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Abstract

Let A be a Banach algebra and .A* the group of invertible elements of
A. A general setting for the theory of homogeneous reductive spaces Q
over A* is presented. Also, in the case where A is a C*-algebra, we present
the notion of an involution in Q. The differential geometry associated to
such spaces is developed.

1 Introduction.

Let Abe a Banach algebra and A* the group of invertible elements of A. Several
examples of homogeneous reductive spaces (see®1? for the definitions in the finite
dimensional case) with group A, are studied in1:34:%6.13_In the case where A is
a C*-algebra, these spaces present a natural involution and a Finsler structure.
Metric properties of these spaces are studied in the mentioned articlestand are
based on results of 2:3:16,

We present here some basic results, of a theory, where the aforementioned
examples find a natural treatment. We also present the concept of the classifying
connection on homogeneous reductive spaces and show some of its properties
(section 6).

We study the general concept of involution in a homogeneous reductive space
in the case when A is a C*-algebra and, in connection with it, we define the
notion of regularity. The main result in relation with the idea of regularity
is Theorem 10.1. The hypothesis of regularity has been verified in all finite
dimensional cases and some infinite dimensional ones (see”).

Some of these results were presented in the “Tercera Escuela Venezolana
de Matematicas”, Mérida 1990, see'2. The general setting for this theory, ap-
peared for the first time in the preprint!? which was submitted for publication
in Acta Cientifica Venezolana. The last part of this preprint studies the Space
of representations of a compact Lie Group on a C*-algebra as an example for
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this theory. Here we ommit most of the proofs (they appear in complete detail
in13) still, we include the proof of Theorem 10.1.

2 Notation, Definitions and Constructions.

Let @ be a Banach manifold, and £ a smooth locally transitive left action of
A on Q. For ¢ € Q, let =, be the smooth mapping 7, : A — Q given by the
actionon € € @, i.e. m(g) = L4(€), Vg € A*.

Let I, = 771 (e) C A* be the isotropy subgroup of € by the action of A*; I,
is a submanifold of A*. The mapping 7, : A — Q is a principal fiber bundle
with total space.4* and group II,. The action of I, is right-multiplication.

We identify A with the tangent space of A* at the identity, T1(A*), and
I, = Ti(I.) shall denote the Lie algebra of the gronp I,.

Let us denote with 7, = T(7,) : A = T (A) — T.(Q). For any g € A*, let
g =Rg-10Ly: A — A, ie. ¢4(h) = yhg~!, Vh € A*. The tangent mapping
(T'¢4), : A—A shall be denoted with d.ig (also called Ad(g) int?).

We present connections on the principal fiber bundles 7, : A —Q, Ve € Q,

so the morphisms
P,

A A
e | ) l TLy(e)
Q¢ = 0

are isomorphisms of principal fiber bﬁ\ndies,‘;itt‘,h\connections. ,
Consider any mapping K, : T.(Q)—.A (= T1(A*)), with the following two prop-
erties: . ’ : ‘ ’

(I) %0 K, : T.(Q)—T:(Q) is the identity mapping.

| (IT) (T'¢a)1 : A—A, leaves invariant the subspace
H =K, (Te(Q) CA, Vae L., ie. (Toa)1(H¢) =H*, Va€ ..

The existence K, is equivalent to having a connection on the principal bundle
7, : AA—Q which makes Q into a homogeneous reductive space as defined in!!.
To produce such a‘connection for 7, : A —Q, from K, we construct a smooth
distribution of horizontal spaces M as follows: for each ¢ € Q and g € A*
define H; = gH* = {a € A|a = gh, for some h € H*}. We call the elements
of My the horizontal vectors at ¢ € A* (for m.). Notice that for 1 € A*,
H{ = H® = K (T.(Q)). The distribution H on A* is given by these horizontal
spaces, Hy = H; = uH* for u € A*. The following assertion is immediate:

Claim 2.1 The spaces H,,, constlitule a connection on the principel bundle 7, :

A —>Q, ie.

(i) H is a smooth distribution on A*.
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(i) uA = (T(A))y = Vu ® Hu,V u € A, with V, = uZ,.
(iii) Hua = Hua(z (RQ).Hu),V ac Hc,u € AX.

