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We briefly discuss some important results on Huygens' principle in  the sense of 

Hadamard's minor premise. We also indicate a negative result we obtained concerning 

the above principle and the system of elastic waves in the presence of an impurity of the 

medium. We also mention some open problems in the subject as well as possible interesting 

generalizations. 

1. INTRODUCTION 

It is a fact of nature that waves propagate in very different manners depending whether 

the spatial dimension is two or three. Suppose that a little stone falls in water at a certain ' 

point Xo , then, we observe that the initial ripple on a circle around Xo will be followed by 

subsequent ripples. Evidently, if X l  is another point (not very far from xo ) then X l  will be 

hit by residual waves. In three dimensions, the situation is very different . If you produce 

a bang, there will be no after-sounding. We have a pure propagation without residual 

waves. The above examples suggest us that all wave phenomena could be divided into two 

classes: Those for which the Huygens' principle holds (that is, there are no after effects) 
and the ones for which the principle fails (that is, there are always some after effects) . 
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Christian Huygens wrote his Traite de la Lumiere in 1690 where he discussed the propa

gation of light based on a new principle, which nowadays is known as Huygens' principle. 

Unfortunately it took quite a long time before Huygens ideas on wave propagation receive 

adequate recognition. Around 1818, A. Fresnel .by using the Huygens' principle, discov· 

ered significant facts on quantitative wave optics and found the real cause of diffraction. 

Several difficulties encountered in Fresnel's theory were overcome by G.  Kirchhoff iwho 

used Helmholtz's formulation of Huygens' principle for monochromatic phenomena. Since 

the original formulation, the term Huygens' principle has suffered an evolutioll. We shall 

follow J .  Hadamard [5] who described the principle in the following form nowadays known 

as Hadamard's minor premise : "If at the instant t = to or more precisely, in the short 

interval to - c ::; t ::; to + c ,  we produce a sound disturbance localized in the immediate 

neighborhood of a point xo , the effect at the subsequent instant t = t } is localized in a very 

thin spherical ,hell with center Xo and radius c( t} - to ) where c is the velocity of sound" . 

In this Lectur(\, we describe several aspects and contributions (old and new) concerning 

Hadamard's ml\p.or premise. 

This is an e4tended version of an invited Lecture given by the first author at the X 

ELAM in Cordoba, Argentina. We would like to than� the Organizing Committe for the 

kind invitation and for the pleasent hospit4lity dUring the time that the event 'was held. 

In Section 2 we gIve the precise definition of a Huygens' operator and discuss some 

illustrative examples. In Section 3 we outline the proof of a recent (negative) result we 

obtained [12] concerning the system of elastic waves in the presence ot � impurity. Some 

open problems on the subject are also indicated. 

II. SOME EXAMPLES AND HADAMARD's PROBLEM 

In order to simplify our discussion we shall restrict our attention to second order 

differential operat.ors. Let L be a linear partial differential operator of hyperbolic type 
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(1 )  ()2u L[u] = 8t2 - Lo [u] 

where La is a linear elliptic operator, say for instance, Lo [u] = Ei=1 
Ei=1 aj(x) :� + b(x)u. The bicharacteristics of L issuing from (xo , to )  are assume to 

generate the characteristic conoid K with vertex at (xo ,  to ) .  We say that u satisfies the 

Huygens' principle or, that L is a Huygens' operator, if the solution u of the Cauchy 

problem L[u} = ° with respect to any space like hypersurface S depends (at the point 

(xo , to » only on the Cauchy data u ls and :; Is taken on the intersection of K with S. 

Example 1 .  (Scalar Wave Equation) Consider the Cauchy problem 

(2) { u u ' - a2 du == ° 
u(x,O) = f(x) ,  Ut (x , O) = g(x) 

where x E nn , t E B and n is  odd � 3 .  Also a >  0, I E c!!f!. (Bn) and 9 E C� (Bn). 
In this case S = Bn. It is well known that , the solution is given (for t > 0) by 

u(x , t) = Cn [! (� !) � tn-2 i,l=1 I(x + aty)dS, + 

+ (� !) � tn-2 f g(x + atY)dS,] 11,1=1 

(see [3] ) where Cn = 3.5 . . . .  (':-2)w .. o.2 and Wn = �'I=1 dS, . 

