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DISPERSAL MODELS 

CALIXTO P. CALDERON and TOR A. KWEMBE 

We consider in this paper a generalization of the Soboloff potential theorem to the case of 

"Parabolic potentials II { see definition below) . The proof we consider here avoids the use. of 

Marcinkiewicz's general interpolation theorem and, it instead uses a parabolic version of 

the maximal theorem. These tools are used to address problems of dispersal in sections II 

and III. 

1. Parabolic Potential Operators 

We consider the coordinate transformation 

al X l = P COCf/I· · ·COSC{Jn-I , 
a2 • X2 = P COSlPl· · · COSC{Jn -lSInC{Jn -l, 
a3 X3 = P COS lPl· · ·COSC{Jn-2, 
a4 • X4 = P COSlPl· · · COSC{Jn-3SInlPn.-2, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , 
an · xn . = P SInlPl· 

. n 2 
Where a ·  > 1 and \' [  X i ] = 1 .  • - l a · 

1 p 1 
n 2 

With the parabolic distance p{x,y) = p{x - y) with root p and I [Xi - :il = 1 .  For 

1 pa l J . 
details and the fact that p is a distance see Fabes and Riviere [6}. We shall be concerned 



W 

2 1 3  

with operat ors of the form 

1 
= J [p(x-y)] I a l -,8 

f(y ) dy 

IR
n 

where l a l = a t + a2 + · · · + an and 0 < ,8  < l a l ·  

Theorem A : (Here , we adapt partially the proof in S t ein [ 19 ]  ) 

l i T  nff) l l q < C I l fl l  , where .!. = .!. - L. 
fj' p p q p i a l  

Proof: 
Let K be the kernel defined by K = 1 

p i a l -,8 
We now choose a = p 

and define the functions K t  and K 2  by 

and  

p,8 - l a l 

{ K if p(x) > >. a 

o if p(x) < >. a 

K 2 K � K t . Where >. > 0 is a fixed constant .  
* Then for I l f l l p = 1 and p = P�I ' we have 

I K t* f l  < I I K tllp* Ilfllp 

an d 

I I K t l l p* = C>.  

where C is a fixed const ant independent of >. 
Likewis e  

>.a 
I I K 2 1 1  = cJ 1 p l a l -l dp 1 0 p i a l -,8 

FrQm t his  we see that 

= 

or f. 

C>. a,8. 

( * ) 



I { K2*f > >. } I � �p I l K2 1 11 · 
If I I fl l p = 1 ,  using the fact that !. = 

q 
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!. - fL we obtain 
p i a l 

Selecting now I I fl l = f a ( small ) we first see that 

Since f a is small then { I K t*f l > >./2}  = 0 .  In view of what was said befon- ve get for 
f such that I I fl l p = f a 

This shows the weak type estimates. Marcinkiewicz's interpolation theorem gives the 
desired result .  

It i s  , however , interesting to consider the following alternative proof that does not 
make use of Marcinkiewicz's results .  The proof relies on the following simple observat ion ( 
generalization of Natanson' s  Lemma [1 1 ] ) . Since K is a decreasing function of the 
parabolic distance .  
I IK 2(x-y )f(y)dy I 5 I I K2 1 1 1 · M(f) (x) , where M(f) (x) = 

The above result tells us that 

S u p  _
1
_ I I f (y ) l d y  

R > 0 R i a l p(x-y ) < R 

{ K*f > >. } ( { cK 2*f > >./2}  ( { c>. 0.(3 M(f) (x) > >./2}  . .  Hence 
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On using the value that we  have for a: and the fact that 1 

q 

II .  Dispersal: . 

= .!. _ !L  we see that , p i a l 

Murray [ 1 0] ,  Okubo [ 12 ] , Shigesada [ 1 7] and Shigesada et al [ 1 8] have considered models of 
insect dispersal by using a nonlinear diffusion model 

.gr = cV e [umVu] ; m > 0 

( 1 )  

where u(x, t )  represents the population densi ty of insects ;  x could be either a one 
dimensional or a two dimensional vari able .  Equation ( 1 )  also play s a role in diffusion 
through porous media ( see Murray [ 1 0] ) .  In the one dimensional case Okubo [ I 2 ,page 99 ] 

considers the diffusion problem .gr = D o  � *0 )m � and uses Patt Ie ' s  [ 14 ]  solution to 

model the dispersal of a flock of insect s that at time t = 0 are concentrated on the origin 
of coordinates . The solution in  this case is  given by 

