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MEAN VALUE AND HARNACK INEQUALITIES FOR A CERTAIN
CLASS OF DEGENERATE PARABOLIC EQUATIONS

JOSE C. FERNANDEZ!

1 Introduction

In this paper we study the behavior of solutions of degenerate parabolic equations of the

form

(L1) w(@)uzt) = 3. Da(aij(z,)Dayu(z, 1)),

ij=1
where the coefficients are measurable functions, and the coefficient matrix A = (ay;) is
symmetric and satisfies
(12) (=) 2 S 3 ooy < wale) 3 oS
= ij= i=
for £ = (é1,...,€n) € R™ and (z,t) € Q x (a,d), Q a bounded open set in R™.

We are going to assume>some conditions on the weights (non-héga.tive functions that
are locally integrable) v, w;, ws and on the functions Ajs 7 => 1,...,7n, in order to be able
to derive mean value and Harnack inequalities for solutions of (1.1). The assumptions on
A;, which we list below, are the ones stated in [FL2]. |
(1.3) A =1,7(z) = Az, ..., 25-1), = 2,...,n,VZ € R™.

(1.4) Let [T = {z € R* : [Tzx = 0}. Then A\; € C(R") N CY(R™\]I) and 0 < A;(z) < A, -
Ve e R*\Il,j=1,...,n.

(1.5) Aj(%1y ey iy ooy Tjm1) = Aj(21, 0oy =4y ooy zjor), for j=2,..,mandi=1,...,5 — 1.

(1.6) Thereis a family of n(n—1)/2 non-negative numbers p;; such that 0 < z;(D,,;\;)(z) <
piiri(z),for2<j<m 1<i<j—1and ¥z € R"\II.

1This work was supported by FAPESP- Fundagio de Amparo & Pesquisa do Estado de S3o Paulo-

Brazil.
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Denote I' = Q X (a,b) and define H = H(T') to be the closure of Lip(T') under the

norm
(1.7) llul? = //ruz(z,t)(v(:c)+w2(:c))d:c¢1t
¥ //FIV,\u(z,t)lzwz(z)d:cdt+//ruf(z,t)v(z)d:cdt,

where Vyu = (M Dy, u,...,AnDz,u). Thus, H(T') is the collection of all (n + 2)-triples
(u, B, B) such that there exists up € Lip(T') with vy — u, Vyur — B, (ux)e — B,
the convergence being in the appropriate L? space. We need to verify that 3 is uniquely
determined and for this it is enough to show that for every F € C(T), [puVAF =
— JpBF. In order to prove this, note that since u € H, there exists {ux} C Lip(T') such
that uxy — w in H. Then, by (1.3),

OF d Ouy,
et = o [ L) F=- [ A Z4F
/r”" 9 /raz;(“‘ ¥ /r oz
Therefore,
[unVsF = - / (Vsup)F.
r r
By Schwarz’s inequality and assuming that w;* € L},,,
| /r wVAF — /r uVAF| < /r k= w|wl/2|VAF|wy /2
< e — uliza, ( /r VAP )2 < el — sz,
Hence, Jr uVa2F — [puVF and similarly we can show [(Vux)F — [ BF. In the

same way we prove B is uniquely determined, if v=* € L}.. We also define H,(T) to he

the closure of Lip,(T'), Lipschitz functions with compact support in T', under the norm

» Aeﬁned in (1.7). It is easy to see that the bilinear form b on Lip(T') N H(T') defined by

b(u,d) = //r{'tm[)v + (AVw, V) }dzdt

can be continued to all of H(T') (here and in the rest of the paper the vector Vu is

understood to be the vector (:\l-l-ﬂl, - ﬁ,@n) where Vyu = (f1,....8r)). Wesay v € H(T)

is a solution of (1.1) if b(u, ¢) = 0 for any ¢ € Ho; u € H(T') is a subsolution if b(u,$) < 0
for any d) € Ho(T'), ¢ positive in the H-sense, i.e., ¢ can be approximat(\ed in H(T) by
positive functions with compact support in I, w € H(T) is a supersolution if b(u,¢) > 0
for any ¢ € H,, ¢ positive in the H-sense. ‘

We also define H = H(R) to be the closure of sz(Q) under the norm
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llulll? = [ w(@)(o(z) + wa(e))dz + [ [Vau(z) Fws(a)da,

and ro(Q) to be the closure of Lip,(?) under the norm defined above.

Next we will define a natural distance (associated with the functions A;,5 = 1,...,n)
and state some of its f)roperties. This metric was first introduced by [FL1].

A vector v € R™ is czﬂled a A-subunit vector at a point z if (v, §)* < T A3(z)&2,
V€ € R™. An absolutely continuous curve 4 : [0,T] — R" is called a A-subunit curve if
4(t) is a A-subunit vector at (t) for a.e. t € [0, T).

For any z,y € R™ we define d : R* x R* — R* by

d(z,y) = inf{T € R,: there exists a A-subunit curve v : [0, T] — R" with 7(0) = z,
1T) =y}

One can check that this is a well-defined metric. There is a quasi-metric § (a function
§ : R* x R® — R? is called a quasi-metric if there exists M > 1 such that §(z,y) <
M{é(z,2) + 8(z,y)} for all z, y, 2z € R™) equivalent to d, and sometimes easier to work
with than d (see [FL2]). If z € R" and t € R put Ho(z,t) = z and Hy41(z,t) = Hi(z,t)+
tAet1(Hi(z, t))erys for k= 0,...,n — 1, where {ex} is the standard basis in R™. Define
p;(z*,.) = (Fj(z*,.))"?, the inverse function of Fj(z*,.), where Fj(z, 8) = sA;(Hj-1(z, 3)),
for j=1,...,n and z* = (|z4|, ..., |Zs|)-

We define § : R* x R — R* as

8(z,y) = Mazj=,. npi(z”, |2; — yjl)-

Note that,
(1.8) 8(z,y) < s is equivalent to |z; — y;| < Fy(z*,s),1 < j < m.
In (1.9), (1.10), (1.11) below we state some basic facts concerning & and d (see also
[FL2]).
(1.9) There exists a > 1 such that for any z,y € R",

Consequently, § is a quasi-metric with §(z,y) < a?[é(z, y)+6(z,y)] and 8(z, y) < a?§(y, z).
(1.10) For any = € R, s > 0 and 4 €]0, 1]



233

where Gy =1 and Gj = 1 + i1 Gipjy, for j = 2,...,n.

(1.11) We denote S(z,r) = {y € R" : d(z,y) <} and Q(z,r) = {y € R": §(z,y) <}
and we will call S(z,r) a d-ball and Q(z,r) a §-ball. Note that there is a constant A > 1
such that |S(z,2r)| < A|S(z,7)| and |Q(z,2r)| < A|Q(z,r)|, where | | denotes Lebesgue
measure. Also, by (1.8), |Q(z,7)| = I}, Fj(z*,r). If Q = Q(z,r), we write r = r(Q).
In general we say that a non-negative and locally integrable function w(z) is a doubling

weight (w € D) if there exists a constant A > 1 such that w(2Q) < Aw(Q) for any §-ball
Q, where 2Q = Q(z,2r), if Q = Q(z,) and w(Q) = [y w(z)dz.

(1.12) If w € D then there exists @ > 0 such that, Vr > 0, V8 €]0,1], Vz € R",
w(Q(z,0r)) = 0°w(Q(z,7)).
Given 1 < p < oo, we say w € A, if there is a constant ¢ > 0 such that for all é-balls
Q in R",
1 1
1.13 — [ w(z)dz) (= [ w(z) VP ldz)P? <e.
(119) (7 Jy vy [, wle) ™7 de)

Note that if we have the A, condition with respect to 8, we have the same condition
holding for the metric d, ie. (1.13) holds with Q replaced by S (using doubling and the
equivalence between d an §). If v is a weight, w € Ap(v) means an analogous inequality

holds with dz and |Q| replaced by v(z)dz and v(Q), respectively. We use the notation
Ao (v) = Ups1 Ap(v). The theory of weights in homogeneous spaces was studied by A P.
Calderon in [C] and frequently we refer to this paper.