Properties (i), (ii) and (iii) define a connection on 7 : A*—Q as found in*°
p- 63.

The connections in the principal bundles #.’s induce connections on sev-
eral associated bundles, in particular on the tangent bundle TQ—Q, which we
present in section 4. First we shall construct the A-valued 1-form K on A*
induced by K,

2.1 Construction of the 1-form X.
Definition: The 1-form K is defined By

K1) = 3y 0 Ke o (£4)"Y, if Lo(e) = p

This 1-form has the equivariance property described below. We remark the
following two lemmas. Let u = L4(¢) € Q.

Lemma 2.2 7, 0¢4(h) = Lyome(h),Vh € A.
Lemma 2.3 (Infinitesimal version of Lemma 2.2)

Fuopy =Ly o0, and (1)
¢9(Ze) = Iy (2)

Given an A-valued 1-form K, we say that K splits the action of A* on Q if
K, =K(u) : Tu(Q)—A, satisfies the two conditions (I) and (II) for K, V p € Q,
as above for K. Suppose K splits the 4* action, we say that K is equivariant

if it satisfies:

Kyol,=¢s0K, (3)
VgeA andVe,p€ Q, withpu= L,y(e)

Lemma 2.4 If K is equivariant, then q(H®) = H* k
where ¢ = K. (T.(Q)), Ve € Q, and p = Ly(e).

Observation: an equivariant 1-form as above is completely determined (lo-
cally) by K, = K(¢) at any fixed ¢ € Q. This follows from the hypothe-
sis of (local) transitivity for the action £, i.e. V e,u € Q, (close enough)
Jg € A* such that u = L£4(€), and then the equivariance of K implies that

K, =¢g0K.0(L,)™? (4)

Lemma 2.5 K, is well defined, i.e. it is independent of g with p = Ly(¢).
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By the equation 4, we may consider the principal fiber bundle associated to
u, m,  A*—Q, via the left action of A* on Q, i.e. m,(g) = L4(n), Vg € A*.

Lemma 2.6 The mapping K, : T,(€)—A, satisfies (I) and (II) as above, i.e.
(I) 7,0 KN, Tu(Q)—T,(Q) is the identily mapping.

(IT) (T'¢a) : A—A, leaves tnvarianl the subspace
HH = Ky(Ty(Q) CAVael,, ie (Té)1(H*)=HFVaeI,.

3 Parallel Transport and
The Transport Equation.

Let K, and K cquivariant as in the previous secticn. To construct the connec-
tion V, on the tangent bundle of @ we introduce the transport equation whose
solutions give the horizontal lifts to A* of curves on Q for 7.

Given a smooth curve () on Q, with 4(0) = e andt € I (I = an interval
about zero).
Definition: The differential equation

P(8) = K0 (3(1)0(0) (5)

is called the transport equation for ¥(t), and the solution FI’(t) with the initial
condition I'(0) = 1 € A, is called the horizontal lift of y(t) (for ).

Proposition 3.1 Vte |

(W) =(t) - (6)
£(t) € i | (7)

4 The Covariant Derivative V..

Let 4(t) be a smooth curve on Q with 4(0) = ¢ and ¢ in some interval about
zero. Let ['(t) be the solution of the differential (transport) equation (5) I'(t) =
K(1)(7(t))T'(t), with initial condition I'(0) = 1. Let. Y'(¢). be a tangent (smooth)
field along y(t) on Q. To define the covariant derivatiVe,D%‘i(O) € T.(Q), we

just define K, (‘Q;IL(O)) € A and the covariant derivative given by D:;Y(O) =

7eo K (D;IX(O)) € M,. We use the following notation: for any tangent vector

X € 9., we write X = K.(X) € H,.
Definition:

Ky - (DX oR S _
DY — i, (D;‘,Y>, where R2X.(0) = 4 {K, [(TLrq)) YO},
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Proposition 4.1 The covariant derivative D¥ induces the connection V. on
TQ given by the formula

TaxY =Y + [, X) ®)

where ¥ = X(Y).

