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SOME REMARKS
ON LIFTING AND INTERPOLATION THEOREMS

RODRIGO AROCENA

ABSTRACT. The aim of this note is to clarify the relations,
between the Sarason-Nagy-Foias 1ifting theorem and the Cotlar-
Sadosky 1ifting theorem. By exploiting the method of unitary
extensions of an isometry, combined with an extension of
Adamjan, Arov and Krein scattering approach, a generalization
of Sarason's interpolation theorem is given, from which the
above mentioned 1lifting theorems follow directly as well as

formulas for all the solutions of related interpolation problems.

I. A GENERALIZATION OF SARASON'S INTERPOLATION THEOREM.

A fundamental operatorial approach to interpolation problems
was started by the following theorem, due to Sarason's [S.1]:

(I.1) THEOREM. Let S be the shift in L2 = 1.2 (T) with respect
to Lebesgue measure and K C H? a closed subspace sych that its
orthogonal complement with respect to H2 18 invariant under S.
If T = PKSIK and A' € L(K) commutes with T then there exists

h € H™ such that A'g = P (hg), v g € K, and IA'l = Uhl.

As usual, T denotes the unit circle on the complex plane C and
S is given by (Sf)(z) = zf(z). For any p > 1, HP = {f € LP =

LP(T): %(n) = 0 if n < 0}, where f is the Fourier transform
of f. If G,H are Hilbert spaces, L(G,H) is the set of bounded
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linear operators from G to H, L(G) = L(G,G); if K is a closed
subspace of G, PK denotes the orthogonal projection of G onto

7

K, ik the injéction of K in G and G ® K the orthogonal comple-
ment of K in G. Also, V means '"closed linear span of".

In applications, the function h of the above statement solves
several interpolation problems. It appears because the opera-
tor A can be "lifted" to an operator that commutes with the
shift, which is consequently given by the multiplication by a
fixed function. Thus, the description of all the "liftings" of
A gives a description of all the solutions to the related in-

terpolation problems. These remarks motivate the following

(I.2) THEOREM. Let U, € L(Gl) and U, € L(Gz) be unitary opera-

tors in Hilbert spaces, B1 c G, and B, C G2 eclosed subspaces
-1 n, . =

such that U;B, € B, U,"B, CB,, V{U;B;: n < 0} = G, and

v{Ung: n >0} =G, If A€ L(B,B,)) is such that

2
A U1 iB1 = PB2 U2 A |

set A = {A € L(G,,6,): AU, = AU,, A = Py R iy s IAI = AN},
Then:
a) A Zs non void.
b) Assume moreover that ||Al = 1. Let H be a Hilbert space and
T B1 - H, T,: B2 + H Zsometries such that H = (rlBl) v(rsz)
and A = r;rl. An isometry W acting in H, with domain

-1 , .
(rlBl) v(r2U2 BZ) and range (rlUlBl) v(r2B2) is defined by
-1 o
W(rlb1 + 1,0, b2) = r1U1b1 + rzbz, v b1 € BL’ b2 € B,.
Let U be the family of the equivalence classes of minimal uni-

tary extensions of W. There exists a bijection o from U to A
that can be obtained as follows. If U € L(G) Zs such a unitary

extension, let fl: G1 + G and §2: G2 + G be the isometries de-
. ~ n _ M g , _ D .
termined by rlU1IB1 =Ur, and r2U2|Bz = U r, ,¥ ne€ Z? thgn
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a(U,G) := ?2*f1 € A,
A proof can be obtained from the following remarks, which we
only sketch because they are essentially contained in the proof
of the Nagy-Foias commutant lifting theorem given in [A.1] and
in Sarason's presentation [S.2] of it.

