MEAN VALUE AND HARNACK INEQUALITIES FOR A CERTAIN CLASS OF DEGENERATE PARABOLIC EQUATIONS

JOSE C. FERNANDEZ¹

1 Introduction

In this paper we study the behavior of solutions of degenerate parabolic equations of the form

(1.1)
$$v(x)u_t(x,t) = \sum_{i,j=1}^n D_{x_i}(a_{ij}(x,t)D_{x_j}u(x,t)),$$

where the coefficients are measurable functions, and the coefficient matrix $A = (a_{ij})$ is symmetric and satisfies

(1.2)
$$w_1(x) \sum_{j=1}^n \lambda_j^2(x) \xi_j^2 \leq \sum_{i,j=1}^n a_{ij}(x,t) \xi_i \xi_j \leq w_2(x) \sum_{j=1}^n \lambda_j^2(x) \xi_j^2$$

for $\xi = (\xi_1, ..., \xi_n) \in \mathbb{R}^n$ and $(x, t) \in \Omega \times (a, b)$, Ω a bounded open set in \mathbb{R}^n .

We are going to assume some conditions on the weights (non-negative functions that are locally integrable) v, w_1, w_2 and on the functions λ_j , j = 1, ..., n, in order to be able to derive mean value and Harnack inequalities for solutions of (1.1). The assumptions on λ_j , which we list below, are the ones stated in [FL2].

(1.3) $\lambda_1 \equiv 1, \lambda_j(x) = \lambda_j(x_1, ..., x_{j-1}), j = 2, ..., n, \forall x \in \mathbb{R}^n$.

(1.4) Let $\Pi = \{x \in \mathbb{R}^n : \Pi x_k = 0\}$. Then $\lambda_j \in C(\mathbb{R}^n) \cap C^1(\mathbb{R}^n \setminus \Pi)$ and $0 < \lambda_j(x) \le \Lambda$, $\forall x \in \mathbb{R}^n \setminus \Pi, j = 1, ..., n$.

(1.5)
$$\lambda_j(x_1, ..., x_i, ..., x_{j-1}) = \lambda_j(x_1, ..., -x_i, ..., x_{j-1})$$
, for $j = 2, ..., n$ and $i = 1, ..., j - 1$.

(1.6) There is a family of n(n-1)/2 non-negative numbers $\rho_{j,i}$ such that $0 \le x_i(D_{x_i}\lambda_j)(x) \le \rho_{j,i}\lambda_j(x)$, for $2 \le j \le n, 1 \le i \le j-1$ and $\forall x \in \mathbb{R}^n \setminus \prod$.

¹This work was supported by FAPESP- Fundação de Amparo à Pesquisa do Estado de São Paulo-Brazil.

Denote $\Gamma = \Omega \times (a, b)$ and define $H = H(\Gamma)$ to be the closure of $Lip(\Gamma)$ under the norm

(1.7)
$$\|u\|^{2} = \iint_{\Gamma} u^{2}(x,t)(v(x)+w_{2}(x))dxdt + \iint_{\Gamma} |\nabla_{\lambda}u(x,t)|^{2}w_{2}(x)dxdt + \iint_{\Gamma} u^{2}_{t}(x,t)v(x)dxdt,$$

where $\nabla_{\lambda} u = (\lambda_1 D_{x_1} u, ..., \lambda_n D_{x_n} u)$. Thus, $H(\Gamma)$ is the collection of all (n + 2)-triples (u, β, B) such that there exists $u_k \in Lip(\Gamma)$ with $u_k \longrightarrow u$, $\nabla_{\lambda} u_k \longrightarrow \beta$, $(u_k)_t \longrightarrow B$, the convergence being in the appropriate L^2 space. We need to verify that β is uniquely determined and for this it is enough to show that for every $F \in C_{\circ}^{\infty}(\Gamma)$, $\int_{\Gamma} u \nabla_{\lambda} F = -\int_{\Gamma} \beta F$. In order to prove this, note that since $u \in H$, there exists $\{u_k\} \subset Lip(\Gamma)$ such that $u_k \longrightarrow u$ in H. Then, by (1.3),

$$\int_{\Gamma} u_k \lambda_i \frac{\partial F}{\partial x_i} = -\int_{\Gamma} \frac{\partial}{\partial x_i} (u_k \lambda_i) F = -\int_{\Gamma} \lambda_i \frac{\partial u_k}{\partial x_i} F$$

Therefore,

$$\int_{\Gamma} u_k \nabla_{\lambda} F = - \int_{\Gamma} (\nabla_{\lambda} u_k) F.$$

By Schwarz's inequality and assuming that $w_2^{-1} \in L^1_{loc}$,

$$\begin{split} &|\int_{\Gamma} u_{k} \nabla_{\lambda} F - \int_{\Gamma} u \nabla_{\lambda} F| \leq \int_{\Gamma} |u_{k} - u| w_{2}^{1/2} |\nabla_{\lambda} F| w_{2}^{-1/2} \\ \leq & \|u_{k} - u\|_{L^{2}_{w_{2}}} (\int_{\Gamma} |\nabla_{\lambda} F|^{2} w_{2}^{-1})^{1/2} \leq c \|u_{k} - u\|_{L^{2}_{w_{2}}}. \end{split}$$

Hence, $\int_{\Gamma} u_k \nabla_{\lambda} F \longrightarrow \int_{\Gamma} u \nabla_{\lambda} F$ and similarly we can show $\int_{\Gamma} (\nabla_{\lambda} u_k) F \longrightarrow \int_{\Omega} \beta F$. In the same way we prove *B* is uniquely determined, if $v^{-1} \in L^1_{loc}$. We also define $H_o(\Gamma)$ to be the closure of $Lip_o(\Gamma)$, Lipschitz functions with compact support in Γ , under the norm defined in (1.7). It is easy to see that the bilinear form *b* on $Lip(\Gamma) \cap H(\Gamma)$ defined by

$$b(u,\phi) = \iint_{\Gamma} \{u_t \phi v + \langle A \nabla u, \nabla \phi \rangle \} dx dt$$

can be continued to all of $H(\Gamma)$ (here and in the rest of the paper the vector ∇u is understood to be the vector $(\frac{1}{\lambda_1}\beta_1, ..., \frac{1}{\lambda_n}\beta_n)$ where $\nabla_{\lambda}u = (\beta_1, ..., \beta_n)$). We say $u \in H(\Gamma)$ is a solution of (1.1) if $b(u, \phi) = 0$ for any $\phi \in H_0$; $u \in H(\Gamma)$ is a subsolution if $b(u, \phi) \leq 0$ for any $\phi \in H_0(\Gamma)$, ϕ positive in the H-sense, i.e., ϕ can be approximated in $H(\Gamma)$ by positive functions with compact support in Γ ; $u \in H(\Gamma)$ is a supersolution if $b(u, \phi) \geq 0$ for any $\phi \in H_0$, ϕ positive in the H-sense.