5 The Classifying Connection V.

We introduce the connection Ve on T'Q which has the same geodesics of V. but
with opposite torsion, so Ve = %(VK + V) satisfies:

Theorem 5.1
(i) Ve is symmetric.
(1) Ve has the same geodesics as Vi (and V)

Remark: In the finite dimensional case, Vp is the only connection on T'Q
satisfying (i) and (ii), according to!!.
The proof of Theorem 5.1 follows from the results presented below.

5.1 The Space P of Projections in A.

Let P = P(A) denote the submanifold of End(A) = {endomorphisms of A},
given by

P = {q € End(A)|¢* = ¢} = { projections of A }
and 7 : {—P, the canonical fiber bundle ¢ C P x A with fiber 771(q) =
{(g,a) € P x A| ¢(a) = a}. The canonical connection®® is given as follows:
let n(t) be a curve in P and o a section (along 7) of the bundle 7 : {—P, i.e.
o(t) = (n(t), a(t)) with a(t) € Img(n(t)) C A. We define the covariant derivative

%(0) = (n(0),n(0)(a’)), where a’ = ;;—1-t-_((1(t))h=0 €A

5.2 The Classifying Map II.

The family of projections II, = K, o #. : A — A for ¢ € Q, defines a differ-
entiable mapping (observe 11 = II,) I1 : @ — P C End(A) with, II(g) = II.:
A — A. We call II the classifying map!%. We present a formula for the tangent
mapping of IT at € € Q. For z € A let’s denote by ad; : A — A, given.by - "

adz(a) = [z,a] = za — az, Va € A.

Proposition 5.2 Fore € Q and X € (TQ)., (TI)(X) = [adk,(x), IIc] as
operators on A.



108

5.3 © The Induced Connection V. on TQ.

We use the classifying map II to construct the covariant derivative!® on TQ.
First, consider the following commutative diagram,

(P,K)

TQ =; ECPxA
1 =
Q 5 P

where the mapping P is defined by following arrows from T'Q down to P, and
P, gives the second component. of an element in . Let 7t =.7(t) be a. smooth
curve on Q with y(0) = ¢, and let Y; = Y(t) be a smooth vector field along .

To define 25X conisider 7(t) = 7(7) in P and the section o’(t) of the bundle
m:E—P glven by

o(t) = (n(t), Ky, (V1)) € &nr)

DY
dt

with 1—3% defined above in section 5.1."

We define

- D
=T o0 Pz(d'—:r')

5.4 A Formula for V..
We have DJX = 1"r¢(l'I (a')) where a’ = %(Kﬁ(m)l, _o (¢ € A) but 7 o
I, = #, so we get 22X = 7, ((K,, (Y)j=0) = #e(Y). Hence we can compute

9,,—,1 = K.(Bg- V), to get,

BY .
dt =1(Y) B R (9)

In general if X and Y are vector fields on Q, we have the following formula for
the connection V, at € € Q. ‘

Vex¥=I(¥) = (0
6 The Geodesics of Vi and V..
The following lemmas are useful in a proof of Théorem 5.1.

Lemma 6.1 The geodesics of Vi and V; coincide.
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Proof: It is enough to check that the geodesics are given by the same differential
equation in both connections. In fact, by Proposition 4.1, a geodesnc v of Vg is
given by the equation,

D*y

0=—== *2(57) +[7.7 = ?re(ér)

On the other hand, 7 is a geodesic of V. when (see formula (9)),

DSy . 3
dt = 7e(7)

0=

and Lemma 6.1 is proved.

Observation: If V,, V; are connections and s, t real numbers with s+t =1
then sV, +tV, is a connection. Furthermore if 7 is a geodesic for both V; and
V,, then 7 is a geodesic of sV, + tV,.

6.1 Computation of the Torsions of Vi and V..

Let X and Y be tangent vectors to Q, say at . We consider particular vector
fields on Q extending X and Y. Given z G A, consider the smooth vector field
on Q given by

z(p) =7u(z), VRHEQ (11)

Observe that K (z(u)) = Mu(z), Vu€ Q. If z = K (X) and y = K, (Y), the
vector fields z and y extend X and Y respectively.