(I.3) REMARKS
(a) If X e L(Fl,Fz) is a contraction between Hilbert spacés,

3 F, a Hilbert space, and o F, - F, o,: F, - F, isometries,

17 1 20 2
such that F = (chl) V(02F2) and X = 02*01. F can be obtained

as the Hilbert space generated by F, xF, and the scalar product

<(f1,f2),(fi,fé)> = <f1’fi>F1 + <Af1,fé>F2 + <f2,Af'1>F2 +

+ <f2,f;_>F2 while 0,,0, are defined by the correspondences

f1 > (fl,O), f2 > (O,fz), respectively.

(b) If, moreover, V1 € L(Fl) and V2 € L(Fz) are isometries such

XV, =V,*X then V(o,f, + o0,V,f,) =0,V,f, + o,f, defines an

isometry with domain (chl) V(OZVZFZ) and range (cﬂHFl)V(GzFﬂ

such that Vc1 = OIVI, V_lc2 = 02V2. We say that V is the <so-

metric coupling of V, and V, generated by X. If V, and V, are

unitary operators, V € L(F) is also a unitary operator.

(c) Let D,R be closed subspaces of a Hilbert space F and V an
isometry from D onto R. We say that (V',F') € U = U(V,F) if

V' € L(F') is a unitary extension of V to the Hilbert space
F' = V{V'"F: n € Z}; we say that (V',F') ~ (V",F") in U if 3
p € L(F',F"), a unitary operator such that p|F = IF (the iden-
tity in F) and pV' = V'"p.U = U(V,F) is the set of equivalence
classes of minimal unitary extensions of V to Hilbert spaces:

that contain V. It is not empty. [and (V',F') =~ (V",F") iff

n _ ,,n -
PV E = PV vnezl.
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(d) Assume the conditions of (a) and (b). For j = 1,2 let
Vﬁ el{Fé) be a unitary extension of Vj such that the minimality

condition F% = V{V&nFj: n € Z} holds. Then:

|
i - F' of o, and
0 - yn
| ‘ 1 |F1 \'s o, and
= V'noz, Y n € Z, respectively. It follows that
-1

1. If (V',F') € U, isometric extensions o F

L
1
ol: Fé - F' of g, are determined by oiV
-

2 |r,
i = V'oi,céVé =V

1)
2
1

ozv |
oiV oé, V' is the coupling of Vi and Vé

'*0'

generated by 9,

= *t = =
1 and X Pcmé ollFl. [I£ XN 1, IXI

L PR )
H02 01"].

'*o| -

2. (V',F') =~ (V",F") in U iff, with obvious notation, oy*al =

1k 10
02 01.

3. Let Y € L(F',Fé) be a contraction such that YVi = Vé*Y and

Pp YIF = X. If V' € L(F') is the coupling of Vi and Vé gene-
2 1

rated by Y, then (V',F') € U.

A proof of theorem (I.2) follows from the above remarks, with
X = A (assuming llAll = 1), F, =B,, F, = B,, V, = U1|31’

-1 _ _ _ S|

2 |p,» F1 7 61 Fy =6y Vy = Uy, V= U,

IT. LIFTING THEOREMS

If T € L(H) is a contraction in a Hilbert space Nagy's dilation
theorem shows that 3 U € L(G), unique up to unitary isomor-

~ phisms, such that U is unitary, H CG = V{U™H: n € Z} and

™ = PHUnlﬂ’ v n =>0. U is called the minimal unitary dilation

of T. An intertwining between two contractions can be lifted

to an intertwining between their unitary dilations. That -is the
content of Nagy-Foias well knoﬁn generalization of Sarason's
interpolation theorem, which can be stated as follows.
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(I1.1) THEOREM. For j = 1,2 let Tj S L(Hj) be a contraction in
a Hilbert space and U. € L(Gj) its minimal unitary dilation. If
X € L(HI,HZ) and XT, = T2X, then 31Y € L(GI’GZ) such that:

YU, = G,Y, PHzYlHl = X, Iyt = ixin.