We also define $\tilde{H} = \tilde{H}(\Omega)$ to be the closure of $Lip(\Omega)$ under the norm

$$|||u|||^2 = \int_{\Omega} u^2(x)(v(x) + w_2(x))dx + \int_{\Omega} |\nabla_{\lambda} u(x)|^2 w_2(x)dx,$$

and $H_{\circ}(\Omega)$ to be the closure of $Lip_{\circ}(\Omega)$ under the norm defined above.

Next we will define a natural distance (associated with the functions λ_j , j = 1, ..., n) and state some of its properties. This metric was first introduced by [FL1].

A vector $v \in \mathbb{R}^n$ is called a λ -subunit vector at a point x if $\langle v, \xi \rangle^2 \leq \sum \lambda_j^2(x)\xi_j^2$, $\forall \xi \in \mathbb{R}^n$. An absolutely continuous curve $\gamma : [0,T] \longrightarrow \mathbb{R}^n$ is called a λ -subunit curve if $\dot{\gamma}(t)$ is a λ -subunit vector at $\gamma(t)$ for a.e. $t \in [0,T]$.

For any $x, y \in \mathbb{R}^n$ we define $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^+$ by

$$d(x, y) = \inf\{T \in R_+: \text{ there exists a } \lambda \text{-subunit curve } \gamma : [0, T] \longrightarrow R^n \text{ with } \gamma(0) = x,$$

 $\gamma(T) = y\}.$

One can check that this is a well-defined metric. There is a quasi-metric δ (a function $\delta: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^+$ is called a quasi-metric if there exists $M \geq 1$ such that $\delta(x, y) \leq M\{\delta(x, z) + \delta(z, y)\}$ for all $x, y, z \in \mathbb{R}^n$) equivalent to d, and sometimes easier to work with than d (see [FL2]). If $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$ put $H_o(x, t) = x$ and $H_{k+1}(x, t) = H_k(x, t) + t\lambda_{k+1}(H_k(x, t))e_{k+1}$ for k = 0, ..., n-1, where $\{e_k\}$ is the standard basis in \mathbb{R}^n . Define $\varphi_j(x^*, .) = (F_j(x^*, .))^{-1}$, the inverse function of $F_j(x^*, .)$, where $F_j(x, s) = s\lambda_j(H_{j-1}(x, s))$, for j = 1, ..., n and $x^* = (|x_1|, ..., |x_n|)$.

We define $\delta: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^+$ as

$$\delta(\boldsymbol{x}, \boldsymbol{y}) = Max_{j=1,\dots,n}\varphi_j(\boldsymbol{x}^\star, |\boldsymbol{x}_j - \boldsymbol{y}_j|)$$

Note that,

(1.8) $\delta(x, y) < s$ is equivalent to $|x_j - y_j| < F_j(x^*, s), 1 \le j \le n$.

In (1.9), (1.10), (1.11) below we state some basic facts concerning δ and d (see also [FL2]).

(1.9) There exists $a \ge 1$ such that for any $x, y \in \mathbb{R}^n$,

$$a^{-1} \leq \frac{d(x,y)}{\delta(x,y)} \leq a.$$

Consequently, δ is a quasi-metric with $\delta(x, y) \leq a^2[\delta(x, y) + \delta(z, y)]$ and $\delta(x, y) \leq a^2\delta(y, x)$. (1.10) For any $x \in \mathbb{R}^n$, s > 0 and $\theta \in]0, 1[$

$$heta^{G_j} \leq rac{F_j(x^\star, heta s)}{F_j(x^\star, s)} \leq heta$$

where $G_1 = 1$ and $G_j = 1 + \sum_{l=1}^{j-1} G_l \rho_{j,l}$, for j = 2, ..., n.

(1.11) We denote $S(x,r) = \{y \in \mathbb{R}^n : d(x,y) < r\}$ and $Q(x,r) = \{y \in \mathbb{R}^n : \delta(x,y) < r\}$ and we will call S(x,r) a d-ball and Q(x,r) a δ -ball. Note that there is a constant A > 1such that $|S(x,2r)| \le A|S(x,r)|$ and $|Q(x,2r)| \le A|Q(x,r)|$, where | | denotes Lebesgue measure. Also, by (1.8), $|Q(x,r)| = \prod_{j=1}^n F_j(x^*,r)$. If Q = Q(x,r), we write r = r(Q).

In general we say that a non-negative and locally integrable function w(x) is a doubling weight $(w \in D)$ if there exists a constant A > 1 such that $w(2Q) \leq Aw(Q)$ for any δ -ball Q, where 2Q = Q(x, 2r), if Q = Q(x, r) and $w(Q) = \int_Q w(x) dx$.

(1.12) If $w \in D$ then there exists $\alpha > 0$ such that, $\forall r > 0, \forall \theta \in]0,1], \forall x \in \mathbb{R}^n$, $w(Q(x,\theta r)) \geq \theta^{\alpha} w(Q(x,r)).$

Given $1 , we say <math>w \in A_p$ if there is a constant c > 0 such that for all δ -balls Q in \mathbb{R}^n ,

(1.13)
$$(\frac{1}{|Q|} \int_Q w(x) dx) (\frac{1}{|Q|} \int_Q w(x)^{-1/p-1} dx)^{p-1} \leq c.$$

Note that if we have the A_p condition with respect to δ , we have the same condition holding for the metric d, i.e. (1.13) holds with Q replaced by S (using doubling and the equivalence between d an δ). If v is a weight, $w \in A_p(v)$ means an analogous inequality holds with dx and |Q| replaced by v(x)dx and v(Q), respectively. We use the notation $A_{\infty}(v) = \bigcup_{p>1} A_p(v)$. The theory of weights in homogeneous spaces was studied by A.P. Calderon in [C] and frequently we refer to this paper.

If $x, y \in \mathbb{R}^n$, we shall denote by $H(t, x, y) = (H_1(t, x, y), ..., H_n(t, x, y))$ the solution at time t of the Cauchy problem $\dot{H}_j(., x, y) = y_j \lambda_j(H(., x, y)), H_j(0, x, y) = x_j, j = 1, ..., n$.

Given $\alpha = (\alpha_1, ..., \alpha_n)$, $\epsilon = (\epsilon_1, ..., \epsilon_n)$ with $0 < \epsilon_j < \alpha_j$, j = 1, ..., n, we denote $\Delta_{\epsilon}^{\alpha}$ = $\{y \in \mathbb{R}^n : \epsilon_j \le y_j \le \alpha_j, j = 1, ..., n\}$. If $\sigma \in \{-1, 1\}^n$, we put $T_{\sigma}y = (\sigma_1y_1, ..., \sigma_ny_n)$, $Q^{\sigma}(x, r) = \{y \in Q(x, r) : \sigma_j(y_j - x_j) \ge 0, j = 1, ..., n\}$ and $\Delta_{\epsilon}^{\alpha}(\sigma) = T_{\sigma}(\Delta_{\epsilon}^{\alpha})$.

Now we can state two results proved in [FS].

