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LINEARIZATION O F  HOLOMORPHIC MAPPIN G S  
ON INFINITE DIMENSIONAL S PACES 

JORGE MUJICA 

Introduction 

Several authors have obtained linearization theorems for various classes of holo- . 
morphic mappings . It seems that the first general result of this kind is due to Mazet 
[6] , who obtained a linearization theorem for holomorphic mappings on locally cone 
vex spaces , thus improving previous results of Schottenloher [ 13] and Ryan [ 12] .  In 
a recent paper Nachbin and the author [10] gave a new proof and several applica­
tions of the Mazet linearization theorem. Very recently Dineen, Galindo, Garcia 
and Maestre [ 1 ]  solved two of the problems left open in [10] . 

By specializing to smaller classes of mappings , the author [8] obtained a lin­
earization theorem for bounded holomorphic mappings, whereas Galindo, Garcia 
and Maestre [2] obtained a linearization theorem for holomorphic mappings of 
bounded type. In a very recent paper the author [9] showed that the last two 
classes of mappings are intimately connected. 

In this lecture we begin with a survey of the main results concerning lineariza.­
tion of bounded holomorphic mappings on Banach spaces , taken mainly from [8] . 
We next apply these results to the study of interpolating sequences. At the end we 
restrict our attention to the case of the open unit disc and show the connection of 
the preceding results with the classical Hardy spaces . 

I wish to thank the organizers of the X Latin American School of Mathematics 
for their kind invi tation and financial support to attend and deliver this lecture. 

1 .  Notation and Terminology 

The letters E and F always represent complex Banach spaces , and L(Ej F) 
denotes the vector space of all continuous linear operators from E into F. Unless 
stated otherwise, L(E; F) is endowed with its natural norm topology. · We write E' 
instead of L(E;rt) for the dual of E. 

Let U be a nonvoid open subset of E. A mapping I : U -? F is said to be 
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holomorphic if I is continuous and the function ). -? 'Ij; 0 I( a + )'b) is holomorphic 
on an open neigborhood of the origin in rt for every a E U, b E F and 'Ij; E P. Let 
II (U ;  F) denote the vector space of all holomorphic mappings from U into F, and 
let IIOO(U; F) denotes the subspace of all bounded members of H(U; F) . Unless 
stated otherwise, HOO(U;  F) is equipped with the sup norm topology. When F = rt  
we write H(U) instead of H(Ujrt) , and H<'O(U) instead of HOO (Ujrt) . We refer to 
the author's book [7] for the properties of holomorphic mappings on Banach spaces. 
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2. Linearization of Bounded Holomorphic Mappings 

The following linearization theorem is taken from [8] . 

2 . 1 .  Theorem [8}. Let U be an open subset of a Banach space E.  Then there 
are a Banach space GOO (U) and a mapping Ou E HOO(Uj  Goo (U))  with the following 
universal property: For each Banach space F and each mapping f E HOO(Uj  F)} 
there is a unique operator Tj E L(GOO(U) j  F) such that Tj 0 Ou = f. The mapping 

f E HOO(Uj  F) -+ Tj E L(GOO(U) j  F) 

is an isometric isomorphism. These properties characterize GOO(U)  uniquely up to 
an isometric isomorphism. 

The following proposition shows the connection between E and GOO (U) .  

2 .2 .  Proposition [8]. Let U be  a bounded open subset of a Banach space E. 
Then E is topologically isomorphic to  a complemented subspace of Goo (U) . 

The following proposition shows the cOI\nection between properties of a 
mapping f E HOO(Uj F) and properties of the corresponding operator Tj E 
L(GOO(U) j  F) . 

2 .3 .  Proposition [8}. Let E and F be a Banach spaces} and let U be an open 
subset of E .  

(aJ The range of a mapping f E HOO (U; F )  is contained i n  a finite dimensional 
subspace of F if and only if the corresponding operator Tj E L(GOO (U) j  F) has finite 
rank. 

