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1 Introduction 

The method of layer potentials is a well known, classical method for solving 
boundary value problems. In recent years much progress has been made con
cerning the use of this method for studying both elliptic and parabolic partial 
differential equations in non-smooth domains; see for example [18], [10],· [11], 
[14], [3]' and [4]. Solving boundary value problems in domains with very little 
regularity is of fundamental importance in applications, but it is also of great 
interest from a mathematical point of view. In fact, when the domain is non
smooth, the applicability of the method of layer potentials relies on the use of 
deep and powerful techniques from harmonic analysis such as singular integrals, 
maximal functions, Hardy spaces, etc. The purpose of this article is to briefly 
illustrate how some of these techniques can be taken one step further and be 
used, in a discrete setting, to do numerical analysis for boundary value problems 
in domains which are merely Lipschitz . 

The approach we will describe was initiated by B. Dahlberg and G. Verchota 
in [12], where they constucted a Galerkin method for the Dirichlet and Neumann 
problems for the Laplace equation in Lipschitz domains. Their procedure was 
then improved and extended to other elliptic problems in [11. The parabolic 
case will be analyz ed in detail in a forthcoming paper [2J. Here, we shall only 
attempt to describe some of the ideas involved by presenting a more abstract 
version, which unifies the elliptic and parabolic cases. In fact, based on the 
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works just mentioned, we will discuss a general scheme to approximate solutions 
of integral equations of the second kind in the context of spaces of homogeneous 
type. We will then indicate how this leads to a boundary element method in 
non-smooth domains. Finally, we will mention the type of error estimates that 
can be obt�ined. Of course, error estimates are crucial if one wants to apply 
the method for numerical computations (our original goal). For the sake of 
brevity, we will usually only state the results and make some comments about 
the proofs. More details can be found in the references given. 

AcknowledgeInents. The third author wants to thank the organizers of the 
X ELAM for inviting him to participate in that conference and for their friendly 
hospitality. 

2 Spaces of Homogeneous Type 

It is well known that many problems in mathematics and the applied sciences 
can be reduced to the problem of solving an integral equation of the form 

g(x} + J K(x, y)g(y)dy = j(x). 
Here, the integral could be in Rn or in some more general measure space Y, and 
one may try to solve such an equation in different function spaces, e.g. C(Y) or 
LP(Y). We can write the above equation as 

(I +T)g = j, 

where I is the identity operator and 

Tg(x) = J K(x, y)g(y)dy. 
The possibility of solving the equation is connected with the properties of the 
operator T, but in this general formulation it is of course not possible to charac
teriz e, in a simple manner, which operators or which properties of their kernels 
yield a solvable equation. In certain cases the kernel is not a locally integrable 
function, and the operator T has to be viewed as a principal value s ingular inte
gral. The singularity of the kernel is usually related to some geom etrical feature 
and to some appropriate metric associated with the problem in question. Cer
tainly, this is the type of singularity Calder6n-Zygmund operators possess, and, 
indeed, a large class of important integral equations is captured by considering 
the case when T is a Calder6n-Zygmund operator. Hence, it makes sense to 
consider the above type of integral equations in the context of spaces of homo
geneous type ( in the sense of Coifman and Weiss [8]). This is the most general 
setting in which Calder6n-Zygmund theory, and other related results in har
monic analysis, can be developed. As we will see, even if one is only int erested 
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in integral equations for boundary value problems, one is forced to consider, if 
not a general space of homogeneous type, at least Rf'l with a different metric; 
this is the case when dealing with parabolic equations. 

A space of homogeneous type (Y, p, J.I.) is a set Y together with a quasimetric 
P and a doubling measure J.I.. More specifically, P : Y x Y � [0, 00) is a function 
satisfying 

i) p(:I:, y) = 0 if and only if :I: = Y 
ii) p(:I:,y)= p(y,:I:) for all :I:,y 
iii) p(:I:, y) � Cl(p(:I:, z) + p(z, y)) for all :1:, y, z and some Cl > 0, 

and J.I. is a positive measure with the property that for all :I: E Y and r > 0, 
there exists a fixed constant C2 > 0, such that 

J.I.(B(:I:, 2r)) � C2J.1.(B(:I:, r)), 
where, 

B(:I:,r) = {y E Y: p(:I:,y) < r}. 
As we already mentioned, most of the usual techniques for dealing with 

integral operators in Rn extend to this more abstract setting. In particular, we 
will use the fact that the Hardy-Littlewood Maximal Operator 

Mf(:I:) = sup {J.I.(B(:Il,r))-l r If(Y)ldJ.l.(Y)}' 
r>O }B(z,r) 

is bound ed on V(Y, J.I.) for 1 < p < 00. We will also need the following simple 
lemma, the proof of which is similar to the proof of the corresponding result in 
the euclidean case. 