Let $\gamma \in]0,1[$ and $\sigma \in \{-1,1\}^n$ be fixed. Then there exists $\epsilon, \alpha \in \mathbb{R}^n$ as above such that, $\forall r > 0$ and $\forall x \in \mathbb{R}^n$,

(1.14)
$$|H(r,x,\Delta_{\epsilon}^{\alpha}(\sigma)) \cap Q^{\sigma}(x,r)| \ge (1-\gamma)|Q^{\sigma}(x,r)|,$$

where $H(r, x, \Delta^{\alpha}_{\epsilon}(\sigma)) = \{H(x, r, y) : y \in \Delta^{\alpha}_{\epsilon}(\sigma)\}.$

Also, there are positive constants c_1 , c_2 depending only on ϵ , α and $\rho_{j,i}$ such that

(1.15)
$$c_1|S(x,r)| \leq \prod \int_0^r \lambda_j(H(t,x,y)) dt \leq c_2|S(x,r)|$$

for each $x \in \mathbb{R}^n$, r > 0 and $y \in \Delta^{\alpha}_{\epsilon}(\sigma)$.

If $q \ge 2$, we say that Sobolev inequality holds for w_1 , w_2 if for any $u \in \tilde{H}_0(Q)$, Q a δ -ball in \mathbb{R}^n ,

(1.16)
$$(\frac{1}{w_2(Q)} \int_Q |u|^q w_2 dx)^{1/q} \le cr(Q) (\frac{1}{w_1(Q)} \int_Q |\nabla_\lambda u|^2 w_1 dx)^{1/2}.$$

Given $q \ge 2$, we say the **Poincaré** inequality holds for w_1 , w_2 and μ if there are constants c > 0 and a > 0 (see (1.9)) such that for any δ ball Q and every $u \in \tilde{H}(a^2Q)$ we have

(1.17)
$$(\frac{1}{w_2(Q)} \int_Q |u - av_{\mu,Q}u|^q w_2 dx)^{1/q} \le cr(Q) (\frac{1}{w_1(Q)} \int_{a^2Q} |\nabla_\lambda u|^2 w_1 dx)^{1/2},$$

where $av_{\mu,Q} = \frac{1}{\mu(Q)} \int_Q u d\mu$ and $a^2Q = Q(x, a^2r)$ if Q = Q(x, r).

The reason that we have a^2Q on the right side of (1.17) is that we do not have a Kohn type argument (see also [J]) for the quasi-metric δ . In the *d*-metric, we can state (1.17) with equal balls on both sides. For the metric δ , however, we have convenient cut-off functions (see[FL1]) that are important in order to get Caccioppoli estimates for solutions of (1.1) (see (C.1), (C.2) and (C.3)). This explains the reason that we work with δ instead of *d*.

We can now state our main results.

THEOREM A (Harnack's inequality) Suppose that:

- (i) $v, w_1, w_2 \in A_2$
- (ii) the Poincaré inequality holds for w_1 , w_2 and w_1 , v with $\mu = 1$ and some q > 2(iii) $w_2v^{-1} \in A_{\infty}(v)$.

If u is a non-negative solution of (1.1) in the cylinder $R = Q(x_0, \alpha) \times (t_0 - \beta, t_0 + \beta)$, then

$$ess \ sup_{R^-} u \leq c_1 exp\{c_2[\alpha^{-2}\beta\Lambda(Q(x_0,\alpha)) + \alpha^2\beta^{-1}(\lambda(Q(x_0,\alpha)))^{-1}]\}ess \ inf_{R^+}u,$$

where $R^- = Q(x_0, \alpha/2) \times (t_0 - 3\beta/4, t_0 - \beta/4), R^+ = Q(x_0, \alpha/2) \times (t_0 + \beta/4, t_0 + \beta),$ $\Lambda(Q) = w_2(Q)/v(Q), \lambda(Q) = w_1(Q)/v(Q), \text{ for a } \delta\text{-ball } Q.$ Here the constants c_1, c_2 depend only on the constants which arise in (i), (ii), (iii).

We write

$$\iint_R f(x,t)m(x,\cdot)dxdt = \iint_R f(x,t)m(x,t)dxdt / \iint_R m(x,t)dxdt.$$

THEOREM B (Mean value inequality) Assume that hypotheses (i),(ii),(iii) of Theorem A hold. Let $0 , <math>\alpha$, $\beta > 0$, $\alpha/2 < \alpha' < \alpha$, $\beta/2 < \beta' < \beta$ and let $Q(x_0, \alpha) = Q$, $Q(x_0, \alpha') = Q'$ and $R = Q \times (t_0 - \beta, t_0 + \beta)$, $R'_+ = Q' \times (t_0 - \beta', t_0 + \beta)$. If u is a solution of (1.1) in R, then u is bounded in R'_+ and

ess
$$sup_{R'} |u|^p$$

$$\leq D(\alpha^{2}\beta^{-1}\lambda(Q)^{-1}+1)^{1/(h-1)}(\alpha^{-2}\beta\Lambda(Q)+1)^{h/(h-1)}\iint_{R}|u|^{p}(\alpha^{-2}\beta w_{2}+v)dxdt,$$

where $D \leq C^{\frac{1}{h-1}}$ if $p \geq 2$, and $D \leq c^{\log(\frac{3}{p})}C^c$ if $0 , and <math>C = c\frac{\alpha^{2+b}\beta}{(\alpha-\alpha')^{2+b}(\beta-\beta')}$. Here h > 1, c > 0 and b > 0 are constants which are independent of $u, p, \alpha, \alpha', \beta, \beta'$.

The organization of the paper is as follows. In section 2 we prove the following Sobolev interpolation inequality:

THEOREM D: Let w_1 , w_2 be doubling weights, $v \in A_2$ and suppose (1.17) holds with w_1 , w_2 , $\mu = 1$ and some q > 2. If $w_2v^{-1} \in A_{\infty}(v)$ then there exists h > 1 and constants c > 0, b > 0 such that for every ϵ satisfying $0 < \epsilon \leq 1$,

$$\frac{1}{w_2(Q)} \int_Q |u|^{2h} w_2 dx$$

<- $c \epsilon^{-b} (\frac{1}{v(Q)} \int_{(1+\epsilon)Q} u^2 v dx)^{h-1} (\frac{r(Q)^2}{w_1(Q)} \int_{(1+\epsilon)Q} |\nabla_\lambda u|^2 w_1 dx + \frac{1}{v(Q)} \int_{(1+\epsilon)Q} u^2 v dx)$

for all $u \in \tilde{H}((1+\epsilon)Q)$.