Ifz, y € R", we shall denote by H(t,z,y) = (Hi(t,z,y), ..., Ha(t, z,y)) the solution at
time ¢ of the Cauchy problem H;(.,z,y) = y;\;(H(.,z,9)), H;(0,z,y) =zj, j=1,....n.

Given a = (ai,...,an), € = (€1,...,€x) With 0 < ¢; < aj, j = 1,...,n, we denote A
={yeR":¢;<y;<a;j=1,...,n} o e {-1,1}", we put T,y = (G1¥1, .-, TnYn),
Q(z,7) ={y € Q(z,7): 0j(y; —z;) 20,7 =1,...,n} and A%(c) = T,(A2).

Now we can state two results proved in [FS].

Let 7 €]0,1{ and o € {—1,1}" be fixed. Then there exists ¢, a € R™ as above such
that, ¥r > 0 and Vz € R™,

(1.14) |H(r, 2, A3(0)) N Q(2,7)| 2 (1= 7)|1Q7 (=2, 7)l,

where H(r,z,A%(0)) = {H(z,7,y) : y € A(0)}.

Also, there are positive constants ¢, c; depending only on €, a and pj; such that
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(1.15) a8 <TI /O " M(H(t, z,y))dt < el S(z,7)|

for each z € R*, r > 0 and y € A%(0). »
If g > 2, we say that Sobolev inequality holds for wi, w; if for any u € H,(Q), Q a
é-ball in R™,

(1.16) / |u|%w,dz)/? < er(Q)( w—l%aj./q |V aul2wy dz) /2.

(Q)

Given ¢ > 2, we say the Poincaré inequality holds for w;, w; and p if there are constants

¢ > 0 and a > 0 (see (1.9)) such that for any 6 ball Q and every u € H(a?Q) we have
1 _ q V2 1 : 2 de) /2
(1.17) (w_z(Q) /; |u — av, gu|?wade) T < cr(Q)(———w1(Q) /a'-’Q |V au|*widz)™?,

where av, g = WIQTIQ udp and a?Q = Q(z,a’r) if Q = Q(z,7).

The reason that we have a?Q on the right side of (1.17) is that we do not have a
Kohn type argument (see also [J]) for the quasi-metric 6. In the d-metric, we can state
(1.17) with equal balls on both sides. For the metric §, however, we have convenient
cut-off functions (see[FL1]) that are important in order to get Caccioppoli estimates for

solutions of (1.1) (see (C.1), (C.2) and (C.3)). This explains the reason that we work with
4 instead of d.

We can now state our main results.

THEOREM A (Harnack’s inequality) Suppose that:

(1) v, w1, wy € A,

(i) the Poincaré inequality holds for w;, w; and w;, v with 4 = 1 and some q > 2

(i11) wev™! € A (V).

If u is a non-negative solution of (1.1) in the cylinder R = Q(zo, @) x (to — B, to + 8), then

ess supp-u < crezp{cofa ?BA(Q(z0, @) + *B7H (AN Q(z0, @))) ] }ess infriu,

where R~ = Q(zo,/2) X (to — 30/4,to — B/4), RY = Q(zo0,/2) x (to + B/4,t0 + B),
A(Q) = wa(Q)/v(Q), M) = wr(Q)/v(Q), for a 6-ball Q. Here the constants ¢, ¢,
depend only on the constants which arise in (i), (ii), (iii).

We write

#Rf(z,t)m(z,.,)dzdt= //R (2, tym(z, t)dzdt/ //R m(z, t)dzdt.
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THEOREM B (Mean value inequality) Assume that hypotheses (i),(ii),(iii) of Theorem
Ahold. Let 0 <p< o0, a, >0, @/2 < a <a,,3/2<,6'<ﬁandletQ(zo,a)=Q,

Q(z0,@')=Q and R=Q x (to— B, to+p), R Q x (tm— B, to+ B). If u is a solution
of (1.1) in R, then u is bounded in R, and

ess supp |u|P

< D(@*B7NQ) + 1M V(aBAQ) + 1M ff [uf(a puos + v)dadt,

where D < Cﬁ ifp>2,and D < clog(%)cc if0 < p<2, and C = CT—G)—:_%%')' Here

h>1,¢>0and b > 0 are constants which are independent of u, p, a, o', 3, 3.

The organization of the paper is as follows. In section 2 we prove the following Sobolev

interpolation inequality:

THEOREM D: Let w,, w; be doubling weights, v € A; and suppose (1.17) holds with
wy, ws, 4 = 1 and some g > 2. If wyv~! € A(v) then there exists A > 1 and constants

¢ > 0, b > 0 such that for every ¢ satisfying 0 < e < 1,

/ |u|?Pw,dz

ws Q)
- ho1, T(Q)? 1
<_ce (v(Q) 1490 u?odz )Y =) /(’1+2)Q |Vau|?wydz + 20) -/(1+e)Q u?vdz)

for all u € I?((l +€)Q).

In section 3 we prove Theorem B. First we show, for p > 2, the following mean value

inequality for subsolutions of (1.1):

(%) ess supR;ui

< (pZC)"th(azﬂ_lz\(Q)‘l + 1)1/(h_1)(a—2,3A(Q)+ l)h/(h—l)#Rui(a_zﬂ’LUg-}-'U)d:ndt,

where C is as in Theorem B and u, = maz(w,0). This inequality is less precise than
the one we will eventually obtain because of the presence of the factor p? on the right.
In order to prove the above inequality we apply Theorem D to the function Hps(u(., 7))

where
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8?2 if s € [0, M]
Hu(s) = M??2 4 eME-2/%(s — M) ifs> M
0ifs <O,

and therefore Hps(u(.,7)) is an element of H(Q(z.,a) for a. e. 7€ (to— . ts + B). The
first idea would be to apply Theorem D to the function u”/z(., 7) but at this poipt we do
not know if u+ %(.,7) belongs to H(Q(z,, ). Hence we have to work with H(u), and in
order to proceed with the proof of (x) we show the following Caccioppolli inequality for
Hpr(u).

(C.1) Let 2 < p < oo and u be a subsolution of (1.1) in R. Let w; € A, and a, a',.ﬁ, g
satisfy a/2 < a' < a, /2 < 8 < B. Then

€38 SUP,(1y-t 101 /QHM<u<z,r>>2v<z>dz+ Sz, et o (z) o

c//};qu;W(u)z(( 2 o) ﬂ ,3 -)dzdt,

with ¢ independent of all parameters.

The next step is to apply (%) for p = 2 to deduce that u, is locally bounded. This
fact allow us to apply Theorem D to the function u’j_/z(., ) forae. 7 € (t, — B, t. + B).

