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WEIGHTS FOR THE ONE-SIDED HARDY-LITTLEWOOD 
MAXIMAL FUNCTIONS 

F .  J .  MARTIN·REYES 

1 .  INTRODUCTION 
The Hardy-Littlewood maximal opertor is defined for functions I E Lfoc(IR) by 

1 lb MI(x)  = sup -b - II I · a<.x<b - a a 
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Analogously, we can consider the left and the right Hardy-Littlewood maximal operators' 

M-I(x)  = sup - I I I 
1 1 x 

h > O  h x - h  
and 

Assume 1 � p < 00. In 1972, B .  Muckenhoupt [Mu] characterized the pairs of weights 
(u , v) ,  u , v ;::: 0, such that for all I E  LP(v)  and ), > 0 

j u � � Joo II IPv 
{Mt>,X}  - 00 

where C is a positive constant independent of I and ). (letter C will always mean in this 
paper a positive constant not necessarily the same at each occurrence) .  He proved that 
( 1 )  holds if and only if the pair (u ,  v) satisfies Ap which means that there exists C > 0 
such that 

and 

( ) P-l 
1 b I b - 1  . 

sup -- r u --- r v p-"f . � C a , b b - a }a b - a la 

M'u � Cv a . e .  

i f  p > 1 

He also studied the problem for u = v and p > 1 .  He showed that 

with C independent of I is equivalent to the fact that v, i .e . the pair (v ,  v ) ,  satisfies Ap _ 
This left open the corresponding problems for M- and M-t- which are of interest iI: 

Ergodic Theory (see for instance [MT1] ) .  E. Sawyer [S2] obtained the following results for 
M-t- (and similar for M-) .  
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THEOREM A.  Let 1 :::; p < 00 . The following are equivalent: 
(a) There exists C > 0 such that for all f E LP ( v) and A > 0 

1 C 100 u < - I f lPv . {M+ f>>"} - AP -00 (b) The pair u, v satisfies At, i .e . ,  there exists C > 0 such that for all a < b < c 

1 lb ( 1 1C - 1  ) P-l -- V -- vP-T < C i f  p >  1 ,  
c - a  a c - a  b 

M-v(x) :::; [{vex ) a.e. if p = 1 .  

THEOREM B .  If 1 < p < 00 ,  v ,i .e. the pair (v , v) satisfies At if and only if there exists 
C > 0 such that for all f E LP(v) 

The proofs of the necessity of the conditions At in both theorems are easy and similar 
to the corresponding ones for Ap classes. However, the proofs of the other implications of 
the theorems do not follow the ideas of [Mu] and [CF] . 

In order to prove Theorem A ,  Sawyer uses the corresponding result for the Hardy oper
ator ( [AM] , [S3] )  

I 1X Tf(x) = - f. x 0 

We may observe that the proofs for T are not very easy. On the other hand, the proof 
of Theorem B depends on the characterization of the pairs of weights (u ,  v ) for which the 
inequality 

holds. (The result for M was proved by Sawyer [SI ] ) .  Both fact s  are not very nice because 
1 )  the proof of the weighted weak type inequality (Theorem A)  is considerably more 

difficult than the corresponding one for M, and 
2) the proof of the strong type inequality (Theorem B)  does not seem good to continue 

the study of M+ in other spaces like LP ,q or Orlicz spaces. 
Other proofs of these theorems for more general one-sided operators have been given in 

[MOT] and [A] but the difficulties pointed out in 1 ) and 2} remain. 

2. NEW PROOFS 

Recently, new proofs of Theorems A and B have been given in [M] . These proofs follow 
the pattern of Muckenhoupt's case ( [Mu] , [CF] ) .  First it is proved Theorem A in a simple 
way and then Theorem B follows from the fact that At :::? At-e which is the most difficult 
step . The first aims of this paper are: 

1 ) To give a very simple proof of Theorem A ,  different of the one in [M] . 
2) To present a scheme of the proof of At :::? At-e ' 
In order to prove that At implies the weighted weak type inequality (p, p) we consi.der 

a function f, and numbers x and h > 0 fixed. Then we choose a decreasing sequence {x d 



such that 

97 

Xo = x + h and U(Xk+b X k) = u(x , xHl ) , 
where, as usual, u( a/b) = t u . Then, by Holder inequality and the fact that (u ,  v) satisfies 
A+ 

a 
p ' 

where 

Therefore, we have 

r+h I f l u 
M+ f(x )  = sup x�..,......:_ U 

h>O rx+h u 
• x 

This inequality and the fact that M;t is of weak type ( 1 , 1 )  with respect to the measure 
u( x )dx give the desired weighted weak type inequality in Theorem A. 