Lemma l' 

i) For 0: > 1, 

sup {J.I.(B(:Il, r)),,-l r -

( (
If(r)1 )))a dJ.l.(y)} � CaM f(:Il). 

r>O }Y\B(z,r) J.I. B :Il, P :1:, Y , 
ii) For 0 < 0: < 1, 

sup {J.I.(B(Z, r))a-l r 
(B( 

If(
r

)1 
)))a dJ.l.(Y)} � CaM f(:I:)· 

r>O }B(z,r) J.I. :Il, P :1:, Y 
Remark. Actually, for the lemma to be true as stated it is necessary to assume 
that for some Ca < I, J.I.(B(:Il, r)) � CaJ.l.(B(:Il,2r)). This may fail for rlarge,if, 
for example, diam Y = SUPz,yEY p(:Il, y) < 00. However, we shall only use the 
estimates in the lemma in situations involving small r,r � O. 



166 

3 Approximation of Linear Operators in a 

Normed Space 

Let us consider the integral equation (1 + T)g = I again. Even when the 
equation can be solved, it is not always possible to compute (1 +T)-l explicitly 
(or it is computationally too expensive to do so) . Instead, we may try to find 
approximate solutions that can be calculated more easily. That is, we want to 
find functions gn which are easy to calculate and so that (1 + T)gn -4 I in 
some sense. More generally, we may try· to construct approximating equations 
(1 + Tn)gn = In (perhaps in some finite dimentional space) , so ,that gn -4 9 
when In -4 I. There are many ways to formalize this approximation procedure 
in the context of Banach spaces; see for example [17]. We will describe one 
suitable for our purposes. 

Our approach involves two main steps. First we obtain some convergence 
result when the operator T is approximated by operators Tn in a suitable way. 
In applications this will allow us to replace a singular integral operator by a 
weakly singular one, which is easier to handle. The second step concerns the 
discretization of the problem and th� reduction to a finite dimensional situation. 

Let V be a normed space. A generalized approximation of V is a family of 
triples {Vh' Ph, rhh, where Vh is a normed space and 

Ph Vh -4 V (prolongation operator) 
rh V -4 Vh (restriction opera.tor) 

are linear and continuous operators. This a.pproximation is called stable if 

(1) IIPhll :::; C, Ihll:::; C, for all h 

and convergent if 

(2) 111.£ - Phrhull -4 0 as h -4 0, for each 1.£ E V. 

Assume noW that V and Vh are Hilbert spaces with inner products < , > and 
< , >h, respectively. Assume further that Ph is an isometry and that 

(3) < PhU, v >=< 1.£, rhv >h for all 1.£ E V and v E Vh 

For a linear and continuous operator A acting on a Hilbert .space V, we let 
A* denote its formal transpc,'1e. Let {Vh,Ph, rhh be a stable and convergent 
generalized approximation of V as described above. We say that the approxi
mation is well adapted to a given operator A, if there exists a family of linear 
operators Ah : Vh -4 Vh such that 

(4) IIAhll :::; C for all h 
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and 

(5) 
(6) 

ilAu - Ph.Ah.rh.ul1 --+ 0 
IIA'u - ph.A�rh.ull --+ 0 
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as h --+ 0 for all u E Y 
as h --+ 0 for all u E Y. 

Given an operator A and an approximation well adapted to this operator, 
we want to approximate the solution 9 o f the equation 

(7) Ag = f ,  f E Y  

by solutions gil. of the equations 

(8) 

We have the following result. 

Lemma 2 (First Appro'J!ima.tion) 
Let {Vh' Ph., rh., Ah.h be a an appro'J!imation of a Hilbert space Y well adapted 

to an operator A. Assume that the operators All. are invertible and that for some 
constant C > 0 they satisfy 

(9) 
Then, given f E V, the equation (7) always has a 'Unique so /ution 9 E V. 
!vI oreover, if gil. is the unique solution in Vh of the equation (8), then Ph.gh. -. 9 
(strong convergence) . 

The proof of th is lemma is not d ifficult. The seq ue nt:e {Ph.9h.} is easily seen to 
be uniformly bound ed and , hence, one can extract a subsequence from it which 
converges weakly to some element g E V. Using (6) one can then show that 9 is 
a solution of (7). Finally, using (5) one can prove that if 9 is any solution of (7) 
and gil. is a solution of (8), then the ( whole) sequence Ph.gh converges strongly 
to g. 

The hypothesis of uniform invertibility of the operators Ah in the above 
lemma is, of course, the crucial point. To verify this hypothesis in a specific 
application is what requires most of the work. In the examples below, concerning 
boundary value problems and layer potentials, the corresponding estimates were 
obtained in [18] and [3], where a method essentially equivalent to the lemma is 
used . A more abstract formulation of that method, also in the form of a Hilbert 
spa.ce result, appears in [14]. 

For simplicity, we shall often state results in the Hilbert space context, or 
even just fo r L2 on some measure space. Nevertheless, with obvious modifi
cations the above lemma extend s to the case of a reflexive Banach space. In 
particular, we could include LP spaces, 1 < P < 00, as well. (The reflexivity is 
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used in the proof to extract a weakly convergent subsequence from a bounded 
one.) 