Observe that at each (xo , to ) the solution of (2) depends only on the spherical means 

of I and 9 respectively. In this case the characteristic conoid with vertex at (xo , to ) is 

It follows that the solution u of (2) satisfies the Huygens '  principle. 

It is easy to prove that if n is even � 2 then the Huygens' principle is false >for the 

solutions of (2). 
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Example 2. (System of Elastic Waves) Let a > b >  o. Consider the system 

(3) { Utt - b2D.u - (a2 - b2 )Grad (Div u) = 0 

u (x,O) = F(x) ;  Ut(x , O) = G(x) 

where x E 1R3 , t denotes time, u(x, t) = (u1(x , t)., u2(x, t ) , u3(x , t) ) ,  D. denotes the (vector) 

Laplace operator, that is D.u = (D.ul, D.u2 ,  D.u3 ) .  For simplicity we assume that each 

component of F and G belongs to Cge'( R3�; . that is, the space of functions of class Coo 

with compact support . It is easy to verify that the solution u of (3) can be written as the 

superposition of two waves 

(4) u = Grad v + Curl w 

where v and w are the solutions of the following initial value problems: 

(5) { V t t  - a2D.v = 0 (scalar wave equation) 
v (x,O) = FI (X ) ,  Vt(x, O) = GI (x) ,  x E Il3 , t E 1R 

(6) { wit - b2 D.w = 0 (vector wa"e equation) 
w (x,a) = F2 (x) ,  Wt(x, O) = G2(x) ,  x E R3 , t E IR 

where Fj and Gj are obtain using the decompositions F = Grad Fl + Curl F2 and G = 

Grad G1 + Curl G2 respectively. As we already saw in example 1 ,  v and w do satisfy the 

Huygens' principle. Using (4) we deduce that the solution u of (3) satisfies the Huygens' 

principle. 

Other Examples. 3) Maxwell's equations (propagation of electromagnetic waves) [8] , 

4) Some modified wave equations on special homogeneous spaces [6] . Clearly, if the solution 

u satisfies the Huygens' principle, then, the following property will be satisfy: IT the initial 

data have compact support then, the solution u vanishes identically in a (forward) cone 

(and also in a backward cone). For example, if the initial data have compact support 
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contained in the ball { lx l � M} then the solution u of Example 1 will vanish identically 

in the space-time cone 

{ (x , t) , Ix l � al t l - M, I t I � �} 
In Example 2, if all components of F and G have support contained in { Ix l � M}, then 

u == 0 in the cone 

because a > b > O. 

{ (x, t) , Ix l � blt l - M, It I � �} 

Definition. If L is a Huygens operator, then any other operator L obtained from L by 

one of the following transformations: 1) Gauge transformations; 2) conformal transforma

tions or 3) non-singular transformations of the independent variables, will be said to be 

essentially equivalent to L. If a Huygens operator L is essentially equivalent to a wave 

operator (like in Examples 1)  or 2)) then L is called a trivial operator; J. Hadamard 

conjecture that every Huygens operator was trivial, but his conjecture turned out to be 

false. A famous counterexample was given by K. Stellmacker [14] .  

Problem 1 .  Can we find all Huygens operators? 

J. Hadamard found a criterion for solving the above problem: Huygens' principle holds 

for u if and only if a certain two-point field V = Vex , y) vanishes identically. This V is 

called coefficient of the Logarithmic part of Hadamard's elementary solution 

of the formal adjoint .  It turns out that when V is expanded as a formal power series, 

the coefficients Vi = Vj(x, y) obey a recursive first order system of geodesic propagation 

equations. The criterion is necessary and sufficient but highly implicit . Several authors 

contributed to the subject trying to develop more explicit necessary conditions for .the 

validity of Huygens' principle. See [9] , [4] and the references therein. 
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Despite ali--of the above contributions the above problem remains unsolved. Perhaps 

a simpler problem may be more accessible. 

Problem 2. Suppose that f,Ill operator L of type (1 )  i s  ,a Huygens ope�ator, c an  .we 

characterize a class of linear perturbations P so that L + P ceases to be a nuygens 

operator? 

In the next section we briefly discuss an answer for Problem 2 for small (linear) per-

turbations of the system of elastic waves. 

III. PERTURBED ELASTIC WAVES 

In this section we shall consider "small" perturbations of the Example 2 given in 

Section II. Our aim is to present a simple proof showing that the Huygens' principle fails 

for such class of perturbations. 