As we announced above, in order to prove Theorem B,  the key fact is the implication 
At =} At_e ' In this moment , it is convenient to recall how this fact is normally proved in 
the case of Ap classes. First , it is seen that v E Ap implies that v satisfies the following 
Reverse Holder Inequality: 

-- V 1H < C -- v 
( l ib .  ) m . 1 1b 

b - a  a - b - a  a 

for some positive constants C and 0 independent of the numbers a and b. Then, as a 
corollary, v E Ap and the Reverse Holder Inequality give easily that v E Ap-e '  But 
now , the Reverse Holder Inequality does not hold for At classes (cqJ.sider, for instance, 
v( x ) = exp x). However, a substitute has been found in [MJ : if v E At then there exist 
positive constants C and 0 such that for all a and b 

which implies 
Mv1H :5 C(M(VX(a,b» (b» lH . 

This is what we have called Weak Reverse Holder: Inequality. This condition together with 
v E At give v E Ap._e in [M] but not so easily as in the classical case of Muckenhoupt 's 
classes. In the proof of these inequalities , we use, as in Theorem A, the method of cutting 
intervals with respect to some function but the proofs are considerably harder than the 
one we proved above. As a resume, we could say that what this process of cutting intervals 
does is to put the problem in a suitable way for applying the technics we know about the 
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Muckenhoupt Ap classes. 
Until now, we have presented here new proofs of known results .  However, perhaps, the 

important thing is that these new proofs have allowed to obtain new results for M+ and 
to know better At classes. In this way it has been posible to study M+ on weighted Lp,q 
and Orlicz spaces (see [Ol J ,  [02] , toP] ) .  In what follows, we will show i:esults in other 
direction. 

3 .  At, WEIGHTS 

After proving At :::} Ap-e the following questions remained open: It is known that 
Reverse Horder Inequality is equivalent to the fact that the weight is in some Ap class. Is 
this true for the Weak Reverse Holder Inequality and At classes? Moreover, is there a 
concept of At, weights, equivalent to the Weak Reverse Holder Inequality, analogous to 
the concept of Aoo weights? 

The answers to these questions is affirmative. This has been obtained reC�I).tly by L. 
Pick ,  A .  de la Torre and the author ( [MPT] ) (see also [GP] ) .  

To introduce the concept of At, weights ,  assume that v E At and let a <: b < c and 
E C (b ,  c) .  By Holder's Inequality and At 

IE IP � f v ( fC V - P: 1 ) P-l � C v(E) (c _ a)P JE Jb v(a, b) 

where veE) = fE v .  Therefore we have 

1 � < C ( V(E» ) P 
c - a - v(a, b) 

Keeping in mind this inequality, we define At, weights. 

DEFINITIO N .  If v > 0 is a locally integrable function, we say that v E At, . or v satisfies 
At, if there exist positive constants C and b such that for all a < b < c and all E c ( b, c) 
we have 

.:@.. < C ( veE) ) 6 
c - a - v(a, b) 

Some of the main results about At, [MPTJ are collected in the following theorem. 

THEOREM C .  The following are equivalent: 
(a) v E At,. 
(b) There exist positive constants C and b such that for all a < b < c and all E C (a ,  b) . 

we have 
veE) < C (�) 6 

v(a, c) - c - b 
(c) There exist p > 1 such that v E At -
(d) There exist positive constants C and b such that for all a < b < c 

lb v1+6 � C(M(vX(a ,
b
» (b» 6 1b v . 

The equivalence between (a), (c) and (d) answer to the questions we made above, while 
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the equivalence between (a) and (b) is nothing but the one-sided version of the comparabil
ity of measures introduced in [eFj . In fact , the equivalence of (a) and (b) allows to use At 
to obtain weighted distribution function inequalities. For example, consider the one-sided 
fractional operator (Weyl operator) and the one-sided fractional maximal operators .Let 
o < 0:' < 1. We define 

+ 
100 fey) Io: f(x) = 

x (y _ x ) 1-o: dy and 
1 l X+h 

M: f(x) = sup hI -OI I f(y) ldy. 
h>() x 

It is clear that M;; f ::; I;; lf l . For v E At one proves 

�Mt f>2A,It f�-YA} 
v ::; 

c, �It f > A}  
v , 

for some C and " and then, as it is well known, this good A-inequality gives 

i: I I: f lPv ::; C i: 1M: f lPv . 
The details can be found in [MPTj . 