Claim 6.2 If z = K. (X) and y = K. (Y), #e([z,y]) = —[z, y)(¢)-

To compute T*(X,Y)(€), the torsion of Vg, it is enough to compute TT‘(X, Y)(e) =
K, (T*(X,Y)(¢)). From the formula for the torsion,
T(X,Y)=VxY — VyX — [X,Y], we have the following identity,

TR(X, Y) = Ke(Vaeg 9(6)) - Ke(Viey2(€)) - Ke(lz, 8())

but from claim 6.2 we have [z,y](¢) = —#[z,y] and we get ’T‘E(X,Y) =
K (Viz y(e))— K. (Vkyz(€))+1 ([z,y]). We shall compute Vi z y(€) = Ke(Viz y(€)) =
z(¥)(¢) + [z,y] (the last equality follows from the formula in Proposition 4.1).

Claim 6.3 z(y)(¢) = (I — I )[z,y).
Now we can write ﬁig(e) = z(y)(e) + [z,y] = (I - I)[z,y] — [=,9]

—II,([z,y]) and similarly ﬁlg(e) = —II([y,z]), hence we get ’i‘T‘(X,Y) =
—Ic([z,4]) - Ie([z, 4]) + M ([, y]), hence

T*(X,Y) = —IL([z,)) (12)
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Finally, from formula (10) and claim 6.3 we have,
Ve(z,y)(e) = Me(z(Y)(€)) = M (I — I )([z,y]) = 0 and, the torsion T€ of V¢ is

given by, TS(X,Y) = —K([z,y]) = I([z,y]), where the last equality follows
from claim 6.2, hence we get the formula,

T(X,Y) = I([z,y)) (13)

6.2 The Proof of Theorem 5.1.

Part (ii) follows from Lemma 6.1 and the observation following that lemma. To
prove part (i) observe that the torsion T¥ of V, satisfies, T® = 1(T* + T°).
But by the formulas (12) and (13) we get TP = 0, hence V; is symmetric as
claimed.

7 Formulas for the Geodesics and the Expo-
nential Mapping.

Lemma 7.1 The geodesic v(t) through e € Q at t =0 and v(0) = X C (TQ).
s given by
7(t) = Lexp(tK.»(X))E (14)

Hence the exponential mapping at € € Q is given by

exXpe(X) = Lexp(K.(X))E (15)

8 The Curvatures R¥ and RF°.

For tangent vectors X,Y,Z at ¢ € Q, the curvature‘of a connection V on TM
is given by the formula (as in p. 133 of!?)

R(X,Y)Z =VxVyZ -VyVxZ - Vxy|Z

We shall present the formulas after acting with K, on both sides of this formula
for the curvature to get,

R(X,Y)Z = @xV);Z - VyVxZ - {7[X’y]Z

8.1 The Formula of RX.

RX(X,Y)Z = [K(Z),(I—II)[K(X),K(Y)]] SR (16)



8.2 The Formula of R°.

—

Re(X,Y)Z =
= [k00. (- mixe), k@) - K0, 0 - K, k@)an
When working on the formula above, it is useful and interesting to notice the fol-

lowing assertion, which follows from the hypothesis that ¢, leaves H® invariant
for anya € II,.

Claim 8.1 If x € H® and y € I¢, then [z,y] € HE, i.e. the bracket of a
horizontal x with a vertical y, is horizontal.

9 Involutions.

In this section we shall consider A to be an associative C*-algebra (with identity)
and A* its multiplicative group. Let’s denote with

2(g) = g% = (¢")" (18)

the action of the contragradient involution ¥ : A*—A*. Observe that (¢¥)* = ¢

9.1 Homogeneous Reductive Spaces with Involution.

We shall say that o : @—@ is an involution for the homogeneous reductive space
{Q,K} if o is a diffeomorphism of period two (0? = identity), which satisfies
the following four axioms:

Axiom 1. Equivariance of .
For any € € Q the following diagram commutes,

4 E g
e l L e
Q - 9

e (Lge)7 = Lz (7).
Axiom 2. Compatibility with K.
For any € € Q the following diagram commutes
(Ta)y=A T 4
I{e T T I{e"
To)e
(19 T (TQ).r

ie. (TE); K = Keo (To),
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Axiom 3. The sct P of self-adjoint elements of Q,

P ={e€Qle? =¢}

is a submanifold of Q and the (connected) components of P are the inter-
section of P with the components of Q.