The Caccioppoli inequality we can deduce from (C.1) for the function ui/z

1s not precise
enough since it will have a factor p? in the right hand side (note that wH,(u) < ‘,_f—ui/ %
and this is the term we want to eliminate from (%). But with a different test function

from the one used in the proof of (C.1), namely, ¢(z,t) = n?g(u)x(t, 71, T2) where

sP~1if s € [0, M]
g(8) = Mr2ifs>M
0ifs <0,

and 7 is a convenient C* function with compact support, we can deduce the following

Caccioppolli inequality for subsolutions of (1.1):

(C.2) Let 2 < p < oo and u be a subsolution of (1.1) in R. Let w, € A; and a, o', 3, 8
satisfy a/2 < &' < @, B/2 < B’ < 8. Then

ess 3'“Pre(to—;3 t°+ﬂ)/ uy(z, T) v(z)d:c+// lV*uP/2|2w1(z)d:cdt

< c// g ﬂ)dzdt

with ¢ independent of all parameters.
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Now following the steps of the proof of (%) using (C.2) instead of (C.1) we can prove that
forp>2

(>*) ess supR;uﬁ_

< (C)FT(a®B7A(Q) ™ + )YV (0 ?BA(Q) + 1)"/“-1)#Ru¢(a-2ﬁw2 +v)dzdt,

and Theorem B will follow from (#*) and an iteration argument like the one given in
lemma (3.4) of [GW2]. Finally we conclude section 3 by making some comments about
the proof of mean value inequalities for u?, when p < 0, where u is a positive solution
of (1.1). These inequalities will be necessary in the proof of Theorem A and in order to

show them we need the following generalization of (C.2):

(C.3) Let —oco < p < 400, p# 0,1, usatisfy 0 < m < u(z,t) < M < oo in R, wy € A,.

Then if p > 1 and u is a subsolution in R, or if p < 0 and u is a supersolution in R.

-1
ess sup,_e(to_ﬁ"t”_ﬂ)/l u(z, 7)Pv(z)dz + p_p—//R’ |V P2 2w, (z)dzdt
+

// (o= l(a _(a))2 + /;’( ;)d dt.

Moreover, if 0 < p < 1 and u is a supersolution in R, then

-1
€38 SUPre(to—p toth’) /Q’ u(z, 7)Pv(z)dz + |p—p—| //;2, |V AuP/2| 2w, dzdt

< C/Lup([pfll(aiuix) 5 ﬂ)dzdt

In this paper we do not present the proofs of (C.2) and (C.3) since their proofs are
similar to the ones given in section 2 of [GW2)].

In section 4, we prove

THEOREM E: Let v and w; be weights such that there exists s > 1 with

1 wn

e L
)'dz) A

)“2dz)? < ¢

. r(I) .,
(1-18) G m

for all §-balls I, B with I C 2a%B (a as in (1.9)), where c is a constant independent of the
balls. Let Q@ = Q(¢,7) and @ be a C! function such that ¢ = 1 in Q(&,kr), 1/2 <k <1,

0<¢p <1, suppp C Q and

o(z)p(H(to 2,7)) < p(H(t,2,y))
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for all z,y,t,2, with 0 <t < t,. Then, if u € Lip(Q),

J,14() = AoPp(a)o(@)ds < e Er(@) [ (Vaula)Ppla)un(a)ds,

w1 (Q)

where Ag = ﬁfq u(z)p(z)dz.

Finally, in section 5, we prove Theorem A. This theorem follows as an applicatié)n of
Bombieri’s lemma ([GW2]). In order to verify the hypotheses of Bombieri’s lemma we n;e’d
Theorem B and Theorem F, which we state next. We write (v ® 1)(A4) = [[,v(z)dzdt,
where v = v(z),z € R", and A C R**! = {(z,t): z € R",t € R}.

THEOREM F: Suppose v is a doubling weight, w; € A, (1.18) holds and w,v™! € A (v).
Let Qr be a §-ball of radius R, t, € (a,b) and Wy = wy/wy(Qr) and ¥ = v/v(Qr). If u is
a solution of (1.1) in Q3g/2 X (@,b) which is bounded below by a positive constant, then

there are constants c;, M5, k and V such that if for s > 0 we define
E* ={(z,t) € Qr X (to, ) : logu < —s — M,(b—t,) — V}

E- ={(z,t) € Qr x (a,t;) : logu > 3 — Ma(a — t.) — V},

then
1 »(Qr) R’

(54 B2) @ D(BY) < ca( s 7

)7 (b—t,)

and

1 v(QR) R?
swi1(Qr)to—a

Here c; and x depend only on the constants in the conditions on v and w,, M, =

(0 +w2) ®1)(E7) S ea(=

w2(QR)

R*v(QR)’
and V is a constant which depends on u.

In order to prove this theorem, if we follow the steps of Lemma (4.9) of [GW2], we just
have to verify that a certain test function (see [FL1]) satisfies the conditions of Theorem

E. This will be done in Lemma 5.4.

2 Interpolation Inequality

In this section we prove Theorem D . We start with

Theorem 2.1 Let wy, ws, and p be doubling weights and suppose (1.17) holds for wi,
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wp with any g, and for some ¢ > 2. If Q = Q(&,7) and wev™! € Ax(v) then there ezist
h > 1 and a constant ¢ > 0, independent of Q and u, such that

1 2h
wz(Q)/;zlul wadT

. wvdz)h? L 2 avyqlul)?
'U(Q)-/Q dz) (wl(Q) Q(¢,a%r) lV)‘ul wydz + ( Hle |) )

< o
for all u € H(a?Q) (a as in (1.9)). Also if (1.17) is replaced by (1.16), then

1 u2hw 1 Zv z h-1
@) Jo P unde < el [ wedn)
for all w € H,(Q).

T

2
e /Q |V sul*w1 dz)

Proof: The proof follows as in [GW1], theorem 3; the only differences are that we obtain
Q(&,a’r) in the second integral on the right when we apply Poincare’s inequality and in

the end we use the results of Calderon for weights in homogeneous spaces (see [C]) .

Corollary 2.2 Let w;, we be doubling weights and suppose (1.17) holds with wy, ws,
p =1 and some q > 2. If wav™! € As(v), then there exists h > 1 and a constant ¢ > 0
such that ’

1 h
(@) Jo e
C(v(Q) /Quzvd:c) l(wl(Q) /;20 |V au|?wide + ;(—Q_)/;Juzvdz)

for all uw € H(a?Q), Q = Q(&, 7).

Proof: The conclusion of Theorem (2.1) holds for u = 1. But. by Schwarz’s inequality,

1/ 1 1/2, ~1/2
avolu| = — u.d:z::———/uv/v 14z
o= a1 Jo ™ = 101 Jo

1 wlvdz )2 ]-_1:1/2 L wodz)H?
< |QI(/Q da)*( [ L) < (s [ Wl

Qv v(
where in the last inequality we used the fact that v € A,.
In the next section we prove mean value inequalities. In order to be able to iterate

a certain inequality as was done in [GW2] we need a refinement of the above corollary

This refinement is Theorem D and to prove it we need the following lemmas.

Lemma 2.3 Given Q = Q(§,3) and 0 < 7 < s, there exists z1,...,Tm(r,) N Q, and k >1

independent of €, 7,8, such that
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(3) Q(zj,m/k) N Q(zh,r/k) = O,k # j
(u) Q(&,5) CUIQ(z;, 7).

Moreover, m(r, ) < ¢(2)” for some constant v depending only on the dimension.

Proof: If we apply theorem (1.2), page 69, of [CoW] to the open covering of @ given by
(S(2, &))zeq, there exist 1, ..., Zm(r,) in Q such that: S(zn, Z)N S(z;, ) =0if j#h
and Q(¢,5) C UX{"8(z;,2). By (1.9), S(z; ) O Q(zs,3) and S(z5,%) € Q(=,7).
Therefore, if we choose k = 4a?, (i) and (ii) follow. It remains to find an upper bound for
m(r,s). First, we note that Q(z;, £) C Q(¢,a%%Ls). But, § = wm, and so
by (1.10), there exists » > 0, such that

a’(k+1)s
1Q( %LI_ 2(7@1_1— )*1Q(z —'—-—L——)l,

and since the Q(z;, ) are disjoint,

k 2a*(k + 1)
P 2 Tt 2 o5 Tt R

Jj

(¢,

But, Q(z;, 22:kt1s) 5 (¢, LN 41 g0 [Q(¢, LEELL)| > (2 )m(r.5)|Q(€, LlhtLls)).