In section 3 we prove Theorem B. First we show, for $p \ge 2$, the following mean value inequality for subsolutions of (1.1):

(*) ess
$$sup_{R'_{+}}u^{p}_{+}$$

$$\leq (p^{2}C)^{\frac{h}{h-1}} (\alpha^{2}\beta^{-1}\lambda(Q)^{-1}+1)^{1/(h-1)} (\alpha^{-2}\beta\Lambda(Q)+1)^{h/(h-1)} \iint_{R} u^{p}_{+} (\alpha^{-2}\beta w_{2}+v) dx dt,$$

where C is as in Theorem B and $u_{+} = max(u, 0)$. This inequality is less precise than the one we will eventually obtain because of the presence of the factor p^2 on the right. In order to prove the above inequality we apply Theorem D to the function $H_M(u(., \tau))$ where

$$H_{M}(s) = \begin{cases} s^{p/2} \text{ if } s \in [0, M] \\ M^{p/2} + \frac{p}{2} M^{(p-2)/2} (s - M) \text{ if } s \ge M \\ 0 \text{ if } s < 0, \end{cases}$$

and therefore $H_M(u(.,\tau))$ is an element of $\tilde{H}(Q(x_o,\alpha)$ for a.e. $\tau \in (t_o - \beta', t_o + \beta)$. The first idea would be to apply Theorem D to the function $u_+^{p/2}(.,\tau)$ but at this point we do not know if $u_+^{p/2}(.,\tau)$ belongs to $\tilde{H}(Q(x_o,\alpha))$. Hence we have to work with $H_M(u)$, and in order to proceed with the proof of (\star) we show the following Caccioppolli inequality for $H_M(u)$.

(C.1) Let $2 \le p < \infty$ and u be a subsolution of (1.1) in R. Let $w_2 \in A_2$ and $\alpha, \alpha', \beta, \beta'$ satisfy $\alpha/2 < \alpha' < \alpha, \beta/2 < \beta' < \beta$. Then

$$ess \ sup_{\tau \in (t_{\circ}-\beta',t_{\circ}+\beta)} \int_{Q} H_{M}(u(x,\tau))^{2} v(x) dx + \iint_{R'_{+}} |\nabla_{\lambda}(H_{M}(u))|^{2} w_{1}(x) dx dt$$

$$\leq \ c \iint_{R} u^{2} H'_{M}(u)^{2} (\frac{w_{2}}{(\alpha-\alpha')^{2}} + \frac{v}{\beta-\beta'}) dx dt.$$

with c independent of all parameters.

The next step is to apply (\star) for p = 2 to deduce that u_+ is locally bounded. This fact allow us to apply Theorem D to the function $u_+^{p/2}(.,\tau)$ for a.e. $\tau \in (t_o - \beta', t_o + \beta)$. The Caccioppoli inequality we can deduce from (C.1) for the function $u_+^{p/2}$ is not precise enough since it will have a factor p^2 in the right hand side (note that $uH'_M(u) \leq \frac{p}{2}u_+^{p/2}$) and this is the term we want to eliminate from (\star) . But with a different test function from the one used in the proof of (C.1), namely, $\phi(x,t) = \eta^2 g(u)\chi(t,\tau_1,\tau_2)$ where

$$g(s) = \left\{ egin{array}{l} s^{p-1} \mbox{ if } s \in [0,M] \ M^{p-2}s \mbox{ if } s \geq M \ 0 \mbox{ if } s < 0, \end{array}
ight.$$

and η is a convenient C^{∞} function with compact support, we can deduce the following Caccioppolli inequality for subsolutions of (1.1):

(C.2) Let $2 \le p < \infty$ and u be a subsolution of (1.1) in R. Let $w_2 \in A_2$ and α , α' , β , β' satisfy $\alpha/2 < \alpha' < \alpha$, $\beta/2 < \beta' < \beta$. Then

$$ess \ sup_{\tau \in (t_0-\beta',t_0+\beta)} \int_Q u_+(x,\tau)^p v(x) dx + \iint_{R'_+} |\nabla_\lambda u_+^{p/2}|^2 w_1(x) dx dt$$

$$\leq \ c \iint_R u_+^p (\frac{w_2}{(\alpha-\alpha')^2} + \frac{v}{\beta-\beta'}) dx dt,$$

with c independent of all parameters.

Now following the steps of the proof of (*) using (C.2) instead of (C.1) we can prove that for $p \ge 2$

$$(\star\star) \ ess \ sup_{R'_{+}} u^{p}_{+}$$

$$\leq \ (C)^{\frac{h}{h-1}} (\alpha^{2}\beta^{-1}\lambda(Q)^{-1} + 1)^{1/(h-1)} (\alpha^{-2}\beta\Lambda(Q) + 1)^{h/(h-1)} \iint_{R} u^{p}_{+} (\alpha^{-2}\beta w_{2} + v) dx dt,$$

and Theorem B will follow from $(\star\star)$ and an iteration argument like the one given in lemma (3.4) of [GW2]. Finally we conclude section 3 by making some comments about the proof of mean value inequalities for u^p , when p < 0, where u is a positive solution of (1.1). These inequalities will be necessary in the proof of Theorem A and in order to show them we need the following generalization of (C.2):

(C.3) Let $-\infty , <math>p \neq 0, 1$, u satisfy $0 < m < u(x, t) < M < \infty$ in R, $w_2 \in A_2$. Then if p > 1 and u is a subsolution in R, or if p < 0 and u is a supersolution in R.

$$ess \ sup_{\tau \in (t_0-\beta',t_0+\beta)} \int_{Q'} u(x,\tau)^p v(x) dx + \frac{p-1}{p} \iint_{R'_+} |\nabla_\lambda u^{p/2}|^2 w_1(x) dx dt$$
$$\leq \ c \iint_R u^p (\frac{p}{p-1} \frac{w_2(x)}{(\alpha-\alpha')^2} + \frac{v(x)}{\beta-\beta'}) dx dt.$$

Moreover, if 0 and u is a supersolution in R, then

$$ess \ sup_{\tau \in (t_{o}-\beta,t_{o}+\beta')} \int_{Q'} u(x,\tau)^{p} v(x) dx + |\frac{p-1}{p}| \iint_{R'_{-}} |\nabla_{\lambda} u^{p/2}|^{2} w_{1} dx dt$$

$$\leq \ c \iint_{R} u^{p} (|\frac{p}{p-1}| \frac{w_{2}}{(\alpha-\alpha')^{2}} + \frac{v}{\beta-\beta'}) dx dt.$$

In this paper we do not present the proofs of (C.2) and (C.3) since their proofs are similar to the ones given in section 2 of [GW2].

In section 4, we prove

THEOREM E: Let v and w_1 be weights such that there exists s > 1 with

(1.18)
$$(\frac{r(I)}{r(B)})^2 (\frac{1}{|I|} \int_I (\frac{v}{v(B)})^s dx)^{1/s} (\frac{1}{|I|} \int_I (\frac{w_1}{w_1(B)})^{-s} dx)^{1/s} \le c$$

for all δ -balls I, B with $I \subset 2a^2B$ (a as in (1.9)), where c is a constant independent of the balls. Let $Q = Q(\xi, r)$ and φ be a C^1 function such that $\varphi \equiv 1$ in $Q(\xi, kr)$, $1/2 \leq k < 1$, $0 \leq \varphi \leq 1$, $supp \varphi \subset Q$ and

$$\varphi(x)\varphi(H(t_{\circ}, x, y)) \leq \varphi(H(t, x, y))$$

for all x, y, t, t_o with $0 \le t \le t_o$. Then, if $u \in Lip(Q)$,

$$\int_{Q}|u(x)-A_{Q}|^{2}\varphi(x)v(x)dx\leq c\frac{v(Q)}{w_{1}(Q)}r(Q)^{2}\int_{Q}|\nabla_{\lambda}u(x)|^{2}\varphi(x)w_{1}(x)dx,$$

where $A_Q = \frac{1}{\varphi(Q)} \int_Q u(x) \varphi(x) dx$.