Axiom 4. For any € € Q, there exists a = a(¢) € A* such that L,e = €7

Observations:

1.
2.

Axiom 1 implies that ¥ : A* — A* maps I, — I,

From Axiom 1, for p € P, the Lie algebra I, (of II)) is a C*-subalgebra
of A.

. Axiom 2 implies that (TZ), : A — A, maps u — —u*, hence HE =

{u*|lu e H}.

. From Axiom 2, for p € P, the horizontal space H?” is *-closed in A, and

we have the decomposition
HP = (HP)* ® (HP)?

into symmetric and anti-symmetric elements.

. For the examples of spaces with involutions we shall present below, the

mapping a : Q@ — A" in Axiom 4, can actually be chosen to be smooth. In
general Lemma 9.1 below says that given € € Q we may take the mapping
a to be smooth in some neighborhood of €.

Suppose that L,6 = €7 with a > 0 and Ly = p for some g € A*, then
from axiom 1 we have
p’ = Lgee® = Ligey-1LaLg-1p1, hence

(4

M = [:(g-)-lag-l[l . (19)

Lemma 9.1 Given € € Q, the mapping a: Q — A" in Aziom J above can be
taken locally smooth about €.

Proof of the lemma: Let V C (T'Q), be a neighborhood of 0 € (T'Q), such
that the exponential exp, : V — U (see formula (15)) is a diffeomorphism onto
a neighborhood U C Q of . For p € U we call g(p) = exp(K,(X,)) where
X, =exp;!(p) € V. Then g : U — A* is smooth and Ly,)e = p hence, from
formula (19) above, we have L5(,yp = p° with @ : U — A* smooth given by
a(p) = (9(p)") " alg(p)) ™.
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9.2 Decomposition of (T'Q),.
Claim 9.2 X € (TP), < K,(X)* = —K,(X).

For p € P we define N, = {X € (TQ),|K,(X)* = K,(X) € H? C A}. From
claim 9.2, and the fact that K,(T'Q), = H” = (H*)* & (H”)?, (see the observa-
tions above) we can write

(TQ), = (TP), ® N* (20)

10 The Normal Bundle on P.

Let {Q,K,0} be a homogeneous reductive space with involutiéon and P C Q the
self-adjoint elements of Q. We denote by A the normal bundle on P

N= )N

PEP

We define the exponential mapping £ : N' — Q given by £(p, X) = exp,(X), i.e.
therestriction ofthe exponential map exp, to normal vectors X € NP Ky (X) =
K,(X)* € A. We are interested in giving sufficient conditions for the mapping
£ to be a diffeomorphism.

10.1 The Hypothesis of Regularity.

For a fixed p € P, consider I;," the set of (invertible) positive elements in
the Lie algebra I, of I,. Consider also the set E* of the exponentials of the
symmetric elements of H”, i.e. E® = {exp(h)|h € (H?)*}. Consider the mapping
pp : I} x E? — A, given by p,(i,€) = p, where p is the positive part in the
polar decomposition te = pu, with p > 0 and u unitary.

Definition: We say that p is regular if the mapping p, is a diffeomorphism.
Observations:

1. Just by taking the inverses (or the *’s) the hypothesis of regularity can be
rewritten to say that the mapping p, : I,',*’ x Ef — A* is a diffeomorphism
where p,(¢,e) = p > 0 from the polar decomposition et = up.

2. If p € P is regular, then any element in the unitary orbit of p, say
p' = Lyup with u unitary, is also regular for in such case, py(¢/,€') =

. ’
u(pp(u=tu,u=te'u))u"?, using u‘II;u =1} and u™'Ef u= E’, etc...

Definition: We say that the unitary orbit U, = {Lyp|u = unitary} is regular
if any element in U, is regular (see observation above).
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10.2 The Normal Bundle of a Regular Unitary Orbit.