Therefore, m(r, s) < ¢ 2)".
Lemma 2.4 If§(y, z) < s then Fj(z*.s) < (2¢®)% Fj(y~.s). G; as in (1.10).
Proof: Since Q(z,s) C Q(y,2a%s). Fj(z*.s) < Fj(y~,2a%s). By (1.10). it follows that

Fi(z",s) < Fyy", 2a%) < (2a%)% Fy(y". s).

Lemma 25 If0 <e<landn€ Q = Q(cf,s), then Q(n,€s/(2a%)°) C Q(&, (1 + €)s),

Proof: If y € Q(7, es/(2a%)¢) then by (1.8), |y; — n;| < Fj(n*,es/(2a*)¢) and by (1.10) and
Lemma (2.4)

Fi(n",8) < eFj(£", 9).

Therefore, |
ly; — & < ly; — il + Ini — & < eF5(€%,8) + Fi(€7,8) = (L+ €)F5(€7,8) < F3(¢%, (L +€)s),

where in the last inequality we used (1.10).
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Proof of Theorem D.

Let @ = Q(¢,8). By Lemma (2.5), §(Q,9(1 + €)Q) > s Apply Lemma (2.3) to
r= 72—5—’)—‘0_’ to find i, ..., Z;m(rs) € Q such that: Q(zj,7/k) N Q(zn,r/k) = 0 if j # h,
Q(¢,9) C URT)Q(z,7) and m(r,s) < c(s/r)".
Note that, by (2.5), Q(z;,a’r) = Q(z;, gay) C Q(£, (1+¢€)s) = (1+€)Q. Then using
Corollary (2.2), doubling for w;, doubling for v and w; and the fact that Q(z;, 2a%s) D
Q(€,5) and Q(£,24%) D Q(z;,9),

m(r,s)
/ [l wadz < 5 f N
m(r,s)
S c Z ‘wz .’EJ, (?__—_)(Q(tj :,-) ‘/’Q(x‘r) ’ILZ'vd:c)h—l
r 1
{Wwa,)/(z, oy [Vl wrdz + m/q(zj‘r)uzvdm}
1
< D wlQUE N g ™ SgtEaT) arae U
82 T _a 2 T _a 1 2
{1111(Q(f,s))(2a25) /(1+€)Q |V aul*w dz + (2a25) w(0.9) /(1+e)Q w’vde}.

.The theorem follows if we choose b = v + 2a, since s/r = ce™'.

3 Mean value inequalities.

In this section we prove Theorem B and some other mean value inequalities. Since the
proofs are similar to the ones given by [GW2], we just point out the differences. Basically,
we have to be a little more careful in the iteration argument since there is a factor € in

Theorem D.

We asume throughout this section that:

(a.) wi, W, vV € A2 L
(3.) (b) Poincaré’s inequality, (1.17), holds for both of the pairs w1, wy and wq, v
' with some ¢ > 2 and p=1

(c) wev~t € Aw(v).

Denote R,, = Q(2o,7) X (toc — $,to+ ) andlet R=R,,, R = R,, withr/2 < p<r
and $/2 < o < s and define

(3.2)  C=c T p;2+b(38 e

2+b
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where b is given by Theorem D and c is a constant that may vary, but which only depends
on the weights and on h, where A > 1 is the index for which Theorem D holds for both

w2 and v on the left hand side.

We also write A\(Q) = w1(Q)/v(Q) and A(Q) = w2(Q)/v(Q). We start this section
with the proof of (C.1). This estimate will be important in deducing a mean value

inequality for subsolutions of (1.1).
Proof of (C.1): If u € H define
20 wt) g / 2
p(e,t) = (e, O Higls)ds + u(a,t) Hyglul, ) Flx(t 7. 7a),

where 7 € C°(R) will be specified later, t, — s <7 < 72 <t,+ s and x(¢, 7, 72) denotes
the characteristic function of (71, 72). The fact that the function ¢ is in H, follows as a
consequence of the following result: if f is a piecewise smooth function on the real line
with f € L®(—o00,00) and if v € H, then fou € H. Here we use the convention

that f(u) = 0 if w € L where L denotes the set of corner points of f (the proof follows
the steps of theorem 7.8 of [GT] and it also shows that V,(f o u) = f(u)V,u and

(f(u))e = f (u)ue). The proof of the above fact also verifies that in our case ¢ > 0 in the
H,-sense since Hy(8) = 0 for s < 0.

Since u is a subsolution, we have
(33) / [ ((AV4, V) + ugpv)dzdt <.
Note that by another limiting argument
wlr? [ Hag(s)ds) = [un? [ Hag(s)dsle = ulr')e [ Hyg(o)ds = " Hyglw)uen,
0
and then by definition of ¢, for i, < ¢t < 75,
wep = [ur? [ Hyg(sVdsl = (1°)ou || Hoglo)?ds
and
Vo = 20Va[ [ Higls)ds + uHyp(w)) + ' [Hyp(w)? Vut fig(w) V),

where far(s) = sHyp(s)? (note that V(far(u)) = far(u)Vu, since fas is piecewise smooth
with 3, € L®). If we substitute the two last equations in (3.3) we get, with Q = Q(z.,7),

/ /”[unz /UH}W (s)*ds]eodzdt + / /” P Hiyg(w)? (AVu, Va)dzdt
/ / (7)eu / H)f(s)ds]vdzdt — 2 / / (AVu, V)| / Hig(s)ds + uH g (w)?)dzdt
/ / 2 AV, V) fig(u)dzdt.
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We can drop the last term on the right since the integrand is non-negative. The second

term on the right is majorized in absolute value by
2 Y ’ ’
L[ AV, On)lanHyg(w) udzdt = 4 [ [ KAH @)1V, uHyy(w) V) | dzdt
QJn QJn
€ ™ 4 T2 B
< 4 /Q /ﬁ (AV (Hpg(u)), V(Haelw) 7’ dodt + /Q /, (AVn, Vi)u?Hp(u)?dzdt

where we used the fact that |(Az,y)| < (Az,z)Y/?(Ay,y)V/? < £(Az,z) + +=(Ay,y). If we

pick € = 1 we get
(3.4) // un/ Hiy(s)2ds]pvdzdt + = // 2(AV (Hy(w)), V(Hag(w))dzdt

8/ /; (AV 7, Vi uHyp(u)? dz:dt+/ / tu/(; HM (s)2ds]vdzdt.

IN

Choose 7 to be zero in a neighborhood of {9Q X (t, — s, + 3)} U {Q x (¢t = t, — 3)},
n=1inR,,0< n <1, |Van| < ¢/(r —p), [ne| < /(s — o) (see page 537 of [FL1]). If we
pick 7y so close to t, — s that np(z,m) =0 for all z € @), drop the second term on the left
of (3.4)(which is non-negative) and use lemma 5 of [AS] it follows that

’

u(z.m2)
(8.5) ess 3upme(t°_,,o+,)/ u(z,rz)/ Hy(8)%ds vdz
0

// w?Hpp(u —1.——_—-;)7 _a]d:cdt

If we fix , € (t, — 0,t, + 8) and 7, as before and if we drop the first term on the left of

(3.4) ( which we can see is non-negative after performing the integration) we obtain

3. 6)// YAV (Hu(u), V(H dzdt<c// W Hip(u) p)2 —|dzdt.