Finally, in section 5, we prove Theorem A. This theorem follows as an application of Bombieri's lemma ([GW2]). In order to verify the hypotheses of Bombieri's lemma we need Theorem B and Theorem F, which we state next. We write $(v \otimes 1)(A) = \int \int_A v(x) dx dt$, where $v = v(x), x \in \mathbb{R}^n$, and $A \subset \mathbb{R}^{n+1} = \{(x, t) : x \in \mathbb{R}^n, t \in \mathbb{R}\}.$

THEOREM F: Suppose v is a doubling weight, $w_2 \in A_2$, (1.18) holds and $w_2v^{-1} \in A_{\infty}(v)$. Let Q_R be a δ -ball of radius R, $t_o \in (a, b)$ and $\tilde{w}_2 = w_2/w_2(Q_R)$ and $\tilde{v} = v/v(Q_R)$. If u is a solution of (1.1) in $Q_{3R/2} \times (a, b)$ which is bounded below by a positive constant, then there are constants c_1 , M_2 , κ and V such that if for s > 0 we define

$$E^{+} = \{(x,t) \in Q_{R} \times (t_{\circ},b) : logu < -s - M_{2}(b-t_{\circ}) - V\}$$
$$E^{-} = \{(x,t) \in Q_{R} \times (a,t_{\circ}) : logu > s - M_{2}(a-t_{\circ}) - V\},$$

then

$$((\tilde{v} + \tilde{w}_2) \otimes 1)(E^+) \le c_1 (\frac{1}{s} \frac{v(Q_R)}{w_1(Q_R)} \frac{R^2}{b - t_\circ})^{\kappa} (b - t_\circ)$$

and

$$((\tilde{v}+\tilde{w}_2)\otimes 1)(E^-) \leq c_1(\frac{1}{s}\frac{v(Q_R)}{w_1(Q_R)}\frac{R^2}{t_{\circ}-a})^{\kappa}(t_{\circ}-a).$$

Here c_1 and κ depend only on the constants in the conditions on v and w_2 , $M_2 \approx \frac{w_2(Q_R)}{R^2 v(Q_R)}$, and V is a constant which depends on u.

In order to prove this theorem, if we follow the steps of Lemma (4.9) of [GW2], we just have to verify that a certain test function (see [FL1]) satisfies the conditions of Theorem E. This will be done in Lemma 5.4.

2 Interpolation Inequality

In this section we prove Theorem D. We start with

Theorem 2.1 Let w_1 , w_2 , and μ be doubling weights and suppose (1.17) holds for w_1 ,

 w_2 with any μ , and for some q > 2. If $Q = Q(\xi, r)$ and $w_2v^{-1} \in A_{\infty}(v)$ then there exist h > 1 and a constant c > 0, independent of Q and u, such that

$$\begin{aligned} & \frac{1}{w_2(Q)} \int_Q |u|^{2h} w_2 dx \\ & \leq \quad c (\frac{1}{v(Q)} \int_Q u^2 v dx)^{h-1} (\frac{r^2}{w_1(Q)} \int_{Q(\xi, a^2 r)} |\nabla_\lambda u|^2 w_1 dx + (av_{\mu,Q} |u|)^2) \end{aligned}$$

for all $u \in \tilde{H}(a^2Q)$ (a as in (1.9)). Also if (1.17) is replaced by (1.16), then

$$\frac{1}{w_2(Q)} \int_Q |u|^{2h} w_2 dx \le c (\frac{1}{v(Q)} \int_Q u^2 v dx)^{h-1} (\frac{r^2}{w_1(Q)} \int_Q |\nabla_\lambda u|^2 w_1 dx)$$

for all $u \in \tilde{H}_{\circ}(Q)$.

Proof: The proof follows as in [GW1], theorem 3; the only differences are that we obtain $Q(\xi, a^2r)$ in the second integral on the right when we apply Poincare's inequality and in the end we use the results of Calderon for weights in homogeneous spaces (see [C]).

Corollary 2.2 Let w_1 , w_2 be doubling weights and suppose (1.17) holds with w_1 , w_2 , $\mu = 1$ and some q > 2. If $w_2v^{-1} \in A_{\infty}(v)$, then there exists h > 1 and a constant c > 0 such that

$$\frac{1}{w_2(Q)} \int_Q |u|^{2h} w_2 dx$$

$$\leq c(\frac{1}{v(Q)} \int_Q u^2 v dx)^{h-1} (\frac{r^2}{w_1(Q)} \int_{a^2 Q} |\nabla_\lambda u|^2 w_1 dx + \frac{1}{v(Q)} \int_Q u^2 v dx)$$

for all $u \in \tilde{H}(a^2Q)$, $Q = Q(\xi, r)$.

Proof: The conclusion of Theorem (2.1) holds for $\mu = 1$. But, by Schwarz's inequality,

$$egin{aligned} & av_Q|u| = rac{1}{|Q|}\int_Q |u|dx = rac{1}{|Q|}\int_Q uv^{1/2}v^{-1/2}dx \ & \leq & rac{1}{|Q|}(\int_Q u^2vdx)^{1/2}(\int_Q rac{1}{v}dx)^{1/2} \leq (rac{1}{v(Q)}\int_Q u^2vdx)^{1/2} \end{aligned}$$

where in the last inequality we used the fact that $v \in A_2$.

In the next section we prove mean value inequalities. In order to be able to iterate a certain inequality as was done in [GW2] we need a refinement of the above corollary This refinement is Theorem D and to prove it we need the following lemmas.

Lemma 2.3 Given $Q = Q(\xi, s)$ and 0 < r < s, there exists $x_1, ..., x_{m(r,s)}$ in Q, and $k \ge 1$ independent of ξ, r, s , such that

(i)
$$Q(x_j, r/k) \cap Q(x_h, r/k) = \emptyset, h \neq j$$

(ii) $Q(\xi, s) \subset \cup_{j=1}^{m(r,s)} Q(x_j, r).$

Moreover, $m(r,s) \leq c(\frac{s}{r})^{\nu}$ for some constant ν depending only on the dimension.