Theorem (I.2) is a particular case of Nagy-Foias theorem, which
is obtalned by settlng, in (II.1), T, = 1[B and T, = Py U2|B2

Conversely, ‘the commutant lifting theorem (II.1) follows from
(I.2) if we set

- n . = -n . =,
B, = V{UlHl. n=0}, B2 , v{U2 H,: n>=>0}, A XP

Concerning dilation and commutant lifting theorems basic refe-
rences are [N-F] and [F-F]. '

In order to state another 1lifting type theorem we shall use the
following notation: en(t) =-e1nt, n € Zand t € R; P is the

space of trigonometric polynomials, i.e., of finite sums

Za e , withneZand a €C, P, = {Za e € P: a_ =0 if n < 0},
n n n + nn n

P.=1{Zae €P:a =01if n> 0}; C(T) 'is the Banach spéce of
complex contlnuous functlons on T and M(T) its dual, i.e., the

space of complex Radon measures on T. If u = {u. }. , _ is
jk7j,k=1,2

a matrix with entries in M(T) and f = (fl’fz) € C(T) xC(T), we

set - .
<uf,f> = E{JTfjfk d“jk: J,k=1’2}'

Then the Cotlar-Sadosky theorem [C-S] can be stated as follows.

(II.2) THEOREM. If the matrix measure u = {u k=1,2 is suéh

JkJ, »2
that <uf,f> >0, v £ = (£ ,f2) € P, x P_, there exists a posi-

tive matrix measure o = { } such that <of;f> =

O3k’j,k=1,2

= <uf,f> , vy £ € P _xP_.

The above statement implies that <of,f> > 0, V f =_(f1,f2)_ek

e c(T)xc(Tm), i.e., {cjk(A)} is a positive matrix for any Borel
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set ACT, and

911 T M1 2 Op T Hpp 5 05, T 0y = uy, + hdt,

with dt Lebesgue measure in T and h € H'.

Theorem (II.2) can be obtained by setting,:in (I.2), G1 =IF(uu),
2 . .

G2 =L (uzz), U1 and U2 the correspopdlngvshlfts, Bl(Bz) the

closure of P, (P.) in GI(GZ) and defining A € L(BI’BZ) by

<Af Lf,> = folfz duy, » ¥ (f,f,) € PaxP_,

Then A as in (1.2) is given by the multiplication by a function
~ ~ [ -
u = Ae0 so <Af1,fé>= JTflf2 u duzz, v (fl,fz) € Px P, Since

g =

FTAI = IAl < 1, the matrix measure ¢ given by o 92

11 - M1

= Myp 5 Oy =0y = U d“zz is as stated.

CIII. A FUNCTIONAL VERSION OF THE INTERPOLATION THEOREM

All the functions that solve several interpolation problems are
given by the following consequence of theorem (I.2). In its
statement L2(E) denotes the space of.measurable functions

f: T - E, a separable Hilbert space, such that

N£N2 = I Mf(t)HEzdt < », while Lw(T;El,EZ) is the space of es-
T

sentially bounded measurable functions 6: T » L(EIQEZ) and‘Me'
is the operator from LZ(EI) to L2(E2) given by Mef(t)‘= e(t)f(t).
Each such 6 can be obtained as the boundary values of it§
Poisson transform, which we also call ® and is a bounded func-

. it |n]eints
tion such that 6(pe~ ") = Z{p 6(n): n €2} , p € [0,1) ,
3(n) € L(EI’EZ) and sup{lle(z)ll: z €D} < ». In fact g‘can be

. ~ = -n
obtained by 6(n) PE282 MGIEI'
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(II1.1) THEOREM. For j = 1,2 let Ej be a separable Hilbert

space, Sj the shift in L2(Ej) and Bj a closed subspace oflg(gﬁ
-1 n, . _ 12

such that: S|B, C B, , 8,”'B, B, , v{5,"B,: n <0} = L*(E)),

v{s,"B,: n > 0} = L*(E,). If A € L(B,,B,) is such that

AS =P, S5, A
1B, B,"2
set F, = {6 € L, (T;E;,E)): A = PBZMGIBI’ el = lIAI}. Then:
a) F, is non void.
b) Assume moreover that WAl = 1. Let H be a Hilbert space and
T, B1 - H, T,: B2 +H <Zsometries such that H = (rlBl) v(rsz)