For theoretical purposes the above lemma is usually sufficient, since it shows 
that (7) can be solved. As we will see, in certain cases one can obtain the 
operators Ah by some regulariz ation procedure and they act on some Vh'S which 
are also ( infinite dimensional) L2 spaces. For numerical computations, however, 
we would like each Vh to be finite dimensional. This can be achieved by a second 
approximation. 

Let {Vh, Ph, rh};,. be an approximation of a Hilbert space V. A second ap
proximation of V is given by a family {Xh, Ph, Th};,., where Xh C Vh is.a closed 
subspace, Ph is the restriction of Ph to Xh, and Th = IIhrh where IIh is the 
projection operator from Vh onto Xh. We shall also..assume that 

(10) 
This last condition says that the space Xh looks more and more like the space 
Vh as h approaches z ero. If we think of the spaces Xh as finite dimensional, this 
cond ition is very natural and implies that the dimension of the space Xh must 
increase as h decreases. Condition (10) also implies that {Xh, Ph, Th};,. is itself 
a convergent and stable approximation of V. Moreover, we have the following 
fact. 

Lemma 3 (Second approzimation) 
Let V be a Hilbert space and let A : V -+ V be a linear and continuous 

operator. Let {Vh, Ph, rh, Ah};,. be an approzimation of V well adapted to A 
and satisfying (9). Let {Xh,Ph,Th};,. be a second approzimation ofV. Assume 
further that the operators IIhAh : Xh --+ Xii. are uniformly invertible. Given 
f E V, let gh E Xh be the unique solution of the equation 

IIhAhgh = Thf· 

Then, {Ph9hh converges strongly to the unique solution olthe equation Ag = f. 

The result follows from Lemma 2 after showing that {Xh, Ph, Th, IIhAh} is 
also well adapted to A. 

Again, simple modifications yield a similar result for reflexive Banach spaces. 
The important hypothesis is now the uniform invertibility of the operators 
IIhAh. Even though the operators Ah are assumed to be uniformly invert
ible, it is not a priori clear that they can be inverted within, say, some finite 
dimensional subspaces. In the following section we shall describe a way to con
struct the (finite element) spaces Xh in such a way that the above lemma can 
be applied. 
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4 Localized Sp�ces 

Given an h > 0 and that Ah : Vh -+ Vh is invertible, our goal is to show that 
IIhAh : Xh -+ Xh is also invertible if we choose the spaces Xh in the right way. 
Since h will be fixed, we shall drop this subscript in this section. In addition, 
we will assume that Vh = L2 (y) for some space of homogeneous type (Y, p, 1') . 
We will heavily rely on some of the ideas in [12] and [1]. 

A finite dimensional space X C Leo (Y) is called a localized space with 
variable scale if the following properties hold. 

i) There are pairwise disjoint sets Ej C Y whose union equals Y, points Pj E Ej, 
and positive numbers Pj, K, Co, and £0, such that each point in Y lies in at most 
K of the sets Bj = B(P;, p;), Pj > £0, E; C Bj, and 

(11) 

where the supremum is taken over all wE X with IIwlleo $ 1 and w supported 
in- B;. 
ii) All constant vectors belong to X. 

We say that the covering {B;} has the the finite intersecton property and we 
will refer to (11) as the localization property. Since we are assuming X to 
be of finite dimension, X2 = X n L2(y) is automatically a closed subspace of 
L2(y). Hence, the projection of V = L2 (y) onto X2 is well defined. Again, the, 

- assumption concerning the finite dimensionality of X is made only to simplify 
the presentation somewhat. In the case that Y is the boundary of a Lipschitz 
domain, it is shown in [12] and [1] that the localization property implies that 
XP = X n V is actually a closed subspace of V and that there is always a 
bounded projection onto XP. The arguments therein extend mutatis mutandis 
to the case of a space of homogeneous type. Condition ii) is a technical one and 
its use will become clear later on. 

In applications, the space X will play the role of a boundary element space. 
It is not hard to check that if, for example, X is a space consisting of piecewise 
linear functions over a partition of some hypersurface in Rn, then the localization 
property is satisfied. 

We shall now restrict our attention to the case of operators of the form 
A = 1+ T and we shall state a condition on T which will guarantee the invert
ibility of IIA. 

Let X be a localized space with variable scale. An operator Tissaid to 
satisfy the local approximation property with constant 6 if there are vectors 
4>; E X such that 

(12) � is
,
lTI - 4>jl2,dJ.' $ 611/1112, if 1 E L2 (y). 

, ' 



170 

Notice that because of the boundedness of T and the finite intersection property, 
there always exists some 6 for which (12) is satisfied. We can simply take rP; =0. 
The problem iii to make 6 small. 

Condition (12), though technical, is. not unusual in dealing with singular 
integrals. In fact, quite often one is lead to substract some average or the value 
of a function at a particular point to exploit some cancellaton or decay of the 
kernel of an operator. It turns out that (12) is also related to compactness. We 
refer to [1] for more details about this. In any case, being able to make 6 small 
is all that we need, as the next result shows. 