Proof: If we apply theorem (1.2), page 69, of [CoW] to the open covering of Q given by $(S(x, \frac{r}{4a}))_{x \in Q}$, there exist $x_1, \ldots, x_{m(r,s)}$ in Q such that: $S(x_h, \frac{r}{4a}) \cap S(x_j, \frac{r}{4a}) = \emptyset$ if $j \neq h$ and $Q(\xi, s) \subset \bigcup_{j=1}^{m(r,s)} S(x_j, \frac{r}{a})$. By (1.9), $S(x_j, \frac{r}{4a}) \supset Q(x_j, \frac{r}{4a^2})$ and $S(x_j, \frac{r}{a}) \subset Q(x_j, r)$. Therefore, if we choose $k = 4a^2$, (i) and (ii) follow. It remains to find an upper bound for m(r,s). First, we note that $Q(x_j, \frac{r}{k}) \subset Q(\xi, a^2 \frac{k+1}{k}s)$. But, $\frac{r}{k} = \frac{2a^4(k+1)s}{k} \frac{r}{2a^4(k+1)s}$, and so by (1.10), there exists $\nu > 0$, such that

$$|Q(x_j, \frac{r}{k})| \ge (\frac{r}{2a^4(k+1)s})^{\nu} |Q(x_j, \frac{2a^4(k+1)s}{k})|,$$

and since the $Q(x_j, \frac{r}{k})$ are disjoint,

$$|Q(\xi, \frac{a^2(k+1)s}{k})| \ge \sum_j |Q(x_j, \frac{r}{k})| \ge c(\frac{r}{s})^{\nu} \sum_j |Q(x_j, \frac{2a^4(k+1)s}{k})|.$$

But, $Q(x_j, \frac{2a^4(k+1)s}{k}) \supset Q(\xi, \frac{a^2(k+1)s}{k})$ and so $|Q(\xi, \frac{a^2(k+1)s}{k})| \ge c(\frac{r}{s})^{\nu} m(r.s) |Q(\xi, \frac{a^2(k+1)s}{k})|$. Therefore, $m(r, s) \le c(\frac{s}{r})^{\nu}$.

Lemma 2.4 If
$$\delta(y, z) < s$$
 then $F_j(z^*, s) \leq (2a^2)^{G_j} F_j(y^*, s)$. G_j as in (1.10).

Proof: Since $Q(z,s) \subset Q(y,2a^2s)$, $F_j(z^*,s) \leq F_j(y^*,2a^2s)$. By (1.10), it follows that

$$F_j(z^*,s) \le F_j(y^*,2a^2s) \le (2a^2)^{G_j}F_j(y^*,s).$$

Lemma 2.5 If $0 < \epsilon < 1$ and $\eta \in Q = Q(\xi, s)$, then $Q(\eta, \epsilon s/(2a^2)^{\zeta}) \subset Q(\xi, (1 + \epsilon)s)$, where $\zeta = \max_{j=1,\dots,n} G_j$.

Proof: If $y \in Q(\eta, \epsilon s/(2a^2)^{\zeta})$ then by (1.8), $|y_j - \eta_j| \leq F_j(\eta^*, \epsilon s/(2a^2)^{\zeta})$ and by (1.10) and Lemma (2.4)

$$F_j(\eta^\star, rac{\epsilon s}{(2a^2)^\zeta}) \leq rac{\epsilon}{(2a^2)^\zeta} F_j(\eta^\star, s) \leq \epsilon F_j(\xi^\star, s).$$

Therefore,

$$|y_j - \xi_j| \le |y_j - \eta_j| + |\eta_j - \xi_j| \le \epsilon F_j(\xi^*, s) + F_j(\xi^*, s) = (1 + \epsilon)F_j(\xi^*, s) \le F_j(\xi^*, (1 + \epsilon)s),$$

where in the last inequality we used (1.10).

Proof of Theorem D.

Let $Q = Q(\xi, s)$. By Lemma (2.5), $\delta(Q, \partial(1+\epsilon)Q) \ge \frac{\epsilon s}{(2a^2)^{\zeta}}$. Apply Lemma (2.3) to $r = \frac{\epsilon s}{(2a^2)^{\zeta}a^2}$ to find $x_1, ..., x_{m(r,s)} \in Q$ such that: $Q(x_j, r/k) \cap Q(x_h, r/k) = \emptyset$ if $j \neq h$, $Q(\xi, s) \subset \cup_{j=1}^{m(r,s)} Q(x_j, r)$ and $m(r, s) \le c(s/r)^{\nu}$.

Note that, by (2.5), $Q(x_j, a^2r) = Q(x_j, \frac{\epsilon s}{(2a^2)\zeta}) \subset Q(\xi, (1+\epsilon)s) = (1+\epsilon)Q$. Then using Corollary (2.2), doubling for w_2 , doubling for v and w_1 and the fact that $Q(x_j, 2a^2s) \supset Q(\xi, s)$ and $Q(\xi, 2a^2s) \supset Q(x_j, s)$,

$$\begin{split} &\int_{Q} |u|^{2h} w_{2} dx \leq \sum_{j=1}^{m(r,s)} \int_{Q(x_{j},r)} |u|^{2h} w_{2} dx \\ \leq & c \sum_{j=1}^{m(r,s)} w_{2}(Q(x_{j},r)) (\frac{1}{v(Q(x_{j},r))} \int_{Q(x_{j},r)} u^{2} v dx)^{h-1} \\ \cdot & \left\{ \frac{r^{2}}{w_{1}(Q(x_{j},r))} \int_{Q(x_{j},a^{2}r)} |\nabla_{\lambda} u|^{2} w_{1} dx + \frac{1}{v(Q(x_{j},r))} \int_{Q(x_{j},r)} u^{2} v dx \right\} \\ \leq & c (\frac{s}{r})^{\nu} w_{2}(Q(\xi,s)) [(\frac{r}{2a^{2}s})^{-\alpha} \frac{1}{v(Q(\xi,s))} \int_{(1+\epsilon)Q} u^{2} v dx]^{h-1} \\ \cdot & \left\{ \frac{s^{2}}{w_{1}(Q(\xi,s))} (\frac{r}{2a^{2}s})^{-\alpha} \int_{(1+\epsilon)Q} |\nabla_{\lambda} u|^{2} w_{1} dx + (\frac{r}{2a^{2}s})^{-\alpha} \frac{1}{v(Q(\xi,s))} \int_{(1+\epsilon)Q} u^{2} v dx \right\}. \end{split}$$

The theorem follows if we choose $b = \nu + 2\alpha$, since $s/r = c\epsilon^{-1}$.

3 Mean value inequalities.

In this section we prove Theorem B and some other mean value inequalities. Since the proofs are similar to the ones given by [GW2], we just point out the differences. Basically, we have to be a little more careful in the iteration argument since there is a factor ϵ in Theorem D.

We asume throughout this section that:

(3.1)
$$\begin{cases} (a) \ w_1, \ w_2, \ v \in A_2 \\ (b) \ \text{Poincaré's inequality, (1.17), holds for both of the pairs } w_1, \ w_2 \ \text{and } w_1, \ v \\ \text{with some } q > 2 \ \text{and } \mu = 1 \\ (c) \ w_2 v^{-1} \in A_{\infty}(v). \end{cases}$$

Denote $R_{r,s} = Q(x_0, r) \times (t_0 - s, t_0 + s)$ and let $R = R_{r,s}$, $R' = R_{\rho,\sigma}$ with $r/2 < \rho < r$ and $s/2 < \sigma < s$ and define

(3.2)
$$C = c \frac{r^{2+b}s}{(r-\rho)^{2+b}(s-\sigma)}$$

where b is given by Theorem D and c is a constant that may vary, but which only depends on the weights and on h, where h > 1 is the index for which Theorem D holds for both w_2 and v on the left hand side.

We also write $\lambda(Q) = w_1(Q)/v(Q)$ and $\Lambda(Q) = w_2(Q)/v(Q)$. We start this section with the proof of (C.1). This estimate will be important in deducing a mean value inequality for subsolutions of (1.1).