and A = 1,*r . An isometry W acting in H, with domain

(r,B,) v(rzsz_lBé) and range (r;S;B;) v (r,B,) isvdefined by

-1 _ .
W(rlb1 + 1,8, b2) =r,$;b, +1r,b, , Vb, €B, b, € B,.
A bijection from the family U of the equivalence classes of
minimal unitary extensions of W and F, is obtained by associa-

ting to each (U,G) € U the function

: _ ~ % } -1 LI A N
8(z) = PEZr2 [U(U-2zI) + z2(U%-z1) ]r11El ,

with the isometry ?}: LZ(Ej) + G determined by

lz] <1,

iS5 |p, = Uy, V¥REZ, j=1,2.
i I3, |

This result follows from (I.2) because each A € A is such that
KSI = KSZ, so it is given by the multiplication by a function

0, (i.e., A = Mg and IAl = l6lle) which can be obtained by the

formula
ity _ |n|e1nt -ny. .
8(pe ") = Z{p PE S, A1E_. nezy, pe [0,1),
2 1
where iE is the injection of E, into LZ(EI)_and PE2 the pro-.
1 ¥

jection of L2(E2) onto E,, while A= ?é

ko~

5 -ny k _

1 and 82 T,
_ o~ %;=N
= r2 U .



207

In applications, the additional conditions E, C-B1 and E2<:52B2

i =
, so P_ T % =
E,) E, 2

= *p * i =p_ T * Sz1)"}
‘PEZSZrZ PHU . Thus, since ¢(z) PEzr [U(U-z1) +

usually hold. Thén, with the notation of (III.1), ¥

= 1Hr11E1. Also, rZSzl(sz—lEz) = U1Hr21(sz—1

2

+

E(U*-E})hI]?IiE , we see that in this case
1
- * R ) P .
0(z) = PEZSZr2 {Pﬁ[(U 21) + z(I-2U) ]1H}r11E1.
If W is, as above, an isometry acting in a Hilbert space H and
U is a unitary extension of W to a space G D H,. the function
by D + L(H) given by wu(z) = PH[('I—ZU)-I]iH is called a gene-

ralized resolvent of W. Let N and M be the orthogonal comple-
ments in H of the domain and the range of W, respectively; if

H”(D;N,M) is the space of analytic functions ¢: D + L(N,M)
such that |i¢ll , := sup{li¢(z)ll: z € D} <= , a bijection from

the unit ball of this space, {¢ € H”(D;N,M): el , < 1} onto
the set {wU: U € U(W,H)} of all generalized resolvents of W is
given by Chumakin's formula [Ch]:

Vg (2) = {I-z WP +6(2)Pyl )"

Consequently:

(II1.2) COROLLARY. In the same conditions and motation of theo-
rem (II1.1.b) assume also that E; C B, and E, C S,B,, Let N

and M be the orthogonal complements in H of the domain and the
range of W, respectively, and set B(D;N,M) = {¢€5Hw(D;N,M):
loll, < 1}. Then a bijection between B(D;N,M) and FA 18 obtained

by assbciating to each function ¢ € B(D;N,M) the funection
8 € FA given by

6(z) = PEZSZrz*{z'I[w(E)*_I] + E@(Z)}rliEl

with (z) = {I-z[WP + $(2)P 117,
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IV. SOME REMARKS ON APPLICATIONS

We obtain a proof of Sarason's theorem (I.1) and a description
of all the functions h as in its statement if, in (III.1) and

(II1.2), we set B, = E, = C, B = H’, B, = H2 oK (where H’- de-

2
2
notes the orthogonal complement in L2 of Hz), A =AapH K. Sara-

son's theorem gives elegant proofs of the solutions of the clas-
sical interpolation proBlems of Nevanlinna-Pick and Carathéo-
dory-Féjer; by the same method we can apply (III.1) and (III.2)
to those problems.