1 1 
u uo( � o )m+2 ( 1 _ x: ) +m 

X l 

1 3 
h ( t )m+2 w ere X l - r o  to ' r o  - Q r(1 /m + 2) 

l;; u o r (  1 1m + 1 )  
t o  - r�  m/2Do(m+2) ,  

Q being the init ial flux of  individuals from the origin and r is  the gamma function. 
A steady state for the above equation has been studied by Shigesada [ 1 7] ,  Teramoto [20] , 
and Shigesada et al [ 18 ] . The equivalent plane radially symmetric problem with Q insects 
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released at time t = 0 satisfies ( see Murray , [10 ,  page 239 ] ) 

au Do8 [ r ( !! )m au ] . ot = rar Uo Or 

' The afore mentioned approaches do not shed some light on the dispersal of a flock of 
insects whose initial distribution is not concentrated at the origin,  nor does it model the 
long range behavior of the flock when a general initial distribution is known. The purpose 
of this paper is  to model the long range planar behavior of a flock of insects whose initial 
distribution is known and is not necessary a " 8 "  measure. 

2 .Insect Dispersal and Long Range Effects .  

I f  u represent s the population density of insects ,  then the conservation equation 
au 
ot + V .J F(u,x ,t) 

is known to form a reasonable basis for studying insect and animal dispersal which have 

been discussed in detail for the one dimensional case by Okubo in [ 12] and Shigesada in 
[ 17] .  In ( 2 . 1 ) , J i s  the flux of material and F , represents the source of material and is a 
function of u ,  x, and t .  As it is known, one extension of the classical diffusion model which 
is of particular relevance to insect dispersal is when there i s  an increase in diffusion due to 
population pressure. Such models have the flux J ,  depending on the population density u 
where 

J dD -D(u)Vu, au > O. ( 2 . 2 ) 

A typical form of D (u) is D o( !! )m , where m > 0 and D o ,  U o are posit ive U o 
constants (  see Murray[lO] , Okubo[12] ) . It is also known tha,t insects at low population 
densities frequently tend to aggregate .  A model reflecting this fact has a flux( see 
Murray[lO] ) given by J = Uu - D(u)Vu, where U is the transport velocity. An example 
occurs in the situation where the center of attraction is the origin and the velocity of 
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attraction is constant . Shigesada et al [ 14] took U = -U oSgn(x) for the one dimensional 

case. 

In many instances , of insect outbreaks the densities of insect population are not 

small and a local or short range Iliffusion flux proportional to the gradient is not 

sufficiently accurate. Instead of simply taking J IX Vu we now consider 

J = G [  Vu( x + r,t ) ] 
r f N (xJ 

(2 . 3) 

where N(x) is some neighborhood of the point x over which effects are noticed at x, and 

G is some functional of the gradient . The resulting form for the flux in (2 . 3) is then 

J (2 .4) 

where D2 is a constant which is a measure of the long range effects and in general is 

smaller in magnitude than D 1(U) . This approach is due to Othmer [13] . 

If we now take the flux J as given by (2 . 1 ) we have 

= (2 .5) 

where the first term on the right hand side is the diffusion term and the middle term, the 

biharmonic term contributes to the long term effects .  If we now take D 1(U) = Do( :!! )m, Uo 
m � 0 ,  where D o is the diffusivity for u = uo( a reference concentration) and Do, Uo 
as usual are positive constants ,  then we will have as a model describing the long term 

effects of dispersal of insects density, the equation 

au 
Of (2 .6) 

As m > 0 ,  the diffusivity increases with u and in general D2 is smaller in magnitude 

than Do( -u1 )m. Thus the effect of population pressure is incorporated in Do( 1:. )m. We o U o 

will also give equation (2 . 6) an initial data 
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u(x,O) = g(x) X f 1R2  (2 .7) 

We will also consider the source F to be the logistic term cu(A - us) where C is a 

constant . 

Now we shall use the results in Jones [8] and Rosenbloom [15] applied to 

� - (_1)1\;/2p(D)u = f ;  u(x,O) = 0. ; I\; = 4 where P is an elliptic polynomial 

of degree m. There exist a fundamental solution r(x,t) = C1/2t.p{xC1/4
) ,  where r f 

c(l)(1R2) . If we now let the symbol ® to represent the spatial and time variables convolution 

and the symbol * to represent the usual spatial variable convolution, then a formal 

solution to (2 .6) ,  (2 .7) can be written as 

u(x,t ) = r ® DoVe [  ( .!! )mVu ] + r ® cu(A - us) + r * g 
Uo (2 .8)  

u(x,t ) is a weak solution of (2 .6) ,  (2 .7) if  the integrals in (2 .8)  exists in the Lebesgue sense. 