Proof of (C.1): If $u \in H$ define

$$\varphi(x,t) = \eta^{2}(x,t) \left[\int_{0}^{u(x,t)} H'_{M}(s)^{2} ds + u(x,t) H'_{M}(u(x,t))^{2} \right] \chi(t,\tau_{1},\tau_{2}),$$

where $\eta \in C_0^{\infty}(R)$ will be specified later, $t_0 - s < \tau_1 < \tau_2 < t_0 + s$ and $\chi(t, \tau_1, \tau_2)$ denotes the characteristic function of (τ_1, τ_2) . The fact that the function φ is in H_0 follows as a consequence of the following result: if f is a piecewise smooth function on the real line with $f' \in L^{\infty}(-\infty, \infty)$ and if $u \in H$, then $f \circ u \in H$. Here we use the convention that f'(u) = 0 if $u \in L$ where L denotes the set of corner points of f (the proof follows the steps of theorem 7.8 of [GT] and it also shows that $\nabla_{\lambda}(f \circ u) = f'(u)\nabla_{\lambda}u$ and $(f(u))_t = f'(u)u_t)$. The proof of the above fact also verifies that in our case $\varphi \ge 0$ in the H_0 -sense since $H_M(s) = 0$ for s < 0.

Since u is a subsolution, we have

(3.3)
$$\iint_{R} (\langle A \nabla u, \nabla \varphi \rangle + u_{t} \varphi v) dx dt \leq 0.$$

Note that by another limiting argument

$$u_t[\eta^2 \int_0^u H'_M(s)^2 ds] = [u\eta^2 \int_0^u H'_M(s)^2 ds]_t - u(\eta^2)_t \int_0^u H'_M(s)^2 ds - \eta^2 H'_M(u)^2 u_t u,$$

and then by definition of φ , for $\tau_1 < t < \tau_2$,

$$u_t \varphi = [u\eta^2 \int_0^u H'_M(s)^2 ds]_t - (\eta^2)_t u \int_0^u H'_M(s)^2 ds$$

and

$$abla arphi = 2\eta
abla \eta [\int_{0}^{u} H_{M}^{'}(s)^{2} ds + u H_{M}^{'}(u)^{2}] + \eta^{2} [H_{M}^{'}(u)^{2}
abla u + f_{M}^{'}(u)
abla u],$$

where $f_M(s) = sH'_M(s)^2$ (note that $\nabla(f_M(u)) = f'_M(u)\nabla u$, since f_M is piecewise smooth with $f'_M \in L^\infty$). If we substitute the two last equations in (3.3) we get, with $Q = Q(x_o, r)$,

$$\begin{split} &\int_{Q}\int_{\tau_{1}}^{\tau_{2}}[u\eta^{2}\int_{0}^{u}H'_{M}(s)^{2}ds]_{t}vdxdt + \int_{Q}\int_{\tau_{1}}^{\tau_{2}}\eta^{2}H'_{M}(u)^{2}\langle A\nabla u,\nabla u\rangle dxdt \\ &\leq \int_{Q}\int_{\tau_{1}}^{\tau_{2}}[(\eta^{2})_{t}u\int_{0}^{u}H'_{M}(s)^{2}ds]vdxdt - 2\int_{Q}\int_{\tau_{1}}^{\tau_{2}}\eta\langle A\nabla u,\nabla \eta\rangle [\int_{0}^{u}H'_{M}(s)^{2}ds + uH'_{M}(u)^{2}]dxdt \\ &- \int_{Q}\int_{\tau_{1}}^{\tau_{2}}\eta^{2}\langle A\nabla u,\nabla u\rangle f'_{M}(u)dxdt. \end{split}$$

We can drop the last term on the right since the integrand is non-negative. The second term on the right is majorized in absolute value by

$$\int_{Q} \int_{\tau_{1}}^{\tau_{2}} |\langle A \nabla u, \nabla \eta \rangle| 4\eta H'_{M}(u)^{2} u dx dt = 4 \int_{Q} \int_{\tau_{1}}^{\tau_{2}} |\langle A H'_{M}(u) \eta \nabla u, u H'_{M}(u) \nabla \eta \rangle| dx dt$$

$$\leq 4 \frac{\epsilon}{2} \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \langle A \nabla (H_{M}(u)), \nabla (H_{M}(u)) \rangle \eta^{2} dx dt + \frac{4}{2\epsilon} \int_{Q} \int_{\tau_{1}}^{\tau^{2}} \langle A \nabla \eta, \nabla \eta \rangle u^{2} H'_{M}(u)^{2} dx dt$$

$$= 4 \frac{\epsilon}{2} \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \langle A \nabla (H_{M}(u)), \nabla (H_{M}(u)) \rangle \eta^{2} dx dt + \frac{4}{2\epsilon} \int_{Q} \int_{\tau_{1}}^{\tau^{2}} \langle A \nabla \eta, \nabla \eta \rangle u^{2} H'_{M}(u)^{2} dx dt$$

where we used the fact that $|\langle Ax, y \rangle| \leq \langle Ax, x \rangle^{1/2} \langle Ay, y \rangle^{1/2} \leq \frac{\epsilon}{2} \langle Ax, x \rangle + \frac{1}{2\epsilon} \langle Ay, y \rangle$. If we pick $\epsilon = \frac{1}{4}$ we get

$$(3.4) \qquad \int_{Q} \int_{\tau_{1}}^{\tau_{2}} [u\eta^{2} \int_{0}^{u} H'_{M}(s)^{2} ds]_{t} v dx dt + \frac{1}{2} \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \eta^{2} \langle A\nabla(H_{M}(u)), \nabla(H_{M}(u)) \rangle dx dt \\ \leq 8 \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \langle A\nabla\eta, \nabla\eta \rangle u^{2} H'_{M}(u)^{2} dx dt + \int_{Q} \int_{\tau_{1}}^{\tau_{2}} [(\eta^{2})_{t} u \int_{0}^{u} H'_{M}(s)^{2} ds] v dx dt.$$

Choose η to be zero in a neighborhood of $\{\partial Q \times (t_{\circ} - s, t_{\circ} + s)\} \cup \{Q \times (t = t_{\circ} - s)\},$ $\eta \equiv 1 \text{ in } R'_{+}, 0 \leq \eta \leq 1, |\nabla_{\lambda}\eta| \leq c/(r - \rho), |\eta_t| \leq c/(s - \sigma) \text{ (see page 537 of [FL1])}.$ If we pick τ_1 so close to $t_{\circ} - s$ that $\eta(x, \tau_1) = 0$ for all $x \in Q$, drop the second term on the left of (3.4)(which is non-negative) and use lemma 5 of [AS] it follows that

(3.5)
$$ess \ sup_{\tau_{2} \in (t_{0}-\sigma,t_{0}+s)} \int_{Q'} u(x,\tau_{2}) \int_{0}^{u(x,\tau_{2})} H'_{M}(s)^{2} ds \ v dx$$
$$\leq \ c \iint_{R} u^{2} H'_{M}(u)^{2} [\frac{w_{2}}{(r-\rho)^{2}} + \frac{v}{s-\sigma}] dx dt.$$