Letting 2 — ¢, + 8 and using (1.2) we get
2 < 277 (27 W2 Y dzdt.
(3.7) //R+ IV A(Har(w)) [Py dzdt < c//Ru o)l + s dadt
Finally note that ‘
2 _ u N _ u , u ., 2 v, 9
H(u) _»/0 (Hm(8)*) ds —/0 2Hp(s)H)py(8)ds < 2/(; sHps(s)?*ds < 2u/0 Hy(s)%ds,

since Hpr(s) < 8Hys(s). Combining this with (3.5) and (3.7), (C.1) follows with «, G, ',
Q' taken there to be r, s, p, &

Lemma 3.8 Let p > 2, R, R be as defined above and assume (3.1) holds. If u is a
subsolution of (1.1) in R, then uy is bounded in R’+ = Q(zo, p) X (to — 0,ts + 8) and
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ess supp, uf

< (p’C)ﬂT(:fz—

1 i h ?
O l)F‘-T(:;zA(Q) + 1)m#nu+(:;zw, +v)dedt,

with C as in (8.2).

Proof: Hp(u) is a function in H since v € H and Hy is a C? function with bounded
derivative. Then by Fubini’s theorem we have that Has(u(.,7)) € Hforaer € (t —
o,t, + 8). If we apply Theorem D to the function F(z) = Hpy(u(z,7)),Q = Q,and ¢ > 0
such that (1 + €)p < r and combine this with (C.1) we obtain
1
——— | H , 7)Pwy(z)dz

~bp_ L 25 ()2 w2 v h-1
5 //Ru B (G ) i
IVa(Hu(w(z, 7)) Pun(z)dz

IA

{wll()QP) '/Q(l+¢)p
'u(Qp // u?Hyg(u )(( (1+€) L sja)d:cdt}

for ae. T € (t, — 0,80 + 8).

+

Integrate with respect to T over (t, — 7,2, + ) and apply (C.1) to get

"Uz(lQp) ,/R' Hu(u(z, t))* wy(z)dzdt

e . s+o W
c

< Y@, )h-l‘un(czp) sy B =g

— Ydzdt)”.

Since /2 < p < r and s/2 < ¢ < s, by the doubling property of the weights and the
definitions of A and A, it follows that

w—z(l‘Q'S [, Hustu(z, )P wn(e)dads

———e—b L s u? Hyp(u)? t L )dzdt)
sy U B g * =)

A similar inequality holds with w; replaced by v on the left, and if we add the two

inequalities, we obtain

(3.9) / / 2"( o Q,) o ))dzdt

2 W2 v zdt)*
(Q,)( o o G + 7o

for any € such that (1+¢)p <.
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Now, note that
woy N v r? {iwo + o),
r—(1+ep? s—0o = (r—(1+ep)(s—0)

wWa v
/R;{wz(Qr) " m}dzdt s
] (5w + vhdedt ~ s{ Swa(@) + 0(@0)} & s9(Q{FAQ:) + 1},

s 2wy () + v(z) < wy(T) . v(z)
sT72ws(Qr) +v(Qr) T wa(Qr) (@)
Thus, by raising both sides of (3.9) to the power 1/h, normalizing and using the fact that

e7bh < =t we obtain

(3.10) (ﬁfﬂ H"\/!(U)gh(%ulg + v)dzdt)t*
< -b r2‘9 i ﬁ 1/h
STy g s Ty L R VIS B

) 3
ﬁr}iquM(u)z(r—zwg + v)dzdt

for any € such that (1 + €)p < r. Since ui/zx(0<u<M} < Hpr(u) and uH}W(u) < guﬁ/z, if

we let M — oo it follows by Fatou's lemma that

, ph, S , 1/h
(3.11) (%Lu+(r21ug+l)dzdt)
2 2 1
< eplet rs —S—A . 1 r A
S T T T s — o) @D gy Y

S
ijui( Sws + v)dadt,

Now, we have to iterate (3.11). Fix r, s. p, o with 7/2 < p <7 and /2 < o < s. For

s—~0o

k =1,2.... define sequences {si}ren and {7x}ren and {ex}ren by 81 = 8, 8 — Sky1 = 53

for k> 1, rm =7, rh —7rpy = 2 for k > 1, and ¢ = ;T-r%= %ﬂforkz 1. Also,
define Ry = Qi X (to — Sk, to + 8) for k > 1, where Qr = Q(z,7+). Note that B, = R and
w2y Re = R, Since 15772 < syri? < 4s772. if we apply (3.11) with p replaced by ph*-1,

p>2,and 7 = 7, p = Tkyqy and € = €ry1 (note that (1 + €x41)7r41 < ), we obtain

(#R uﬁhh(%wz + v)cl:cdt)fr
k+1
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< {elph*) e ri

‘ —_— 1/hy 5 Lo
6k+1(7‘ = (1 + €k+1)mh+1) (8K — Skt )( 2 (Qr)+1)( + 1)V/AymT

A(‘? )

{7% A l(——'wz + 'v)dzdt}"‘lT

But note that

-5 T3Sk

it [T — (1 + €x41) "'k+1]2(3k — Sk+1)

2+b

e r2s; 78
o(k+1)b__ "k+1 k < 2(3+b)k <C2(3+b)k,

(r—n)° (52 %%VV")— (r—p)**¥s—0) ~
where C is given by (3.2). Thus,

(3.12) (ff; uﬁhh(%wz + v)dzdt)ff
+1

< {C(Eh*)25NSAQ0) + 1"%(0 )

{#R uihb_l(-:—zwz + v)d:z:dt}i"l—_l.
k
If we iterate (3.12), we obtain

P
ess supg, u}

,,1:[1{0 ph*-1)22(3+°>'=( —A(Q.) + e W +1) l/h}m‘-—lffRui(:;zw, + v)dzdt.

Since T2, 7t = 72y and TR, mir = (2)? it follows that

2

ess supg, w% < (FC)PT(FAQ.) + D7T(S +1)h°l-—1#Rui(%wz+v)dzdt,

L
Q)
and this proves the lemma. Note that if we apply the above result for p = 2, it follows
that u, is bounded on R’+.

Proof of Theorem B: By Lemma (3.8) we know that u, is bounded in Q14¢), X (to —
0,to+3) for all e such that (1+€)p < r. If we define F(z) = uiﬂ(:c, 7) then F € I;T(Q(Hc)p)

for a.e. T € (t, — 0,t, + 3) and if we follow the proof of lemma (3.8) using (C.2) instead

of (C.1), we get (see the comments in the introduction)
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rt 1 18 A s
€ss SUPR' ’u < Cw#1 R (:m + 1)"1—‘ (T—ZA(Q) + l)ﬁ—_'#aug_(r—zwg + v)d:z:dt

for p > 2. For 0 < p < 2, define I, and I, as in lemma (3.4) of [GW2]. The only
difference in our case is that

1
‘ (a—a')?*(8 - f)
if § < a <a<1and 1< B8 < B < 1. Thus, arguing as in lemma (3.4) of [GW2] we

Io(a,8)? < ef VT I(a, B)?

prove that if u is a solution of (1.1) and p > 0 then

(3.13) ess supR;ui < D(%/\(I—Q) +1)%= (: A(Q) +1)FT %u‘-’ (%wz + v)dzdt,

where D is as in Theorem B.
If we apply (3.13) to both u and —u, we obtain Theorem B of the introduction, with
a.B.a', B taken there to be r, s, p, @

In order to prove Harnack’s inequality we need a mean value inequality for u? when
—o0 < p < oo and u is a non-negative solution.

We begin by noting that if we use (C.3) instead of (C.1) we can prove the following
analogue of (3.11): '

Lemma 3.14 Suppose (8.1) holds, 0 < m < u(z,t) < M <o inR=R,,, 7/2<p<T,
s/2<o<sande>0,(1+e)p<r. Then ifp> 1 and uis a subsolution in R. or if

p <0 and u s a supersolution in R,

Lph Wo v d /h
(ﬁi: (wg(Q,) + —U(Qr))dz 1t)!