The scope of Sarason's interpolation method has been extended
by the following result, due to Rosenblum and Rovnyak.

(IV.1) THEOREM. Let a linear operator p in a vector space X
and b,c € X be given. Let F a linear subspace of the dual space
© .
X' such that p'F C F and | [(pjc,x‘)[2 <owo, V¥V x' €F. The fol
) Lo i

j=
lowing are equivalent:
(i) 3 g € H® such that ligh, <1 and (b,x') = J 8()(pic,x"),

¥ x' € F, J

II.M 8
o

(ii) For all x' € F, J |(p3b,x")|% < T |(pdc,x") 2.
j=0 j=0

In [R-R] (IV.1) is proved as a consequence of the commutant 1if-
ting theorem. The same ideas show that (III.7) and (III.2) can
be applied, as we now sketch. Let K be the closure in H? of

{-Eo(pjc,x')ej; x' € F} and set in (III.1) E, = E, =C, B, = Hz,
B;_= H2 oK; if condition (ii) in (IV.1) holds there exists a
contraction X € L(K,HZ) such that X[‘Eo(pjc,x')ej] =

= jzo(pjb,x')ej, ¥ x' € F. Setting AJ; iBZX*’ (III.1) ané
(IIT.2) give the functions .6 such that each g(z) := [6(z)]1  is

as stated.

In a similar way we can prove the following vectorial extension
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of Nehari's theorem, due to Page [See N]. Recall that, if E is

a separable Hilbert space, then L2 (B) = o(siE: j € Z}, so for

each f € LZ(E) 3 f: Z - E such that £

E{ej%(j): j € Z}; in
fact, £(j) = P59, Then HP(E) = {f € L®(B): £(3) =0 if j <0

and H%-(E) is the orthogonal complement in LZ(E) of HZ(E). Let

E, and E, be separable Hilbert spaces, S, and 82 the corres-

1
ponding shifts in LZ(El) and LZ(EZ), respectively. Set
Hw(T;El,Ez) = {6 € Lw(T;El,Ez): 8(n) = 0 if n < 0}. A linear
operator T from the space H0 of linear combinations of vectors

ejv, j =2 0and v € E, to H{ (Ez) is a Hankel operator if

P 9 SZP = l“S1 . If T is bounded, it defines an operator
|H
HZ (EZ) 0 .

from HZ(EI) to HE (Ez) that we also call T. Then:

(IV.2) THEOREM. a) A4 Hankel operator T is bounded iff

36 € L7(T;E,E,) such that

(*) I =P M
12 (E,) e|H2(E1)

in which case |ITI = dist{e,Hw(T;El,Ez)}.

b) If T Zs a bounded Hankel operator, 3 0 € LW(T;EI,EZ) such
that (*) holds and ITI = el .
In fact, let 6 € Lm(T;El,EZ) and set T, = P

M .
0 2 0 2 ’
HZ (E,) " |H(E})

clearly, I', is a Hankel operator and er" <lell_,. If

0
6,-6 € L"(T;E,E,) then rel = Ty so Tl < dist{e,H"(T;E ,E,)}.
If T is a bounded Hankel operator, we assume that [ITI = 1 and

apply (III.1) with B, = H’(E,), B
F

- 2 - 1.
, = HZ (E,)), A = T; thus

A is non void. If 6 € FA then T = Fe and IITI

lell; thus
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Tl = ITgll < dist{e,H”(T;E,,E,)} <ol = IITI. Consequently:

r=p, Mg and ITI = el = dist{e,H“(T;El,Ez)} iff
HZ (E,) |H” (E)) :

8 € FA. A1l such functions are described by (III.Z).

Let us still remark that a Schur type analysis of the family
of minimal unitary extensions of an isometry can be developed
in a natural way [A.2], and thus applied to interpolation pro-
blems of the type we have considered in this note; when it is
applied to the Carath€odory-Fejér problem it gives the clas-
sical Schur parameters [A.3].
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