Theorem 1 
Suppose that X is a localized space 0/ variable scale in a space Y 0/ hdmoge

neous type. Then, there ezists 60 > 0 with the following property: i/the operator 
T satisfies the local approzimation property with constant 6 < Co, then 

(13) 

Here e and 60 only depend on the operator norm 0/ A-I, the parameters in the 
definition 0/ the space 0/ homogenous type, and the parameters K and Co in the 
definition 0/ X. 

We shall sketch the proof of this theorem to illustrate the natural use of the 
Hardy-Littlewood maximal operator in this problem. , 
- We may assume / E X and show that lilIA/ilL' � eli/ilL" Since A is 

invertible, it is enough to show that 

for a sufficiently small 6. By writing 

A/ == A/ -T/ +rP; +Tr-rP;, 
and using (12) we are then reduced to estimating IIA/ -T/ + rP;lI. But, 

,A/-T/+rP; = / + rP; E X, 

so, by (11), for Z E E;, 

I(A/-:-T/+rP;)(z)1 � ,.,.(�;)S�pIJ(A/-T/+rP;)Wd""l 

Hence, 

< M{ITA!){z) + C (fB; IT �(�:) I' d� r 
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By the finite intersection propety, (12), and the bounded ness of the Hardy- ___ _ 

Littlewood maximal operator we obtain 

IIflli. < CIIAflli. 
< C(IIM(IIAJ)lli. + 61Iflli.) 
< C(IIIIAflli. + 61Iflli.), 

which finishes the proof if 6 is sufficiently small. Notice that since we are 
assuming that the space X is of finite dimension, the theorem actually gives the 
invertibility of IIA on X2 . 

Next we shall show that when T is a weakly singular integral operator, then 
the approximation property is indeed satisfied for 6 small if the balls Bj are 
picked sufficiently small. 

Let T : L2(y) --+ L2(y) be a linear and continuous operator. We say that 
T is a weakly singular integral operator if 

Tf(�) = i K(�, y)f(y)dJ1-(Y), 

and, for some K. > 0, L> 0, 0 < a < 1 and 0 < f � 1, the kernel K satisfies 

(14) IK(�, y)1 � K.J1-(B(�, p(�, y)))a .for all � 1:- y 

(15) IK(�, y) - K(z, y)1 � Lm(�, z)'J1-(B(�, p(�, y)))-l-. 
for p(�, z) � �p(�, y). Here m(�, z) = inf""zEB J1-(B). 

We have the following pointwise estimate. 

Lemma 4 
Let T be a weakly singular integral operator and X a localized space. Then, 

for each l' > 2 and a given f E L2(y), there ezist 4>j E X such that 

(16) I(Tf - 4>j)(�)1 < CK.J1-(B(pj, ('Y+1)pj))1-aIMf(�)1 

+ C L ( J1-(B(pj, pj) ) '
IMf(�)1 

J1-(B(pj, (1' - 2)pj) 

for all � E Bj. Here the constant C only depends on the parameters in the 
definition of the space of homogeneous type Y. 
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To prove the lemma, we fix 'Y and choose (j!j == T(fXY\B) (Pj), where 
Bj = B(Pj,'Ypj). Here we use the fact that constants are in X. We write 

\(Tf - (j!j)(z)\ \T(fXB)(Z) + T(fXY\B)(z) + (j!j\ 
< \T(fXB)(z)\ + \T(fXy\Bj)(z) - T(fXY\B)(Pj)\ 
< I + II. 

Using part (i) of Lemma 1 and (14), we get that I is bounded by the first term 
on the right hand side of (16). Similarly, to estimate II, we exploit the extra 
decay of K(z, y) - K(z, y) "at infinity" and use part (ii) of Lemma 1 to get the 
second term in (16). 

The above lemma yields the main result of this section. 

Theorem 2 
Let A = 1 + T be invertible in V = L2(y), where T is a weakly singular 

integral operator. Let X be a localized space l1Jith variable scale given by a 
covering {Bj}. Then, there ezists Po > 0 with the property that if SUPj pj :::; 
Po, then ITA : X2 -+ X2 is also invertible. Moreover, Po only depends on 
the operator norm of A -1, the parameters in the definition of the space Y of 
homogenous type, the parameters K and Co in the definition of X, and the 
constants", and L associated with T. 

We only need to show that T satisfies the approximation property with 
constant b < bo where bo is given by Theorem 1. This will follow from the finite 
intersection property and the boundedness of the Hardy-Littlewood maximal 
operator if we can prove that 

for Z E Bj and a sufficiently small constant b1• To accomplish this we first 
chose'Y sufficiently large so that the second term on the right hand side of (16) 
is bounded by b1\Mf(z)\. Finally, with that 'Y fixed, we can take care of the 
other term in (16) by imposing SUPj Pj :::; Po for a sufficiently small Po. 