2 p r 1

-b rs p_ s r 1/h

< T A A o e T g Y

j%?up(pflng-}-v)dzdt.

Moreover, if 0 < p <1 and u i3 a supersolution in R, then
wPh(—2 dedt)/h

S, ™t + w0
< cet s P ) +1 _p 1 1)/
S o e e e L A e PP TR

p s
7%{11”( p—1] Zw v)dzdt.
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Both inequalities are still true if we replace the integral averages on the right by the larger

integral average

#Rup(m + m)dzdt.

Theorem 3.15 Assume (3.1) holds, 7,8 > 0, 7/2 < p< T, 8/2< o < s. Ifu is'a non
negative solution of (1.1) in R, then for p >0

ess supp u’

< CAQ) + VR s + DR (e e,

and forp< 0

ess supgy u®
+

W2

(QR) (QR)

< CR(plFAQ) + )7 (|p| (Q) 1>ﬁ#uﬂ<w2

where C is given by (8.2).

)dzdt,

Proof: In Lemma (3.17) of [GW2] we replace (3.20) by the result given here in Lemma
(3.14) and then argue as in Lemma (3.17) of [GW2].

4 Proof of Theorem E

We start with the following lemma.

Lemma 4.1 Suppose Q = Q(&,7) and ¢ is a C? functzon such that ¢ = 1 in kQ
Q(&kr),0<k<1,0<¢p <1, suppp C Q and

(4.2) p(z)p(H(to, 2,y)) < p(H(t,2,y))

forallz, y, ¢t t, with 0 <t <t, Ifuisa Lipschitz function,
E={z € Q(¢, kr)v :u(z) =0} and |E| > B|Q| for some 0 < B < 1, then ifz € Q,

(4.3) lu(2)le(z) < C/ IVau(2)[ye(2) 1Q(z, z:)z))l

where ¢ is independent of Q, u,
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Proof: (The general outline of this proof follows the steps.of the proof of lemma 4.3 in
[FS].) Ifz € Q = Q{¢, ) then Q(¢,7) C Q(z,2a’r) é.nd Q(z,7) C Q(¢,2a%r). Therefore,
by doubling, |Q(z,r)| ~ |Q|- Now, we note that there exists ¢ € {—1,1}" such that
|ENQ°(z,2a%)| > ¢B|Q%(z,2a%r)|. In fact, E = U,(Q°(z,2a%r) N E) and so there exists
o such that

(4-4) 1Q7(z,2a%r) N E| 2 B27"|Q| 2 ¢B|Q" (2, 2a’r)].

We also claim that there exists a, ¢ € R", independent of zand 7, 0 < ¢; < o, j = 1,..., m,
such that
(4.5) |E N Q°(x,2a%r) N H(2a®r,z, A%(0))| > —|Q"(:c 2a%r)|.

To prove this fact, apply (1.14) to v = Ezé and find a,e € R*, 0 <¢; < aj, 3 =1,...,n,

such that
|H(2a*r, z, A%(a)) N Q(z, 2a%T)| > (1 — E§)|Q"(:c,2a2r)|.
Then,
1Q° (2, 2a%r)| > [(Q°(z,2a%r) N E) | J(Q°(z, 2a%r) N H(...))]
= |Q°(z,2a%r) N E| +|Q°(z,2a*r) N H(...)| — |E N Q°(z,2a%r) N H(...)]
> 1Q(z,2a%r)|(cB+1— ﬁ) |E N Q°(z,2a%r) N H(...)]

and therefore the claim follows.

We can assume ¢ € E and define 3, = {y € A¥(o) : H(2a’r,z,y) € E}. Let K
be a smooth function supported in AE/Z(U), 0 < K<1 K =1on A%(c). Suppose
u € Lip(Q). If y € 3 then

lu(z)|\p(z) = |u(z) — u(H(2d’r, 2,3))|K (¥)/¢(2),
and if we integrate on Y, we obtain
lu(z)lVe(2)| | = /2 lu(z) — u(H (2a?r,z,9))| K (y)/p(z)dy.

Now wenote that p(H(2a%r,z,y)) = 1ify € ¥ and using (4.2) weget o(z) < p(H(t,z,y))
for any 0 < ¢t < 2a?r. Therefore,

lu(z)lye(z) 22 I</ /0 S (u(H(t,z,¥))dtl o (H(t,z,9))
< /:uwxi/: '<VU(H(t,w,y)),H(t,z,y))dtl\/p(H(t,z,y))dy
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If we make change of variables z = H(t,z,y) in Alj(s), then |det 8‘(t z,y)| =
I3 Jo Xi(H(s, 2, y))ds For y € Al%(0), the last product is equivalent to |Q(z,t)| by
(1.15). Hence,

(46) z)u/so(z <= [

Note that there exists ¢ > 0 such that H(t, z, A2%(0)) C Q(z, ct). In fact, if we define
7(s) = H(s/lyl,z,y) then

au(z z)dzdt.
@ t)| H(”Am(a))l (2)IVe(2)

n

<*r(s),£>’={ZAj(H(|Z|, WY ,2 _ZV 2,7))€ —ZA ()€

J=1
V¢ € R™. So, < is a A-subunit curve starting from z and attaining H(t, z,y) at the time
8 = t|y|. Therefore by (1.9), '

6(z, H(t,z,y)) < ad(z, H(t,z,y)) < atly| < ct

where ¢ = 2aa

Thus, from (4.6), we obtain

lu(z) /i (e) < < / e 2)|Vp(z)dzdt

and, interchanging the order of integration and using the fact that suppp C @ (the

Q= cz)

argument we are going to present next is due to Chanillo, Sawyer and Wheeden), we get

c oo dt
) u@Vel@) < 7 [ IVs@We [ ot

We claim that’ To prove this we note that, by (1.8), 2 28l =

co __ dt ch
h Q=0 S SRl
I17-; Fj(z*,t), and consequently by (1.10), there exists € > 0 such that if ¢ > 7 then

Q.0 (21900

T

Hence,

/°° dt _ /°° dt < © h (h) at _ h

w Q0] Jon Q@D ¢ = Jn Q@A) ¢ QR

Finally, we note that |3 | > ¢ > 0, with ¢ independent of z, since, by the change of
variables z = H(2a%r, z,y),
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1
lZF&@EAmdmmmw“

|H(2a’r,z,¥)| _ |EN H(2a%r, z,A%(0)]) |Q°(z, 2a%r)|
Q2 —  QE2a] =P Q24| 2

The lemma follows by combining the last two last estimates with (4.7).

c>0.

Proof of Theorem E.

Define T f(z) = [za f(y)K(z,y)dy, where K(z,y) = m Fix S a d-ball. In
order to show that for a pair of weights v. w we have ||T f||r2s.5) < ||fllz2(s.w) (where

| fllz2(s.a) = (Js f29)!/?) for all f > 0. suppf C S. according to [SW]. we need to verify

that the following conditions hold:

(a) there exists s > 1 such that

0°® JT )% %
(I)III(UI °dz)? IIl wde) Le¢

for all d-balls I C 2S5, where ¢(I) is defined to be
p(I) = sup{K(z,y) : z.y € I.d(z,y) —T(I)}

(b) thereis € > 0 such that
- e,

3
-
3
2
~
=

for all pairs of d-balls I' C 1.