4. ONE-SIDED BMO SPACES 

In what follows we will introduce a one-sided sharp maximal function that will play the 
role of the classical sharp maximal function. 

It is well known that for a real locally integrable function f in the real line, the sharp 
maximal function fU is defined at x by 

!"(x) = ��} 1�l l l f(Y) - 1�l lf l dy 
where the supremum is taken over all the bounded intervals containing x .  If f is such that 
fU E LOO we say that f is a function of bounded mean oscillation and we write 

BMO = {f E L:oc : fU E LOO} . 

There is a close relation between BMO and Ap weights .  More precisely, for fixed p > 1 ,  

BMO = {O:' log v : v E Ap , O:'  � O} .  

Next we introduce one-sided sharp functions .and one-sided BMO spaces . 

DEFINITIO N .  If f is a locally integrable function in the real line, we define 

( )
+ 1 x+h 1 xH h  

f!(x) = sup h 1 fey) - h 1 f dy 
h > ()  x x+h 

where z+ = max(z,  0) .  
We say that a function f is  in B M O +  if f! E Loo and we write 

Observe that BMO+ is  not a vector space, increasing functions are obviously in BMO+ 
and / l f l ' * .+ = 0 if and only if f( x ) ::; f(y) for almost all x and y with x ::; y. It is also clear 
that f, g E B MO +  and 0:' � 0 imply f + 9 E BMO+ and O:'f E BMO+ . Furthermore, it 
is not difficult to see that if v E At and 0:' � 0 then log V Ol belongs to B M 0 + .  Then a 
first question arises: are all the functions in BMO+ the logarithm of V Ol for some 0:' > 0 
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and some v E At? The answer is affirmative ( [MT3] ) ,  but before of establishing the 
corresponding theorem we will go through another question. 

From now on, if I is an interval (a, c) we write 1- = (a, b) and 1+ = (b, c) where 
b = (a + c)/2. 

It is easy to see that 

1 l
x+h 1 l

x+2h f!(x) � sup inf h (f(y) - a)+dy + h (a - f(y))+dy. h>O a , x  x+h 
Therefore, if for each interval I there exists a number aI such that 

then f E BMO+. Then it is natural to ask if the converse is also true. The answ�r is 
affirmative ( [MT3) ) but it is not clear for the author how to prove this using only the 
definitions. In fact , it was needed a kind of John-Niremberg Inequality in [MT3] to prove 
it. This inequality is in the following lemma. Before stating the lemma, we introduce so�e 
notation. If I = (a, d) is an interval and fis a locally integrable function then we write 
fI = I}I II f, I' = (a, b) , Ie = ( b, c) and r = (c, d) where b - a = c - b = d - c. 

LEMMA . There exist constants G > 0 and 0 > 0 such that for every f E BMO+, every 
interval I and all A > 0 

( 
-OA 

) I {x E I' : (f(x) - fIr )+  > A} I � G II l exp I I f l l * ,+ 
. 

A similar result in the context of parabolic partial differential equations appears in [FG] .  
Using this lemma we have the following theorem which answers to the above questions. 

THEOREM D. Let 1 < p < 00 . The following statements are equivalent: 
(a) f E BMO+. 
(b) There exists I > 0 such that exp( If) E At. 
(c) There exists I > 0 such. that exp( I f) E At . 
( d) For every interval I there exists a I such that 

Once we have this theorem, it is possible to improve the lemma in the sense that one 
can avoid the lack between I' and Ir. Then we have another version of one-sided John
Niremberg Inequality. 

THEOREM E (JOHN NIREMBERG INEQUALITY) . Let f E BMO+ . Then there exist posi
tive constants G and 0 '  such that for every interval I and all A > 0 

I {x E r :  (f(x) - fI+ )+ > A} I � G II l exp ( l I
f
ll*�+ )

' 

Let us come back to the classical case. It is clear that jU � 2M f. There 'is not an 
oppossite pointwise inequality but there is an oppossite weighted integral inequality which 
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is important in the study of integral sigular operators, ( for instance,see [GR] ) .  The same 
things happens with M+ and ft .  On one hand, f! � 3M+ f .  On the other hand we have 
the following theorem. 

THEOREM F .  Assume 'V E A;t" f � 0 and M+ f E LPO ( v) for some Po , 0 < Po < 00 . Then 
for every p, Po � P < 00, i: (M+ f)pv � K i: fr v. 