Under this requirement (2 .8) becomes via integration by parts 

where 1\;1 -m( )-1 D ouo m+ 1 and K D�r(x,t) 
2 

= L a2r(x,t) 
. 

1 a x? 1= 1 

(2 .9)  

and where we noted 

Many techniques can be used to approximate the solution of the integral equation 

(2 .9 ) .  However, here we will only indicate a successive approximations method similar to 

the ones in Calderon [2 ,3] ,  Calderon and Kwembe [4 ,5] and Kwembe [9] . We will introduce 

some weak global solutions as well as local solutions of (2 .6) ,  (2 .7) in some LP spaces . Let � 
be the nonlinear integral operator defined by 

�(u)(x,t) = (2 . 10)  
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Then by using the method of successive approximations we can show that the  iterations 

(2 . 1 1 ) 

converge in the norm defined below to the solution of (2 .9) and that � possesses a unique 
fixed point u satisfying I l u l l  � Yo for a suitable small Y o .  Towards thi s effort we will 
consider the following standard estimate of r(x,t ) .  

I r(x, t) 1 � c( I x l + t 1 /4 )-2 ; t > 0 (2 . 12 ) 

and i t s  spatial derivative estimate of 
I �r(x,t ) I � C( I x l + t 1 /4 )-2-n; t > 0 (2 . 13) 

where I n I = nl  + n2 and where n is the number of derivatives taken with respect to 
x. 

DISPERSAL FOR ARBITRARY INITIAL VALUES 

We now try to address the problem of obtaining a solution for equation (2 .6 ) , 
subject to  the initial tondition (2 .7 ) . First we consider the case when the source term 
F(x,u,t ) is zero . Then (2 .6) reduces to 

au 
Of (2 . 14) 

subject to the initial condition (2 . '1 ) , which is not easy to solve in closed form even when 
one seeks solutions of the form 

u(x,t ) (X exp{  at + i".x } (2 . 15) 

Substituting this into (2 . 14) we have 
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(J' = -D 21\;4 - (m+ 1 � D Ol\;
2
exp{ mut + im".x } ;  K, = 1 "I 

u o 

from which it is clear that wave - like solutions are achievable only for m = 0 ( See 

Murray [10] ) .  

We shall consider the  case m > 0 and look at the existence and uniqueness of weak 

global solutions to (2 . 14) subject to (2 .7 ) .  Which is the same as studying the existence and 

uniqueness of integral equation (2 . 1 0) when the source term Cu( A - u s) _ o. Thus 

after first considering the estimate of the integral operator 

(¢u) (x, t ) (2. 16) 

We t h en h ave the  following result : 

m 
Theorem 1 :  S uppose that the initial data g E L  (1R2) ;  m > 1 .  If E O > 0 is small and g 
is such that I i g l l m < E O . Then, there exists a unique solution u to the problem (2. 14), 

subject to the init ial data ( 2 . 7) , that i s  global in time. The uniqueness holds in the class of 

functions u snch that I I u l 1 3m < (I) .  

The proof of  this theorem is achieved through auxiliary Lemmata. We shall present 

its proof and those of the connecting Lemmata in III 

Remark 1 : 

Our approach not only gives a medium range diffusion but allows us to solve insect 

dispersal for any set of initial values ; whereas , Okubo [ 12] and Murray [ 10] provides a 

solution for the case of a " 8" initial value . 

Remark 2 : 

Following Murray [ 10 ,  page 249] , we take a cell potential energy approach to the 

long range diffusion. Here we let u(x,t )  be the densi ty and J.L the potential .  Then the flux 



J is given by 

J = -DV/L(u) 

where JL(u) bE I On = e (u) and 

E(u) = I
v

e(u)dx. 

22 1  

i s  the total Energy in  a volume V and e(u) i s  an internal energy per unit volume of an 

evolving spatial pattern. Thus if e(u) = �f + ¥ then the generalized diffusion is 

obtained to be 

au 
or = 

where F is again the source term. If we give (R2, 1 )  the initial value (2 .7) then a formal 

solution when F = 0 is given by 

u(x,t ) = II:lK ® u + 1I:2K ® u3 + r * g 

where K 

using the same approach as above, we define the operator � by 

(�u) (x,t) = KlK®u + 1I:2K ® US + r * g 

Then similar results as above are obtainable. 