(b) The range of a mapping f E HOO(Uj F) is relatively compact (resp. rela­
tively weakly compact) if and only if the corresponding operator Tj E L(GOO (U) j  F) 
is compact (resp. weakly compact) . 

We denote by H'j( (U j F) (resp . H':;'K(Uj F)) the subspace of all f E HOO(Uj F) 
which have a relatively compact range (resp. relatively weakly compact range). 

3. Another Topology on HOO(Uj F) 
Theorem 2.1 tells us thit the mapping 

is an isometric isomorphism. If Tc denotes the compact-open topology, then it is very 
useful to consider the unique locally convex topology T"( 0:1 HOO(Uj F) such that the 
mapping 

f E (HOO(Uj F) , T,,() -+ Tj E (L(Goo(U) j F) , Tc) 
is a topological isomorphism. The following theorem furnishes an explicit descrip­
tion of T"( in tel'm� of seminorms. 
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3.1 .  Theorem [8}. Let E and F be Banach spaces, and let U be an open 
subset of E .  Then T-y is the locally convex to.pology on Hoo(Uj F) generated by all 
the seminorms of the form 

With the aid of Theorem 3 . 1  we can describe Goo(U) as follows. 

3.2.  Theorem [8][9}. Let U be an open subset of a Banach space E. Then 
Goo (U) consists of all linear functionals u E Hoo(U)' of the form 

00 
u = L f3jbxj , 

i=1 

00 
l I u l l  = inf L lf3i l , 

i=1 

where the infimum is taken over all such representations of u . 

4. The Approximation Property 

We recall that a Banach space E is said to have the afJproximation property, 
introduoed by Grothendieck [4] , if the identity operator on E lies in the Tc-closure 
of E' 0 E in L(Ej E).  The following results give several characterizations of the 
approiimation property in terms of bounded holomorphic mappings. 

4 .1 .  Theorem [8} Let U be a balanced, bounded, open subset of a Banach 
spO/ce E .  Then the followmg conditions are equivalent: 

(aJ E has the approximation property. 
(b) For each Banach space F, Hoo(U) 0 F is T-y-dense in Hoo(Uj F) . 
(c) The inclusion mapping U y E lies in the T-y -closure of Hoo(U) 0 E in 

Hoo (U; E) . 
(d) The mapping bu lies in th,e T-y -closure of Hoo (U) 0 Goo(U) in 

H=(U, Goo (U) ) .  
(e) Goo (U) has the approximation property. 
(f) For each Banach space F and each open set V c F, Hoo (V) 0 E  is T-y-dense 

in Hoo(Vj E) . 
(g) For each Banach space F and each open set V C F, Hoo (V) ® E is nurm­

dense in Hit(Vj E) . 

4.2 .  Proposition [8}. Let U be an open subset of a Banach space E.  
Then Hoo(U) has the approximation property if and only if, for each Banach space 
F, Hoo(U) ® F is norm-dense in IJit(Uj F) . 
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Since it is still unknown whether HOO(�) has the approximation propt!fty, where 
� denotes the open unit disc, Proposition 4.2 

,
may be of some use in this c6nnection. 

5. Interpolating Sequences 

Let B(X) denote the Banach cilgebra of all bounded complex-valued functions 
on a nonvoid set X, with the sup norm. We will :fleed the following result from the 
book of Garnett [3, Theorem VII.2 .2j . 

5 . 1 .  Theorem [3}. L�t A be a subalgebta 'of B(X )  which contains the constants 
and separo,tes the points of X .  Let x} ,  . " . ,  Xn be , distinct points o! X and let 

M = sup inf{ l lf l l : f €' A,/(X'i.:) == 7]" for k = 'l , . . ; , n } . '  1 1'1 1 100 9 

Then for each c > 0 there are f1 ' . . .  , fn E A such that !;(x,,)  = hj" for j, k = 1 ,  . . . , n  
and n 

sup L 1!; (x) 1 :::; M2 + c . 
",eX j=l 

Let U be an open subset of a Banach space E. A sequence (x,,) c U is said 
to be an interpolating sequence if the mapping f E Hoo(U) -+ (f(x,,» E 100 is 
surjective .  The following theorem gives several characterizations of interpolatiIlg 
sequences. 