Let Py C P be a regular unitary orbit as above. Let Ay denote the restriction to
Py of the normal bundle N. Let Qo = {L4p| g € A%, p € Po}. Then {Qo, K, 0}
is a homogencous reductive space with involution, with Py the set of self-adjoint
elements of Qp and, A} is the normal bundle of Py.

Theorem 10.1 If {Qo,K, 0} is as above for a regular unitary orbit Py, then
Eo: No — Qo is a diffeomorphism.

Proof of the theorem: To simplify the notation along this proof, we shali
drop the subindex ‘0’ so, we start assuming that {Q, K, o} is the homogeneous
reductive space for the unitary orbit P etc. ..

Surjectivity. Let € € Q. We want to find (p’, X’) € N such that £(p’, X') = €.
From axiom 4, there exists a > 0 in A and p € P such that L,p = €. By the
regularity hypothesis (for p) we can write a=! = p,(¢,exp(h)) (in a unique way)
for u unitary, « € T} and exp(h) € E* (h € (H?)®) with a~'u = texp(h), hence
a = uexp(—h).™! and € = Ly exp(=h)i-1P = Luexp(~h)P; for ¢ is in the isotropy
of p. Hence we can write € = Ly exp(=h)u=1 Lup = Lexp(—uhu-1)p’'s With p = Lyp.
Now, observing that —uhu=! € u(H?)*u~! = (H*')* and using the formula (15)
for the exponential we have € = exp,/(X’) with X’ = 7(—uhu~'). So we have
e=E&(p', X') as desired.

Injectivity. Suppose (p1,X1), (p2, X2) € N with E(p1,X1) = E(p2,X32), i.e.
Leop1 = Le,p2 where e; = exp(K,,(X1)) and e; = exp(K,,(X2)). Consider u
unitary with £,p; = p2. Then we can write Liel.lczupl = p1, hence el'legu ern,

(the isotropy of p;). Consider e]'eau = (v the polar decomposition in the Lie
algebra Z,, with v unitary and ¢ > 0. We can write e] 'eow = ¢ with w = uv™!
satisfying L,p; = p2. Then e]'w(w™'eow) = ¢ hence w™lesw = wleye is
a positive element in exp((H?!)®). By the regularity hypothesis (for p1) such
element can be written in a unique way as a product like the one on the right
hand side, with w™?! unitary, e, in exp((H**)*) and ¢ > 0inZ,,, hence w™lesw =
e1; w! = 1land ¢ = 1, then po = Lyp; = L1p1 = p1 and e; = e;. Taking
logarithms we get K,, (X1) = K,,(X2) (< X1 = X3) as we wanted to show.

Smoothness. We present below a explicit formula for the inverse of £. In
turn, the formula for £ ! shows that this mapping is smooth. Consider € € Q
and let a : U — A* smooth as in lemma 9.1, i.e., U is a neighborhood of ¢ and
Loyp = p°, V € U. Consider 0 < b = va : U — A" which is also smooth.
Observe that Ly, )u = p(p) € P, Vu € U as the following computation shows:

(Loguyn)” = Laupzn’ = Lgu-1#
= Lo(uyLeuy-2#" = Logum



Clearly p : U — P issmooth. Consider the decomposition e(u)e(p) = u(p)(b(p))~2,
produced from the hypothesis of regularity of p(u) € P, so that ¢(u) > 0 is
in I, and e(u) = exp(h(u)) with h(p) € (HP())* and, u(p) is unitary in
A. These mappings ¢, e and u are smooth on U, which can be seen imme-
diately from the second observation made above after the definition of ‘regu-
larity’. Consider &(x) = u™'(W)e(u)u(u) = exp(h()) € exp((HAMW)*) with
p(p) = Ly-1()p(1). Then Lz(,)p(p) = pV p € U because

Lip = Lyeu-1Lu-1p = Ly-1.p = Ly-1p = Lop = ‘Cb(u)p(ﬂ) =4

Hence £-1(p) = (ﬁ(p),i’rp(,‘)(ﬁ(p))) € Np(u)i, is the desired formula for the
inverse of £.
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