3 . Integral Equation Approach( An alternative view) 

As noted before the derivations of equations of section 2 were achieved through 
Othmer's approach which neglected any memory effects .  In general though , if �(x) is an 

initial density of a dispersing biotic mass, then if 
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J ,(x)dx > 0 j t > 0, 
1R2 

the usual dispersing density J
IR2 4

�exp{- l x I 2/4t},(x-y)dx > 0 V y,t > 0 propagates 

infinitely fast [15] , hence, it is not a realistic view. 

We now suppose that A(t) represents the area covered by the dispersing 6 
biomass at time t .  Then around the origin, the area exhibits the following properties, 

So that if the area is circular, for example, the radius of the circular region has maximum 

reach at time t. And so r N Ct1/2, for 0 < t � E, where f is small. This estimate 

holds for any convex bounded region for which the origin is an interior point regardless of 

the modality of the diffusion. 

Next , we suppose that cp is a function expressing the diffusion of a dispersing 
biomass concentrated at the origin in such a way that cp describes a characteristic 

function of a convex bounded region with the origin as an interior point . We require, 

further, that J cpdx = 1. If there are no sources or sinks, after an initial distribution f(x) , 

the diffusion in the time span of [O,t] will be given by 

(3 . 1 )  

The function cp has to  be  chosen in  accordance with the particular characteristics of the 

problem.( for instance the governing equations) .  

Let w(x,t) = t cP( ��I ) 
Then w is the Kernel function that describes the diffusion of a 6 biomass. 

If F(x,1') is the source function at time 1', then within the time interval (1',1'+d1') ,  

the differential area dy, the dispersing biomass density i s  given by 
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1l1(x-y,t-T)F(y, T)dydT ; T < t (3 . 2 )  
Combining (3 . 1 )  and ( 3 . 2 )  we have the total d ; spersing biomass described by 

t 
u(x,t ) J 1l1(x-y ,t)f(y) dy + J J 1l1(x-y, t-T)F(y , T)dydT (3 . 3) 

1R2 0 1R2 
where u(x,t ) is the di spersing density located at position x at time t .  
I f  m( t )  represent the biomass at t ime t , then the area A(  t) i s  related t o  m( t )  according 
to the allometric law 

dm c­m 
whil"'.h may also describes the basal metabolic rate of the average biological unit for special 
values of c .  However , in general 

A( t ) N Ct a ; 0 < a < 1 

The usual assumption is a = 1 /2 .  The case in section 2 corresponds to a = 1 /4 which 
gives the biharmonic diffusion. If 1p(x) is  radial continuously di fferentiable and decreasing, 
then: 

0 ,  1p(0 ) maximum. rm being the maximum reach. 

Then 1p(x) = 1 - c I X 1 2 + a ( I x 1 2) or more generaliy , we may assume 

Looking at this kernel asymptotically , we have 
1p(x) exp{ log[ l - C l x l tJ + a( l x l tJ) ] } I x l < f a ·  

Since l_o .... g ..... ( l_--,C,....I_x ..... 1 tJ.....L.) -l I as I x l  -l 0 ,  we have 
-C l x l {1 

1p(x) N exp{-C l x l tJ} for small I x l  and 

which shows that for small I x I the classical diffusion coincides wi th thi s  
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approximation, where {3 = 2 .  Equation (3.3) can be solved by applying similar techniques 

to the ones studied in section 2 .  

ID. Proof of Theorem 1 

Here we shall give the proof of Theorem 1 starting with auxiliary results .  

Lemma 1 :  Let B be a Banach space of Lebesgue measurable functions and let 

�:B -+ B be a continuous mapping such that 

(1 )  1 I�(f) l I  � r,o( l I fl l )  + 'Y, where 'Y is a real number and cp is a convex non negative 

function satisfying 

I 
(2) r,o(O) = 0 and 0 � cp( 0) < 1 .  

(3) � -+ ID as s -+ ID S 

Then there is an E O  such that whenever 'Y < EO we can find a 6 = 6( 'Y) such that 

1) � :B 6 -+ B 6 ' where B 6 denotes a ball of radius 6 
2) 6 -+ 0 as 'Y -+ O. 

Proof: consider the curve defined by y = r,o(x) . Since cp is convex and by hypothesis(2) 

we see that the graph of y = r,o(x) is underneath the line y = x for 0 < x < xl,  

where Xl  satisfies Xl  = r,o(XI) . The existence of Xl is guaranteed by hypothesis (3) 

Next we consider the modification y = r,o(x) + 'Y for small 'Y so that a portion of the 

graph of y = r,o(x) + 'Y is underneath y = x. Then we can find Xl, X2 such that 

Xl = r,o(Xl) + 'Y and X2 = r,o(X2) + 'Y where Xl < X < X2. Thus for Xl < X < X2 

r,o(x) + 'Y < x. Therefore, if X < Xl, then r,o(x) + 'Y < Xl. Take X l  = 6( 'Y) of the 

hypothesis and the Lemma follows on noting that B 6 = { x: r,o(x) + 'Y < Xl } .  