This theorem can be applied to the study of the weights for the one-sided fractional 
integrals. Observe that M;; f � I;; lf l . This inequality can be reversed using the one-sided 
sharp maximal funcion. More precisely, we have 

This inequality together with Theorem F give roughly speaking that J�oo lIt f lPv and 
J::' 1M;; f lPv are comparable. Then the study of the weights for It is reduced to the case 
of M;;. In this way it is possible to characterize the good weioghts for I;; and Mt (see 
the details in [MT3] ) . We may point out here that these charaxterizations were proved by 
the first time in [AS] (see also [MT2] ) . 

5 .  OPEN QUESTIONS 

1) It is known that the good weights for the Hilbert transform are the same as the good 
ones for the Hardy-Littlewood maximal operator (see [HMW] , [eF] , [GR]) . Does there 
exist a kind of integral singular which plays the same role with respect to M+? 

2) All what we have written here is refered to the real line. It is natural to try to 
generalize this study to lRn, n > 1 .  For instance, which are the good weights for the 
maximal operator defined in lR 2 by 

1 lx+h lY+h 
M++f(x, y) = sup 

h2 If I h>O x Y 
for locally integrable functions in lR2? 



102 

REFERENCES 

[A] K.F. Andersen, Weighted inequalitics for mazimal functions associated with general measures, 
Trans. Amer. Math. Soc. ( 1991) , .  

[AS] H .F .  Andersen and E. T.  Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl 
fractional integral operators, Trans. Amer. Math. Soc . 308 ( 1988) , 547-557 .  

[CF] R. Coifman and C. Fefferman, Weighted norm inequ/llitieil lor mazimal functions and singular 
integrals, Studia Math. 51 (1974) , 241-250. 

. .  

[FG] E.  B.  Fabes and N .  Garofalo, Parabolic B. M. O. and Harnack 's inequality, Proc. Amer. Math. Soc . 
95 (1985) ,  63-69. 

' [GP] P. Gurka and L .Pick , Aoo type conditions for ge�eral measures in R 1,  preprint . 
[GR] J .  Garcia-Cuerva and J .  L. Rubio de Francia, "Weighted norm inequalities and related topics," 

North -Holland , 1985. 
' 

[HMW] R. A. Hunt, B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities/or the conjugate 
function and Hilbert transform, Trans. Arne. Math. Soc. 176 ( 1973) , 227-251 .  

' 

[M] F. : J .  Martin- Reyes, New proofs of weighted inequalities for the one sided H ardy-Littlewood maximal 
functions, to appear in Proc. Amer. Math.  Soc . .  

[MOTl F. J .  Martin-Reyes, P .  Ortega Salvador and A. d e  l a  Torre, Weighted inequalities for fractional 
one-sided maximal functions , Trans. An.er. Math. Soc. 319-2  ( 1990) , 517-534 . 

[MT1] F. J .  Martin-Reyes and A .  de la Torre, The dominated ergodic estimate for mean bounded, 
invertible, positive operators ,  Proc. Amer. Math. Soc. 104 ( 1988) , 69-75. 

[MT2] F .  J.  Martin-Reyes and A.  de la Torre, Two weight norm inequalities for fractional one-sided· 
maximal operators, to appear in Proc. Amer . Math. Soc . .  

[Mu] B:Muckenhoupt , Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. 
Soc. 165 (1972), 207-226 . .  

[01) P. Ortega, Weighted inequalities for one sided mazimal functions i n  Orlicz spaces, preprint. 
[02) P. Ortega, "Pesos para operadores maximales y teoremas ergOdicos en espacios Lp , Lp ,qy de Orlicz," 

Doctoral thesis, Universidad de Malaga, 199 1 .  
toP] P .  Ortega and L .Pick, Two weight weak and extra-weak type inequalities for the one-sided mazimal 

operator, preprint. 
[Sl) E. Sawyer, Acharacterization of a two weight norm inequality for mazimal operators, Studia Math. 

75 (1982) , 1-1 1 .  
. 

[S2) E. Sawyer, Weighted inequalities for the on!! sided Hardy-Litlewood mazimal functions, Trans. 
Amer. Math. Soc. 297 ( 1986), 53-61 .  

[S3) E .  Sawyer" 0, .  

Keywords. One-sided Hardy-Littlewood maximal operators, Weighted inequalities, 9ne-sided fractional 
operators, One-sided fractional maximal operators, Riemann-Liouville fractional integral operator.  
1991 Mathematics subject classifications : 42B25. 

AmUisis Matematico, Facultad de Ciencias, 

Universidad de Malaga, 

29071 Malaga, Spain. 