Recall that in our aproximation procedure, we will have to use Theorem 1 
and Theorem 2 at each stage h. Now, in the applications, all the parameters 
which bo depends on will be uniformly bounded in h, and, hence, bh = bo will 
work at every stage. This yields the uniform invertibility of the operators ITAh. 
However, to obtain the approximation property with constant b < bo at stage 
h, will force us to take the number Ph in Theorem_ 2 smaller and smaller as 
h goes to zero. The reason for this is that the constants "'h associated with 
the oerators Th will blow up (all the other parameters which Ph depends on 
will remain uniformly bounded in h). From the numerical point of view, the 
behaviour of Ph as h -+ 0 determines how the "grid", or the support of the 
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finite elements used to approximate the solution of the original equation, has 
to be refined. In this sense, we want to remark that the dependence of Po on K
in Theorem 2 is local. That is, the kernel of T may satisfy (14) with different 
constants K-j on appropriate balls Ej. We see from the discussion about the 
proofs of Lemma 4 and Theorem 2 that is only the blow up of the constants K-j h 
at level h that must be compensated for with a smaller size of the corresponding 
Pjh (cf. [1]). 

We conclude this section by pointing out that all of the above results re
main valid if we replace the "balls" by another family of sets for which the 
corresponding Hardy-Littlewood maximal function is bounded on V. 

5 Boundary Value Problems 

Within the general context of the previous sections, we shall next discuss a 
Galerkin method for elliptic equations, along the lines of [12] (cf. also [1]), as 
well as a version for parabolic equations. 

Let n be a bounded Lipschitz domain in Rn. For a. function f defined on the 
boundary of n, let us consider the Dirichelet problem for the Laplace equation: 

(D) { .6.U = 0 in n 
U = f on an. 

In addition, we let ST = an x (0, T), and consider, for a function f defined on 
ST, the initial-Dirichlet problem for the heat equation: { .6.u 

(I - D) .  U 
U(:z:, 0) 

atU in 0 x (0, T) 
f on ST 
o in n. 

Both problems can be solved by employing layer potentials. For a function 9 
defined on an and :z: E n, the electrostatic double layer potential is defined by 

f <:z: - Q, v(Q» 1)g(:z:) = Cn Jao I:z: _ Qln g(Q)da(Q) , 

while for a 9 defined on ST and (:z:, t) E n x [0, T) the caloric double layer 
potential is given by 

lti <:z: - Q,v(Q» 1:z: - QI2 'Dg(:z:,t)=kn _._-( -) n:---+1 exp(-
( )

)g(Q ,s)da(Q)ds. o 00 t - 8 2 4 t - s 

Here Cn and kn are two normalizing constants that depend on the dimension, 
v is the unit normal to the boundary of n, and the integrals over an are with 
respect to surface measure a. 



174 

These layer potentials satisfy the partial differential equations in (D) and (I - D), respectively, but they have boundary values given by Ag(P) = (!1 + T)g(P), P E ao and Ag(P, t) = a1+T)g(P, t), (P, t) E ST. Here, in both cases, 
T is an operator whose kernel is obtained from the kernel of the corresponding 
7J by formally replacing :Il by P. Unlike the classical case of a smooth domain, 
these kernels are no longer locally integrable (even if the domain is C1), and the 
operators T have to be interpreted in the principal value sense. 

In order to solve (D) or (I - D), we may then take 1.1. = 7J(A-1 I). In the 
process of showing that this works, the fact that A is bounded on V'(aO) or 
LP(ST) is needed. This, in turn; is a consequence of some deep results from 
harmonic analysis about the bounded ness of the Cauchy integral operator due 
to Calderon [5] and Coifman-McIntosh-Meyer [6]. The result in [5] was used in 
[13] and [15] to study the case of C1 domains. It was also shown in those works 
that the methods from functional analysis used in the smooth case still apply 
when the domain is C1, and, as a consequence, the operator A is invertible 
in V' for 1 < p < 00 . Nevertheless, these "soft" methods do not give the 
best estimates of the operator norm of A-I, thus preventing the use of some 
approximation procedure to consider the Lipschitz case. 

The result in [6] yields the boundedness of A in the Lipschitz case, but 
different techniques have to be used to prove invertibility. The invertibility of A in L2 now follows from a priori energy estimates derived from certain Rellich 
type identities, see [18] and [3], and it follows that the operator norm of A-I only 
depends on the Lipschitz character of the domain. Moreover, a more detailed 
analysis shows that A is also invertible in V' for a certain, optimal range of p. 
This was done in [10] and [4]. 

Now, we want to approximate the integral equation A = �I + T,  following 
the general procedure in the previous sections. (Notice that the presence of the 
factor � is not important, since we can always take A = 2A = I +2T = 1+ T.) To 
obtain a first approximation, we want to regularize T in order to pass to weakly 
singular operators. In the present situation this can be done in a very simple 
manner. The idea is to approximate the domain 0 by smooth domains Of, and 
the cylinder 0 x (0, T) by smooth cylinders Oh x (0, T) for which the singularity 
of the kernels become locally integrable. The precise technical conditions on the 
approximating domains Oh are given by the following lemma from [12]. 