Lemma 2 :  If  g E Lm(1R2) and u E L3m(1R2x1R+) j m > 1/2 ,  then 

1 I (�u) 1 I 3m � C(ltl,3m) l Iu l l�! + C(3m) l Ig l lm· 

Proof: From estimate (2 . 12) ,  (2 . 13) and equation (2 . 16) we have 
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I (�u)(x,t) I 

Considering first the first term on the right hand side, we observed from Theorem A, that 

K � C 

where a i = 1, a2 = 1 and a3 = 4 and f3 = 2 . Thus if we assume that 

Then Theorem A applied to the above inequality gives 

I I (� u) l I q � lI:i.C .Cpl lu l l�+l + II r * g I I q 

(Ai) 

On taking p = q, we have that p = q = 3m and (Ai) becomes 

I I (� u) 1 I 3m � C(II:t,m) l Iu l lx:!.l + II r * g 1 1 3m. 

(A2) 

Next we will show that 

I I r*gl l 3m � C(m) l Ig l im 

But this follows directly from the following lemma. 

Lemma 3 :  Let F(x,t) = r * g . Suppose that g E Lm(1R2) j 1 < m < m. Then 

F: L 3m,3m(1R2xIR +) -I L m(1R2) and I IF I I 3m � C(m) lIg l im. 

Froof: We shall first indicate a notation explanation. I IF I I 3m :: I IF I I L 
3m(1R2xIR +) _ 

I IF I I 3m,3m· 
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Now by invoking estimate (2 . 12) we have 

I F(x,t ) 1  $ CJ 2 I g (x-y) 1  dy 
IR ( I y l + t1 /4 ) 2 

On taking the L 3m(IR+) norm in the t - variable of both sides we have 

1 
( J 1 F(x,t) 1 3mdt )3m $ 

IR . 

Applying Minkowski 's integral inequality on the right hand side we have 

I I F(x, · ) 1 I 3m < 

1 g(y ) 1 dy 

1 1 2 - 1. x-y 3m 

where 1/ does not exceed [ r d t 
1 

° U + fl 

On taking a l  = 1 , a2 = 1 then 1 a 1 

K < 

2 and on observing from Theorem A that 

c 

followed by the fact that g t L m(1R2) , we apply Theorem A to (A3) to get 

I I F I I 3m 3m $ C (m) l l g l lm· , 
This concludes the proof of Lemma 2 .  

We now present the proof of Theorem 1 .  I t  suffice to prove that the nonlinear 
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operator 
(�u) (x,t) = 1I:1K 8 um+1 + r * g 
is a contraction mapping of a ball of radius say r o into itself. 

Suppose that U b  U 2 are two functions belonging to this  ball . the size of the ball 
determined by Lemma 1 above . Then 

On invoking estimate (2 . 1 3 ) ,  we have 

where /'i,2 = D ouo-m and where we have made use of the fact that 

We note again that K < C where a l = 1 ,  a2 = 1 ,  a3 = 4 and I a l = 6 .  
p i a 1 -2 

If we now let ( I u d  + I U 2 I )m l u \ - U2 1  E Lm�1 (1R2XIR+) , then again Theorem A gives 
that 

he e 1 m+1 1 Thi ' -_ 3 w r 3m = --p- - '3"' s gIVes p m. 
Hence 

1 I (� U l) - (� U2) 1 I 3m � C(1I:2,m) l I ( l ud + I U 2 I )m l u \ - u2 1 1 1�;1 
m+ 1 
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If we now let I U I - U2 1 f L3m(1R2xlR+) and ( l U l l  + I U2 1 )m f L3(1R2xlR+) , we have on 

the application of HOlder 's inequality of exponents m! 1 , m + 1 respectively 

If we now choose from Lemma 2, fO > 0 small such that I iglim < fO .  Then the 

inequality of Lemma 2 satisfies condition ( 1 )  of Lemma 1 .  Hence, there exists a ball of 

radius say rO( fo) such that � :  B -+ B . For U h  U2 E B , we have from (A4) that . ra ro r o 

On choosing C(�2,3m) = 2-m, we have for r o small enough C(�2,3m)(2ra)
m < 1 .  

Hence � i s  a contraction mapping a ball of radius r o( f O )  into itself. This completes the 

proof of theorem 1 .  
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