5 .2 .  Theorem. Let U be an open subset of a Banach space E.  For a sequence 
(x,,)C U the following conditions are equivalent: 

(a) The mapping 

is surjective . 
(b) There exists P E L(/OO ; HoO(U» such that Q 0 P7] = 7] for every 7] E)oo . 
(c) There exists P E L(co ; HOO(U» such that 'Q o Prr = 7] for every 7] E Ccj' : ,  _ 

(d) Tl"e mapping 

00 S : (e,, ) E 11 -+ L e"h"'k E GOO (U) 
"=1 

is an embedding. 
(e) There exists T E L( Goo(U) ;  P )  such that T o  Se = e for every e E  P .  
(f) There exists r.p E Hoo(U; fl )  such that r.p(x,,) = e" for every k E IN. 
(g) For each Banach space F, the mapping 

is surjective . 
(h) For each Banach space F, there exists PF E L(lOO (F) ; Hoo(Uj F» such that 

QF 0 PFy = Y for every y E lOO (F) . 
. 
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Proof. (a) :::} (f) : By the open mapping theorem, Q i s  open and therefore 
induces a topological isomorphism 

R : HOO (U)/I<erQ --t 100 . 

If M = I IR-1 1 1 , then 

M = sup inf{ I I! I I : !  E HOO (U),  !(Xk) = 'T/k for every k E .BY} .  
1 1111 1009 

By Theorem 5.1 ,  for each n E .BY there are functions 'Pnl > . . .  , 'Pnn E HOO(U) such 
that 'Pnj (Xk) = bjk for j, k = 1 ,  . . . , n , and 

n 1 sup L: l'Pnj (x) I � M2 + - . 
xeU j=1 n 

Then a compactness argument yields a sequence ('Pj )  in HOO(U) such that 'Pj (Xk) = 
bjk for all j, k E .BY and 

00 
sup L: l'Pj(x) 1  � M2. 
xeU j=1 

If we define 'P(x) = ('Pj (x)) for x E U, then 'P verifies (I) . 

(f) :::} (e) : By (f) there exists 'P E HOO(Ui [I ) such that 'P(Xk) = ek for every 
k E .BY. By Theorem 2.1 there exists T E L(GOO(U)j [l ) such that T o  bu = 'P. 
Whence T verifies (e) . 

(e) :::} (d) : This is obvious .  

(d)  :::} (a) : Since we can readily verify that S' = Q, the desired conclusion 
follows at once (see [14 ,  Theorem 4.7 - AD . 

Thus we have shown that conditions (d) , (e) and (f) are equivalent to (a) .  

(e) :::} (b) : Since T 0 S� = � for every � E 1\ i t  follows that S' 0 T'." = 'T/ for 
every 'T/ E  100 • We already know that S' = Q.  If we define P = T', then P verifies 
(b ) . 

(b) :::} (c) :  This is obvious .  

(c) :::} (e) : By (c) there exists P E L(Coi HOO (U)) such that P",(Xk) = 'T/k for 
every 'T/ = ('T/k) E Co and every k E .BY. Whence it follows that Plbxk = ek for every 
k E .BY. If we define T = pI I Goo U ,  then T verifies (e) . 

Thus we have shown that conditions (b) and (c) are also equivalent to (a) .  

(f) :::} (h) :  By (f) there exists ('Pj) C HOO(U) such that 'Pj (Xk} = bjk for all 
j, k E .BY and sup L:1'Pj(x) I < 00 .  Given Y = (Yj ) E lOO (F), let PFY E HOO(Uj F) be 

xeU j 
defined by PFy(x) = L:'Pj(x)Yj for x E U. Then PF verifies (h) . 

j 
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Since the implications (h) =} (g) and (g) =} (f) are obvious, the proof of the 
theorem is complete. 