Lemma 5 
Given a bounded Lispchitz domain in 0, there ezists a family of smooth 

domains {Oh}, 0 < h < ho with the following properties. 
i) There is a finite covering {U} of ao with open sets such that for every U 
there is an orthonormal coordinate system (:Il, y) and a smooth function CPh : 
Rn-1 -+ R with the property that un Oh = Un {(:Il, y): y > CPh(:Il)} and 
Un Rn \ Oh = un {(:Il,y): y < CPh(:Il)}. Furthermore, to each U there 
is a Lipschitz function cP such that UnO = U n {(:Il, y): y > cp(:Il)} and 
un Rn \ n = Un {(:Il, y): y < cp(:Il)}. 
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ii) There i8 a p08itive con8tant L 8uch that the IP" '8 8ati8fy IIIP - IP"lIoo ::; Lh, 
IIVIP"lIoo ::; L and VIP" � VIP a.e. as h � 0. Furthermore, there i8 a Lip8chitz 
homeomorphi8m F" : an � an" 8uch that locally F,,(e, IP(e» = (e, IP,,(e». The 
Jacobian8 01 F" converge alm08t everywhere to 1 and the Lip8chitz con8tants 01 
F" and their inver8e8 are unilormly bounded in h. 
iii) The He88ian 01 IP" 8ati8fie8 the bound IIV2IP"lIoo ::; L/h. 

We shall call such a family nIL, h > 0, a smooth approximation of n. For 
the parabolic case, we let S = ST a�d S,,= ST,,, = an x (0, T), and we have 
Lipschitz homomorphisms G" : S � S" defined by G,,(P, t) = (F,,(P), t), so 
that locally G,,((e, IP(e)) , t) = ((e, IP,,(e)), t), with properties analogous to those 
of F". 

Notice that an, with the restriction of the ecludian metric of R" and with 
the surface measure, is a space of homogeneous type. Similarly, S ,  with the 
restriction of the parabolic metric in R" x R, given by 

" 
peep, t), (Q, 8)) = L: Ip. - Qil2 + It - ai, 

.=1 
and the measure given by du x dt, is also a space of homogeneous type. In 
both cases we shall just denote them by Y. At each level h, associated with 
the approximating domains or cylinders, we have in the analogous way spaces 
of homogeneous type Y". 

We now let V = L2(y) and V" = L2(y,,). In the elliptic case, we define 
the prolongation and restriction operators by p,,! = I 0 F" for I E V" and 
r,,1 = loF;:1 for lEV. In the parabolic case, we define p,,1 = loG" for I E V" 
and r,,1 = I oG"h,1 for lEV. It is easy to check that in both cases {V",p", r"h 
is a stable and convergent generalized approximation of the Hilbert space V. 
Moreover, if we let A" = 1 + T" be the boundary value operators of the double 
layer potentials corresponding to the approximating domains or cylinders, then 
{V"., P", r ", Ah.h is well adapted to A. To proof of this last assertion is a rather 
straightforward exercise about singular integrals. Using the properties of an, 
one is led to show that for every I E V , T I - 'i,,1 tends to zero, where T" is 
a version in the original domain or cylinder of the operator T", obtained by a 
change of variables. This can be achieved in a "standard" way by truncating 
the integrals and by analyzing the parts "close to" and "far away from" the 
singularity of the kernel. More details can be read off from the arguments in 
[18], p. 586-587 and [3], p. 374-377. 

. 

By the results in [18] and [3], the operators A" are uniformly invertible. 
Hence, the first approximation lemma applies, and we have accomplished our 
first goal of reducing the problem from the singular integral equation to a weakly 
singular one. We now want to proceed with the second approximation in order 
to discretize our problem. 

At each stage h we select localized spaces X" as in Section 4. In the elliptic 
case the balls are just the intersection of R" balls with the boundary of the 
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domain, while in the parabolic case, for convenience, we chose the "balls" to be 
of the form 

B«Po, to), r) = {{P : Ip - Pol < r} x {t : It - tol < r2}} n Sh, 

for some (Po, to) E Sh. 
By Theorem 1 and Theorem 2, we will have finished the second approxima

tion procedure once we have shown how small the radii of the balls at each stage 
h have to be. Now, in local coordinates, the factor < P - Q, II(Q) > appearing 
in the kernels of the operators Th can be written as 

and by the properties of the approximating domains we have the estimate 

L 2 l<Ph(:Z:) - <Ph(Y) - V<ph(Y)(:Z: - y)1 :::; hl:z: - yl . 

Using this it is easy to see that the estimate in Lemma 4 now takes the form 

where C is independent of h. (Actually, in the parabolic case a modification 
of the proof of Lemma 4 is required since the operators Th do not satisfy (14) , 
although they do satisfy (15). We shall omit the details). Moreover, following 
the remarks at the end of Section 4, we can also localize the above estimate to 

I L 
I(Thf - tPj.h)(:z:)I:::; C('YPj.h"'j,h + -)IMf(:z:)I, 

'Y 
where "'j,h = IIV2<Pj,hlloo . Finally to get the second approximation we only need 
to take 'Y large (independent of h) and 

lim sup "'j hPJ h = O. h-O j , , 

Notice that "'j,h is a measure of the local curvature of the domains anh. 
Thus, at the "corners" of the domain n, and because of the properties of the 
approximating domains, the "'j.h blow up like 1/h. However, where the original 
domain is "flat", or smooth, this behavior can be improved. As a consequence, 
the refinement of the mesh size (given qythe Pj,h'S) can be carried out in 
an adaptive way, taking into consideratio'n the local regularity of the original 
domain n. 
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6 An Error Estimate 

