has the following explanation. The 
microlocalization technique involves the continuity in Sobolev spaces of pseudo-differential 
and Fourier integral operators and it is a fact of life that the number of derivatives needed 
to control their norms grows linearly with the dimension n of the surrounding space. 

Consider, however, a differential operator of order one with smooth complex coefficients 

a 
n 

a 

at 
+ L aj (x , t) 

ax ' 
+ c(x, t)  

j=l  ) 
( 4 . 1 )  

defined in a neighborhood of the origin of Rn+! .  After a local change of variables , it can be 
put in the form 

a 
n 

a 
L = {) + i L bj (x, t) � + c(x , t)  

t j= l  x) 

with bj (x ,  t) smooth and real. 

(4.2) 

The solvability in L2 (notice that m = 1 in this example) for the operator (4.2) verifying 

(P) holds if the coefficients in the principal part are Lipschitz and c(x, t) is measurable [HoI ] , 

independently of n .  Since the rectification of the bicharacteristics needed to put (4. 1 )  into 

the form (4.2) takes up one derivative, the former is locally solvable in L2 if the coefficients of 

the principal part have Lipschitz first-order derivatives. It is not known whether it is possible 

(or impossible) to bound the regularity of the coefficients for higher order operators with a 

constant independent of n in order to obtain solvability. A related question is to determine 

the minimal number of derivatives of a positive symbol (say classical of order one) needed to 

guarantee that the corresponding pseudo-differential operator verifies a Garding inequality. 
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. 5 .  Solvability in LP 

Consider again a principal type differential operator P(x, D) of order m with smooth co­
efficients satisfying condition (P). For a given 1 < p < 00 we say that P(x, D) is lo­
cally solvable in LP if we may locally solve the equation P(x, D)u == j, j E LP , with 
u E H;'-l = (I - �)-(m-I)/2 LP . This is true if p = 2 by the Beals-Fefferman theorem 
but false, in general, for p =F 2 [Gu] even if P(x, D) is subelliptic. Other examples are due 
to E. Perdigao (unpublished work in progress) who also announced that there is solvability 
in LP for operators in two variables (any order) or of order one (any number of variables) 
satisfying (P). 

The main "explanation" for this fenomena is technical. The reduction technique of 
Nirenberg-Treves (present in some form in all proofs of solvability) involves a Fourier integral 
operator which is bounded in L2 but not necessarily bounded in LP for p =F 2. When the 
order is one or the number of variables is two the use of Fourier integral operators can be 
avoided. 
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