Let us define the operator P as follows: Let h :  IR3 X IR+ -+ R3 

Ph(x, t) = 4:b2 lz l9t I z l -1 {h (x + z , t - I�I ) - lz l -2 z [z . h (x + z, t - I�I ) ] } dz+ 

+ 4
1 

i f Iz l-3z [z e h (x + z , t - !:l)] dz+ 
'Ira J1z l5:at a 

+ -4
1 1t s f I z l -3 [3z l z l -2 {z . h(x + z, t - s) } - h(x + z ,  t - s)] dz ds 
1f 0 Jbll5:lzl5:as 

where a > b > 0 and the dot • denotes the usual inner product in E. It can be shown 

that P is actually the following operator: 

where R denotes the Riemann matrix associated with the free system (3) and * denotes 

spatial convolution. We have the following result. 



123 

Theorem 1 .  Let G(x) = (G1 (X) , G2(x) ,  G3(x))  with Gj E CO"(R,3) and supp G; � {x E 

IR3 , Ix l :5 M}. Let v = vex, t) be the solution of (3) with F(x) == 0. Let q :  R3 -+ IR 

satisfying the following conditions: 

a) q is "smooth" , except at most in a finite number of points in R3 and q(x) � ° for all 

x where it is defined. 

c) There exists 'Y, ° < 'Y < 1 and a > 1 such that 

d) There exists at least one point (xo, to) belonging to the cone 

such that P(qv)(xo , to )  '" (0, 0, 0) where P is given by (7). Then the solution uE = 

uE(x, t) of the initial value problem 

(8) { Utt - b2.D.u - (a2 - b2 )Grad (Div u) + cq( x)u = 0, x E IR3 , t E IR 
u (x,O) = 0, Ut(x, O) = G(x) 

does not vanish identically on the above cone. In particular the (strong) Huygens' 

principle is not valid for such perturbations. 

General Comments on the Proof of Theorem 1. 

i) We proceed as follows: the solution u of (8) can be written as follows 

(9) { u(x , t) = v(x,t) - cP(qu)(x, t) = 
= v(x,t) - cP(qv)(x , t) + c2P(qP(qu»(x, t) 

Suppose by contradiction tna"t- u vanish identically on the above cone, then using .(9) 

with (x, t ) = (xo , to )  we obtain 
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(10) P(qv)(xo , to ) = ep(q(p(qu») )(xo , to ) 

because v satisfies the Huygens' principle. Hence, to prove the result would be enough 

to show that the right hand side of ( 10) approaches zero as e -+ O. Estimates on 

the right hand side of (10) were done using the energy method together with apriori , " ,  

estimates over characteristic cones. Here, the structure of the operator P was explore 

in detail. Complete proof will appear elsewhere [12] 

ii) Observe that assumptions b) and c) have to do with the behavior of q at +00 and at 

zero respectively. In case a = b that is, when we consider perturbations of the wave 

equation (2) it is well known that there exist some singular perturbations for which 

the Huygens' principle is still valid, see [14] . We suspect that our assumption c) is 

essential for the conclusion of Theorem 1 .  Our assumption d) may not be so simple to 

verify directly due to the complicated structure of the (matrix) lliemann function for 

(3) .  However, there are some situations where we can check directly th�t condition d) 
holds. Further details can be found in [12] .  

Some Open Problems. 

1) What can be say about Problems 1 or 2 for linear hyperbolic operators of higher order? 

Say, for instance, for hyperbolic openi.tors in the sense of Garding or Petrowsky. The 

notion of Huygens' principle is subordinated to the notion of "lacunas" (see [1] ) but 

we don't know satisfactory answers for this problem. 

2) Replace the Cauchy problem (in the definition of the Huygens' principle) by a charac-

teristic initial value problem, say, the Goursat problem. 

3)  V\onat can we say about the Huygens' principle and solutions of semilinear hyperbolic 

equations? As far as we know only in a very special case Problem 2 has recently been 

considered [l l} . 

.> 
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4) The exact validity of the Huygens' principle could be (perhaps) substitute by an "ap

proximate validity" , which would allow us to use perturbation techniques. J . J .  Duis-

termat recently suggested that instead of requiri;ng that u vanishes identically on the 

Huygens' cone, it may be more appropriate saying that u has a "singularity at the 

wave front" (see [2]) .  
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