In order to be able to use the above Galerkin method for the solution of boundary 
value problems numerically, it is crucial to have some error estimate. We have 
shown that if Yh E X� is the unique solution of IIhAhYh = Thf, where Til. = IIhrh, 
then PhYh = PhYh converges strongly to g. The aim here is to show a certain 
ra.te of this convergence in the case that 9 has some additional regularity. In 
the elliptic case error estimates were derived in [1]. Here we will briefly indicate 
how to obtain an estimate in the parabolic case, which is technically more 
involved. Again, we will only consider the L2 result. Complete proofs will 
appear elsewhere. 

The smoothness we require of 9 can be described by the following space. 
Let Hl/2( -00, T) denote the collection of functions in L2( -00, T) for which 

the norm 

jT jT jT lu(t) -u(sW 
lIulitl/2(_oo,T) == u2(s)ds + . 1 _ 12 

ds dt 
-00 -00 -00 t s 

is finite. We shall denote the second term by lIull�f:�iT. Furthermore, we let 
Hl,l/2(ST) be the closure of {'II: 'II = ulsT with u E C8" (R" x (O,oo))} with 

. respect to the norm 

If 'IIi -+ 'II in Hl,l/2(ST) and 'IIi are smooth in a neighborhood of ST we let 
V tan'll denote the limit of V tan 'IIi· Here, and in the sequel, V refers to the space 
variables only. 

As before, we let ST,h = aOh x (0, T), where aOh is the boundary of the 
smooth approximating domain. We assume that on each ST,h there is a function 
space Xh with all the properties discussed in the previous sections. Recall that 
we also have Gh : ST -+ ST,h defined by Gh(P, t) = (Fh(P), t), and Phf = f oGh 
and rhf = fOGhl. Suppose that f E L2(ST) and that 9 E L2(ST) is the 
unique solution of Ag = f, where A is the limit of the double lay�r potential. 
We have that Ag(P, t) = lim.:_P€ao'Dg(z, t) = ( �+ T)f(P, t), where we let 
Tg(P, t) = liIIle_o+ Td(P, t) with 

rt-e r <P-Q, v(Q» IP-QI2 
Td(P,t)=k" Jo Jao (t-S)T+l exp(- 4(t-s) )g(Q, s)dQds., 

For notational convenience, we have set k" = !< 4'11') -,,/2 . Further, we' let Th 
and Th,s denote the corresponding entities but relative to ST,h instead. The 

I..,.,.i following theorem is our main result. 
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Theorem 3 
Suppose Ph = maxj pj, h  = O(h) and that 9 E H1,1/2(ST). Then 

Ilg - PhYhIIL:i(ST) < Ch (J 1sT IVtangl2dPdt) 1/2 

+ChJjToghf (laD Ilg(P, ')lli/2;TdP) 1/2 

The basic idea is simple, and it is the same as the one employed in [1], for 
the corresponding elliptic situation. For the parabolic problem considered here, 
the use of the Fourier transform in the time variable reduces the analysis to an 
elliptic like problem. This type of approach was used in [15] for C1 domains 
and in [3] for Lipschitz domains. We will make use of some of their arguments. 

The main obstacle in obtaining an estimate of the rate of convergence dis
cussed above is that VCPh ----> Vcp a.e., but not uniformly. However, CPh ----> cP 
uniformly, with a rate h, so, exploiting the smoothness of the function 9 we 
can use Green's formula to move the derivatives from cP and CPh to 9 and gh, or 
rather to the remaining parts of the integrands in the layer potentials for an 
and anh,respectively. 

The following lemma is straightforward. 

Lemma 6 
We have 

Ilg - PhYhllL'(ST) < (1 + II·ti;;-II1IIThll)lhg - IIhThgIIL'(sT,I» 
- 1 +IIA;;- 1IIIThThg - ThTgllL'(ST,I»' 

wheTe ;h = IIh AhIIh. 
The first term here is estimated by using the next lemma. 

Lemma 7 
Suppose Ph = O(h). Then 

Ihg - IIhThgIIL'(sT,I» � Ch(II VtangllL'(ST) + ( r Ilg(p, ·)lli/2;TdP)I/2). laD 
To estimate IIThThg - ThTgIIL'(ST,I» � IITg - PhThThgIIL'(ST)' we note that 

T(l) = Th(l) = � on the boundaries. Hence, we have 

Tg(P, t) - PhThThg(P, t) = 
1 

= T(g(·,·) - g(P, t))(P, t) - (PhThThg(P, t) - "2PhTh9(P, t)) 
= T(g(·,·) - g(P, t))(P, t) - Th(Thg(·,·) - Thg(Gh(P, t)))(Gh(P, t)) 
= lim [T.(g(·,.) - g(P, t))(P, t) - Th,£(Thg(-,·) - Thg(Gh(P, t)))(Gh(P, t))]. £--+0+ 
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This is essentially a sum of integrals with kernels 

and 

<P-Q,II(Q» IP-QI2 K(P,tjQ, s)= (t- s)!}+! exp(- 4(t- s)) 