Note that it is convenient to work with d since the results of [SW] hold for pseudo-
metrics (a pseudo-metric d is a quasi-metric satisfying d(z, y) = d(y, z) for all z, y € R™).
Define ¥ = ;5 and & = 7(S)2. Note that if z,y € I and d(z,y) > 3r(I), then

(5)
by (1.9)
6(:: Y) 2ar(I) r(I)
K9 = 106 560 = 0t 201 = Rz rO)
and sinqe z € I, |Q(z,7(I))| ~ |I|. Therefore,

r(J)
(p(I) < clTl.
So, the expression in (a) is bounded by
.x. 1 e )
SN [ ‘U|Jm(f“’)¢)

r(I), 1 oy
r(S)(lll z(v(S) |Il /;(w (S))
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which is equivalent to the expression in condition (1.18) (if we use doubling and (1.9)).
This proves (a). .

To show (b) we note that if z,y € I and d(z,y) > 37(I) then

(20)r(D) (D)
[QCz,2er(D) = 1

Thus ¢(I) ~ Zf. Then,if I' C I, £} ~ =D Il 414 we obtain (b) with € = 1.

K(z,y) 2

Y e(I') T (1) I
By doubling and (1.9), it follows that

lleIIm(Q,a) < ¢l fllz2Q.m)

for all f > 0, suppf C Q, where ¥ = ;55 and W = w:EQ)T(Q)z'

Suppose u is a Lipschitz function in Q and |E| = |{z € Q(¢,kr) : u(z) = 0} > A|Q|,
1/2 < k < 1. If we combine lemma (4.1) and the fact that ||Tf||z2(q,5) < cl|fllz2(@.5) We

obtain

1 2 L
(48) / [u(z)p(z)o(z)dz)t < er(@)(pmrs [ 1) Pl ()dz)t.

Given Q and a general Lipschitz function u, there is a numbef p = p(w, Q), the median
of uin @, such that if Q* = {z € Q : u(z) > p} and Q- = {z €.Q : u(z) < p} then
Q] > Ll and |Q7] > &l Hence, u; = maz{u— p.(u,kQ) 0} and up; = maz{p(u, kQ) —
u, 0} satisfy the hypothesis of Lemma (4.1) for some 3 depending on k and so if we apply
(4.8) to u; and u; and add both iﬁequalities, we get ‘

@9) [ lux) = wple)rialis < @ oDk [ [Vsals)Pplaun(s)ds
Finally, it is easy to see that in (4.9) p can be replaced by the average Ag of u defined

in Theorem E. In fact,
(410) L |u(m)—Ao|’so(x)v(z)dz
< 2 [ fu(@) - wle()o(e)dz +2 | In— Aglp(z)v(a)da,
and
A Aolzw(z)v(w)dz = (¢0)(@n~ Aof
()@l = s [ we)ele)isl’ < (p0)(@( s / [u(2) = plip(2)dz)?

< j;’;’Q()Q) ,1u(a) = wfg*(@u(a)iz |

1
v(_z)d.’b,
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where in the last inequality we used Schwarz’s inequality. Since v € A2 and 0 < ¢ < 1, it
follows from (4.9) and (4.10) that

"y

. tule) — Aol (oo >dx

IQI zZ)w Z.
L 28 [ 1)tz (2)d

This finishes the proof of Theorem E if we note that p(Q) ~ |Q| since 1/2 < k < 1.

The next corollary is also helpful.

Corollary 4.11 Theorem E is also true with Aq = qu upvde.

Just note that

/Q It~ Aq|Ppvdz = (9v)(Q)| — Aq)?
< (sov)(Q)l((p—v;@ [ = wipvdal? < [ 1n uPpuda,

where the last inequality follows by Schwarz’s inequality.

5 Harnack’s inequality

The proof of Theorem A follows as an application of Bombieri's lemma which we state

next. For its proof see section 5 of [GW2].

Lemma 5.1 Let R(p) be a one parameter family of rectangles in R™*', R(c) C R(p),
1/2 <o < p<1andlet v be a doubling measure in R™'. Let A, u, M, m, 0 and x be
positive constents such that M > %‘ and suppose that f is a positive measurable function

defined in a neighborhood of R(1) satisfying

5.2 - z)dzdt
(5.2) ess supp(s) f¥ < ) T
forallo, p,p,1/2<8<0<p<1,0<p<M and

(5.3) v({(z,8) € R(1) : log f > s}) < (5)"w(R(1))

for all s > 0. Then there is a constant v = y(A, m, k) > 0 such that

log(ess suppgyu) < (—1-—_7—0)—2;1-#.
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Hence, in order to i)rove Theorem A, we need a mean value inequality (that we proved
in section 3) and a logarithm estimate which is given by Theorem F (some steps of its
proof we will present in this section). The next lemma shows that the test function
described on page 537 of [FL1] satisfies the conditions of Theorem E. Then, as we said
before, the proof of Theorem (F) follows as Lemma (4.9) of [GW2].

Lemma 5.4 Given Q = Q(¢,7) and 0 < k < 1, there ezists p € C' such that p=1in

kQ; 0< p < 1, suppp C Q; Ivt\(PI < ,-(1+k) and (p(:D)(P(H(to,d:, y)) < (P(H(ta z, y)) fO’l" all
z, Yy, t, to with0 <t<t,.

Proof: Consider the function ¢ given by [FL1], page 537:

o(z) = IM%)

where ¥ € C*(R), 0 < ¥ < 1, ¥(t) = ¥(—t), ¥ =1 on [—k, k], ¥ = 0 outside | — 1, 1|,
['(t)| < 2(1 — k)72, for all t € R. Here, we show that ¢ satisfies the last condition since
all the others are proved in [FL1], page 537. »

Fixt,0 <t < t,, z and y. Define z = H(¢t, z,y). Then, z; = z;+y; [3 X;(H(s,z,y))ds.
Suppose z; — €; > 0. If y; > 0 then

|zj = &il <=5 — & + v /Otu Aj(H(s,z,y))ds = Hj(to, z,y) = &5
On the other hand, if y; < 0,
|z — &1 < |z5 = &l
Thus, if z; — €5 > 0 then |z; — | < |Hj(to,2,y) — & or |2; — &| < |z; — §;|. The same
holds if z; — £; < 0. Since 9(t) canjﬂbg chosen to be non-increasing for positive ¢, then
¢(z) 2 ay...0,, where a; = 1/)(%‘(;—:3-';])-) ora; = p(Hillerlobily gince 0 < <1,

Fj(é*r)
|H.‘i(t°’x’y)_€j| |z.‘i_EJ.|
Fen PEEn

a; > P( )

for 1 < j < n. Therefore,

p(2) > p(z)p(H(to; 2, 9))-

The next 3 lemmas are needed in order to show that the hypothesis in Theorem A

imply those in Theorems D and E.
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Lemma 5.5 Assume that Poincaré’s inequality holds for wy, we with ¢ =2 and p = 1.
Then
2 wa(1) < c“’l(I)
we(B) T wy(B)
for any pair of §-balls I, B, with I C 2B.

Proof: Suppose I = Q(u,,7(I)) and B = Q(z,r(B)) and define
|u] (o)l
= % ey et

where ¢ is the function described in lemma (5.4) associated with I ( as opposed to B)

and k = 1/2. Ifu € I, by (1.8)

OF: r(I) dp
|3uk‘")l S Bl (D) T Bugcmr),

for k € {1,...n}, and using the fact that A\e(u) = A (w*) < Ae(H(uw*, 7(1))) if u € T we get

|/\ aF Fk(u*t"‘(I))
{5 Fe(ug,r(1))

and by lemma (2.4) and the fact that |Vyp| < ¢/r(I) we have |VF(u)| < cx;.