6. Connection b etween Goo(Do) and Ll (ODo)IHJ (Do) .  

For 1 ::; p < 00 let HP(Do) denote the Banach space of  all f E R(Do) silch that 

I l f l lp = ��( 2
1
7r 1: I f(rei8 ) I PdO)1/P < 00 . 

Let 1 < p ::; 00 and let f E HP(Do) .  By a theorem of Fatou , the radial limits 
f(ei8 ) = limf(rei8) exist almost everywhere and 

' 
r->1 

for every z E Do. The same conclusion is true for p = 1 ,  by a theorem of F. and 
M. Riesz. Thus for 1 ::; p ::; 00 we may identify HP(Do) with a dosed subspace of 
LP (oDo) ,  namely 

HP(Do)  = {J E LP (oDo ) : 1: f(ei8)ein8dO = 0 for n = 1 , 2 , 3 , . . . } .  
If we set HJ (Do) = {J E Hl{Do) : f(O) = OJ ,  then 

H� (Do) = {J E Ll (oDo) : J� f(eio)ein8dO = 0 for n = 0, 1 , 2 ,  . . . J. 
Whence it follows that the canonical isometric isomorphism between Loo (8Do) and 
the dual of Ll (IJDo) induces an isometric isomorphism between HOO (Do) and the dual 
of Ll (oDo)/HJ (Do). All this is well known and can be found in the book of Hoffman 
[5J . 

Since Ll(8Do) / HJ (Do) is the unique predual of HooeDo) ,  up to an isometric 
isomorphism (see [3, Theorem V.5 .4j ) ,  it follows that GOO (Do) is isometrically iso­
morphic to L1(oDo)/HJ (Do) .  But it is illustrative to give a direct proof of this fact. 

6.1 .Theorem. The spaces GOO (Do) and Ll (8Do)/HJ (Do) are isomelr'ically iso­
morphic. 

(6. 1 ) 

Proof. For every f E HOO(Do) and zeDo we have that 

fez) = J.c r f(e
d) , dO . 27r J-7r 1 - ze-·8 

Let 9 : z E Do '-+ gz E Ll (oDo) be defined by gz (ei8 ) = ( 1  - ze-i8t\ and 
let 7r : £1 (oDo ) '-+ L1 (8Do)/HJ (Do) denote the quotient mapping. If we identify 
HOO (Do) with the dual of Ll (oDo)/ HJ (Do) ,  then (6 . 1 )  tells us that (j, 1%) = fez) 
for every f E HOO(Do) and z E Do. By usin,g [7, Theorem 8 . 1 2] we easily 
see that 7r 0 9 E HOO(Do; Ll (oDo)/H6 (Do) ) .  Then by Theorem 2 . 1  there exists 
T E L(GOO(Do) ; Ll (oDo)/HJ (Do)) such that Toz = 7rgz for every z E Do. Since we 
can readily verify that the dual mapping T' is the identity on HOO(Do) ,  we can con­
clude that T is an isometric isomorphism, as we wanted. 
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Since the space Ll (8ll.)/HJ (ll.) is weakly sequentially complete and has the 
Dunford-Pettis property (see [3 , Theorem V.5 .2J and [1 1 ,  Corollary 8 . 1 ] ) ,  it is nat" 
ural to pose the following problems. 

6.2 .  Problem. Let U be a bounded open subset of a weakly sequentially 
complete Banach space E. Is GOO (U) weakly sequentially complete? 

6.3 .  Problem. Let U be a bounded open subset of a Banach space E with 
the Dunford-Pettis property. Does GOO (U) have the Dunford-Pettis property? 

Observe that in each of these problems the hypotheses on E are necessary, in 
view of Proposition 2 .2 .  
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