K (P t. Q ) _ < Fh(P) -Q, IIh(Q) > (_IFh(P) -Q12) h " , s - (t-S)�+1 exp 4(t- s) . 
It is now enough to give an estimate independ ent of C' of the term ocurring 

insid e the limit. We briefly sketch the basic id eas. Using a partition of unity, 
we can, via local coord inates, pull back the integrals in question to integrals 
over Rn-1• Using Green's formula we can move the d erivatives away from the 
functions 'P and 'Ph , coming from the normals II and IIh in K and Kh above. 
Due to the localization, we can assume that the bound ary terms vanish when 
using Green's formula, and that the integrals exist on R�. We are essentially 
left with a sum of integrals of which the following two are typical: 

and 

It-e h fl L -nk "',Y exp - "',Y 
n 0 Rn-1 (t- s)�+1 (4(t-s)) 
x(G(x, s) - G(y, s))dxds. 

_ 12( y, t) = -nkn 
t-e r (

.6.
"')�+! exp( - t""y ) )(G(y, s) - G(y, t))dxds Jo JRn-l t -s 2 4 t -s 

Here fl .. ,y = 'P(x ) - 'Ph(X) - ('P(y) - 'Ph(y)), L""y = Iy - xl2 + ('P(y) -- 'P(y) ) 2, 
and G is obtained from g by a local change of variables. 

To estimate 12 we note that 

It-e 1 � I x - yl . 2 1/2 < ( « ) !!. .6.", y exp(- ( ))'lTo( x)dx) d s) . o t - S 2 Rn-l ' 4 t - s 

X(lt-e I G( y, s) - G(y, t)12 d s)I/ 2, o (t- s)2 
where 'lTo is an appropriate smooth "cut off" function. We separate the two 
cases I x - yl < h and I x - yl > h, so that 

� 
I x - yl 1 .6.""y exp( - ( ) )'lTo( x )d x = 

Rn-l 4 t - s I"'-yl<h · · · + 1 . Iz-yl>h 
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::;C(t-s)� r lulexp(-luI2)du 
J1ul <h/2(t-. )1/2 

+Ch(t_S)n;l r exp(-luI2)du 
J1ul > h/2(t-. )1/2 

= I + II. 
The term h can thus be estimated by 

With similar estimates for the term involving II, we get 

II 2( y, t)1 ::; C(T)h�(lt--:. IG( y, (1 = �� y, tW ds)1/2. 

To estimate Ii we follow [15] and use the Fourier transform. Then, remem
bering that the functions have support only for t > 0, we get 

� _ r i::!.",y 1 � � 
I1( y,r) - -nkn 

JR
n-l 

Ln/2H (c/L",y,rL",y)( G( x,r) - G( y,r)dx, 
",y 

where we have used the notation Hl( c, r) = 1.00 exp( -41• + irs)ds/ sn/2+1. This 

integral is essentially bounded by ChM(VG(., r))( y) plus two terms of the form 

and 

1 ( G( x,r) - G( y,r))( wo(x)) CI<Ph( y) -- <p( y) I sup I ( I 12 + ( ( ) ( )) 2)n/ 2dxl 
.>0 I,,-yl>e Y - x <P Y - <P x 

Csup I r ( <Ph ( x) - <p( x))( G( x, r) - G( y, r))( wo( x)) dxl. 
£>0 J1 "-YI>. ( Iy - xl2 + ( <p( y) - <p( x))2)n/ 2 

From the following lemma ( [7] and [16] ) we obtain the desired estimate. 
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T.(y) = r (J(�) - f(y))g(�) nl:('l1i(�) - ;jY)) d�. 
J1 z-yl>. (I� - Yl2 + (<I>(�) - <I>(y))2) , 

Suppose that IIV<I>lloo :::; M, and that k 2: 2 is an even integer. Then 

where � = � + �, 1 < p :::; 00,1 <. q :::; 00 ,1 < r < 00. 

Hence, 

1111(-, r)IIL2(Rn-l) :::; ChIIVG(., r)lb(Rn-l) 
and using the, boundedness of the maximal function and Plancharel's theorem, 
we have 

IIIIIIL'(Rn-1XR) :::; ChIIVGIIL'(Rn-1XR)' 
The theorem follows from these, ( and similar) , estimates. 

To conclud e, we mention that in the paper [9) Costabel has developed a 
d ifferent method to stud y numerically bound ary value problems for parabolic 
equations using a combination of single and d ouble layer potentials. However, 
for a general Lipschitz domain, his approach yields only an error estimate in 
the "energy" space H-1/2,--1/4(ST) ( see [9) for the precise definition of this 
Sobolev space of negative ord er and further details) . This estimate is weaker 
than our [,2 result. We alsC' want to point out that Costabel posed the problem 
of whether it was possible to develop a method using the classically preferred 
integral equations of the second kind. We have successfully solved this problem. 
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