9F ) < +nr(DXlu) 3 ()

We have Poincaré’s inequality for F, i.e.,

(5.6) : (ﬁ\/n#”"B |F(u) — avn4q+|BF|2w2(u)du)1/z
< er(B)( L/ |V A F(w)] 2w, (u)du)/?,

wq(B) Jrazant1p

where 7 = max;j1.{G;}. The right side of (5.6) is bounded by cr(B)(ZE)¥/? by
doubling and the fact that |[V,F| < cx;. Now, if u € };I there exists k € {1,...,n} such
that |ur — (wo)k| > Fr(uZ, ir(I)) and theﬁ if u € 3$I/31 (note that p(u) = 1)

Fi(ug, 3r(1)) L 1
(5.7) F(u) 2 WT(I) 2 (Z)G r(I) 2 r().

Also, ifu € I, F(u) < nr(I) and therefore

0’4

]
T n 4"’“IBI

But, by (1.10), Fj(z%,nd™'r(B)) > 2n4"Fj(z%,2r(B)), and by (1.11), [n4"B| >
(2n4™)*|2B| > 2n4"|2B|. Hence. since I C 2B, av,gt15F < 2D and then if u € /i1

2.4

nr(I).

aVpgni1 gF <

(using also (5.7)),
|F (1) — avpgnt1F| > er(I).

Therefore, the left hand side of (5.6) is larger than a constant times ‘
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’

() L Lpna s gy 22Dy
@G 2 D)

where in the last inequality we used the fact that wy(3I\11) ~ ~ wy(I), which is s shown in
the next lemma.
Lemma 5.8 Ifw is a doubling weight then w(Q(u,28)\Q(u, 8)) i3 equivalent to w(Q(u, s)).
Proof: Choose 7 € Q(u, 23) such that §(u,7) = L. By Lemma 2.5,
- Jes 3s
Qn, m) CQw1+97)
forany 0 < e< 1.
Choose  such that 8(u,7) = p3(u*, In; = us). Then, if y € Q(1, zihye),
3s . 3es
Fi(w*, ) = Imj — uj| < |nj — 93l + lys — ws| < Fy(n", m) +lyi — "jl-’
By (1.10) and Lemma 2.4,
. 38 » 38
Fi(u, 5) < eFj(u, 5) + |95 — w3l
Thus,
. 38 3s
lyi = usl 2 (1 - ) F(w*, 5) 2 Fi(v", (1 - ¢) 7).

If we choose € = 1/3 we have proved that

Q. rp0357) € Qw,26)\Q(us )

(
The lemma follows by doubling.

Lemma 5.9 If w; € A, v € A, and Poincaré’s inequality holds for w,, v with q =2
and p =1, then condition (1.21) holds.

Proof: If v € A, there exists s > 1 such that

L (2 yeggyre < 220D
G [y ™ < ey

So, since Poincaré’s inequality holds for w;, v with ¢ = 2, by Lemma 5.5

15 1 wl(I)
(r(B |I|/1(v " < (B
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and the above condition is equivalent to condition (1.18) since w; € A,.

Now we are ready to prove Theorem A.

Proof of Theorem A

Let u be a non-negative solution of (1.1) in the cylinder Rog = Rop(zo,ts) =
Q(zo,@) X (to — B,to + B). If we define T(z,t) = (z, Bt + to) and @(z,t) = w(T(z,t)) .

then u is a solution in R4 (0, 0) of the equation
v(z) @, = div(A(z,t)Va),

where the coefficients matrix A = (@;;) is defined by @;j(z, t) = Baij(z, Bt+1t,) and satisfies
the degeneracy condition
w(z) Y M(2)€F < D di(=, t)6ik; < a(z) Y Ni(2)€,
j=1 =1 j=1
if we put w; = Bw;, for ¢ =1, 2. _
Suppose [pl < [@~?A(Q(z0,)) + a?/A(Q(zer @), where A(Q) = @(Q)/2(Q),
XQ) = @(Q)/v(Q). Wite

(p+1)a 1 p 1
)x(=3-5 -3+

P
3 3)

2

R™(p) = Q(=z.,

R*(p) = Qla, (”J;”“) «<(G-21)

If we take 1/2 < p < 7 < 1 then the mean value inequalities in Theorem (3.15) applied

to u give

—p 1 _p ‘u—)z v
(5.10) ess supp-(,)u® < CW//‘(r)u (_—tﬁz(Qa) + 002 )dzdt,

for some m > 0, if p > 0, where Q. = Q(z., @), and

. —p '11)2
(5.11) €88 SUPp+(p) P < c——(r - //12+(r) wz( 3 (Qa))dmdt

if p < 0. Moreover, by Theorem B, % is locally bounded and by adding € > 0, we may
assume by letting e — 0 at the end of the proof that % is bounded below in R 1(zo,0)

by a positive constant.
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Now, by Theorem F, we have

v Wa +

('512) [( 'U(Q(a) + Wz(Qa)) ® 1](E )
vaa) a2 3 la-z- a2_ 1 K
{3 u—)l(Qa) } —<- c{s[ A(Qa) + A(Qa)]} )

and the same inequality holds for E~, where E*, E~ are defined in Theorem F with
u=1u, R= %a, a=-1,b=1,t =0, My >~ A(Qa)/ .

By (5.10) and (5.12), we can apply Bombieri’s lemma to the family of rectangles R~ (p)
with p = a?A(Qa(z.)) + @?/XN(Qalzo)), M = 1/p and f = e~M2+V(0g, obtaining

€88 supR-(l/z)f S Cec[a_zﬂ(Qa)+az/:\(Qa)]’

and this implies that
(5.13) €8s supp-(1/2)% < Cecla™*MQ(z0,0))+0?/X(Q(z0,0))] o~V (0)

Also, by (5.11) and (5.12), we can apply Bombieri’s lemma to the family of rectangles
R*(p), f = e M2=VOg~1 with u, M, M, and V(0) as before, and we obtain

T ess supR+(1/2) f S Ce‘:[“_gx(Qa)i-cﬁ/x(Qa)]’

which implies that

(5'14) e—V(O) < Cec[a"ﬂ(Q(wo,a))+a3/i(Q(z°,a))]ess infR*(l/z)ﬁ"

Combining (5.13) and (5.14) it follows that

ess SUpp-(1/2)% < crecle Ao +a?/ X Q0N g infre(1/2)%-

Since, T(R™(1/2)) = R~. T(R*(1/2)) = R* and a ?A(Qa) + */N(Qa) = a 2BA(Qq) +
a?B71/X(Q.), Theorem A follows.

Remark: Using the equivalence between d and § we can prove the following analogues of

Theorem A and B for the metric d.

THEOREM A": Assume (i), (ii), (iii) of Theorem A. If u is a non-xiegative solution of
(1.1) in the cylinder R = S(zo,aa?) x (to — B, to + ), then

ess supp-u < crezp{cy[a 2BA(S(z0, @)) + &*B7A(S(z0, @) ]}ess infriu
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where R~ = S(zo,a/2) X (to — 38/4,t0 — B/4), Rt = S(z0,/2) x (to + B/4,t0 + B),
A(S) = w3(S)/v(S) and A(S) = wy(S)/v(S) for a d-ball S. Here the constants c;,c.

depend only on the constants which arise in (i), (ii), (iii).

THEOREM B': Assume hypothesis (i), (ii), (iii) of Theorem A hold. Let 0 < p < oo,
a,B>0 a/2<a <a B/2<f <pBand let S(zo,a) = S, S(zo,a’) = S’ and
R(a,B) = § x (to— B, to+B), Ry(a,8) = S x (to— B, to+ B). If u is a solution of (1.1)
in R(a%a, B), then u is bounded in R/ (a, ) and

€ess supR;(a'ﬁ)|u|p

< D(a?B7A(S)™ + 1)V V(a2 BA(S) + 1)"/“'-1)#&(02“ P + v)dzdt

where D is as in Theorem B,and C = c(aTa'c;:_::%:E")" Here h > 1, ¢ >0 and b > 0 are

constants which are independent of u, p, a,a’, 3, B".
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