If we fix $\tau_2 \in (t_o - \sigma, t_o + s)$ and τ_1 as before and if we drop the first term on the left of (3.4) (which we can see is non-negative after performing the integration) we obtain

$$(3.6) \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \eta^{2} \langle A\nabla(H_{M}(u), \nabla(H_{M}(u))) \rangle dx dt \leq c \iint_{R} u^{2} H_{M}'(u)^{2} [\frac{w_{2}}{(r-\rho)^{2}} + \frac{v}{s-\sigma}] dx dt.$$

Letting $\tau_2 \longrightarrow t_o + s$ and using (1.2) we get

(3.7)
$$\iint_{R'_{+}} |\nabla_{\lambda}(H_{M}(u))|^{2} w_{1} dx dt \leq c \iint_{R} u^{2} H'_{M}(u)^{2} [\frac{w_{2}}{(r-\rho)^{2}} + \frac{v}{s-\sigma}] dx dt.$$

Finally note that

$$H_{M}(u)^{2} = \int_{0}^{u} (H_{M}(s)^{2})' ds = \int_{0}^{u} 2H_{M}(s)H_{M}'(s)ds \leq 2\int_{0}^{u} sH_{M}'(s)^{2}ds \leq 2u\int_{0}^{u} H_{M}'(s)^{2}ds,$$

since $H_M(s) \leq sH'_M(s)$. Combining this with (3.5) and (3.7), (C.1) follows with α , β , α' , β' taken there to be r, s, ρ , σ .

Lemma 3.8 Let $p \ge 2$, R, R' be as defined above and assume (3.1) holds. If u is a subsolution of (1.1) in R, then u_+ is bounded in $R'_+ = Q(x_o, \rho) \times (t_o - \sigma, t_o + s)$ and

$$ess \ sup_{R'_+} u_+^{\nu}$$

$$\leq (p^2 C)^{\frac{h}{h-1}} (\frac{r^2}{s} \frac{1}{\lambda(Q)} + 1)^{\frac{1}{h-1}} (\frac{s}{r^2} \Lambda(Q) + 1)^{\frac{h}{h-1}} \iint_R u_+^p (\frac{s}{r^2} w_2 + v) dx dt,$$

with C as in (3.2).

Proof: $H_M(u)$ is a function in H since $u \in H$ and H_M is a C^1 function with bounded derivative. Then by Fubini's theorem we have that $H_M(u(.,\tau)) \in \tilde{H}$ for a.e $\tau \in (t_o - \sigma, t_o + s)$. If we apply Theorem D to the function $F(x) = H_M(u(x,\tau)), Q = Q_\rho$ and $\epsilon > 0$ such that $(1 + \epsilon)\rho < r$ and combine this with (C.1) we obtain

$$\begin{split} & \frac{1}{w_2(Q_{\rho})} \int_{Q_{\rho}} H_M(u(x,\tau)^{2h} w_2(x) dx \\ & \leq c\epsilon^{-b} \{ \frac{1}{v(Q_{\rho})} \iint_R u^2 H'_M(u)^2 (\frac{w_2}{(r-(1+\epsilon)\rho)^2} + \frac{v}{s-\sigma}) dx dt \}^{h-1} \\ & \{ \frac{\rho^2}{w_1(Q_{\rho})} \int_{Q_{(1+\epsilon)\rho}} |\nabla_{\lambda}(H_M(u(x,\tau))|^2 w_1(x) dx \\ & + \frac{1}{v(Q_{\rho})} \iint_R u^2 H'_M(u)^2 (\frac{w_2}{(r-(1+\epsilon)\rho)^2} + \frac{v}{s-\sigma}) dx dt \} \end{split}$$

for a.e. $\tau \in (t_{\circ} - \sigma, t_{\circ} + s)$.

Integrate with respect to τ over $(t_o - \sigma, t_o + s)$ and apply (C.1) to get

$$\frac{1}{w_2(Q_\rho)} \iint_{R'_+} H_M(u(x,t))^{2h} w_2(x) dx dt \\ \leq c \frac{\epsilon^{-b}}{v(Q_\rho)^{h-1}} (\frac{\rho^2}{w_1(Q_\rho)} + \frac{s+\sigma}{v(Q_\rho)}) (\iint_R u^2 H'_M(u)^2 \frac{w_2}{(r-(1+\epsilon)\rho)^2} + \frac{v}{s-\sigma}) dx dt)^h.$$

Since $r/2 < \rho < r$ and $s/2 < \sigma < s$, by the doubling property of the weights and the definitions of λ and Λ , it follows that

$$\frac{1}{w_2(Q_r)} \iint_{R'_+} H_M(u(x,t))^{2h} w_2(x) dx dt$$

$$\leq c \frac{\epsilon^{-b}}{v(Q_r)^h} (\frac{r^2}{\lambda(Q_r)} + s) (\iint_R u^2 H'_M(u)^2 (\frac{w_2}{(r-(1+\epsilon)\rho)^2} + \frac{v}{s-\sigma}) dx dt)^h$$

A similar inequality holds with w_2 replaced by v on the left, and if we add the two inequalities, we obtain

(3.9)
$$\iint_{R'_{+}} H_{M}(u)^{2h} \left(\frac{w_{2}}{w_{2}(Q_{r})} + \frac{v}{v(Q_{r})}\right) dx dt$$
$$\leq c \frac{\epsilon^{-b}}{v(Q_{r})^{h}} \left(\frac{r^{2}}{\lambda(Q_{r})} + s\right) \left(\iint_{R} u^{2} H'_{M}(u)^{2} \left(\frac{w_{2}}{(r - (1 + \epsilon)\rho)^{2}} + \frac{v}{s - \sigma}\right) dx dt\right)^{h}$$

for any ϵ such that $(1 + \epsilon)\rho < r$.

Now, note that

$$\frac{w_2}{(r-(1+\epsilon)\rho)^2} + \frac{v}{s-\sigma} \le \frac{r^2}{(r-(1+\epsilon)\rho)^2(s-\sigma)} \{\frac{s}{r^2}w_2 + v\},$$

$$\begin{split} \iint_{R'_{+}} \{ \frac{w_{2}}{w_{2}(Q_{r})} + \frac{v}{v(Q_{r})} \} dx dt \approx s, \\ \iint_{R} \{ \frac{s}{r^{2}} w_{2} + v \} dx dt \approx s \{ \frac{s}{r^{2}} w_{2}(Q_{r}) + v(Q_{r}) \} \approx s v(Q_{r}) \{ \frac{s}{r^{2}} \Lambda(Q_{r}) + 1 \}, \\ \frac{s r^{-2} w_{2}(x) + v(x)}{s r^{-2} w_{2}(Q_{r}) + v(Q_{r})} \leq \frac{w_{2}(x)}{w_{2}(Q_{r})} + \frac{v(x)}{v(Q_{r})}. \end{split}$$

Thus, by raising both sides of (3.9) to the power 1/h, normalizing and using the fact that $e^{-b/h} \leq e^{-b}$, we obtain

(3.10)
$$(\iint_{R'_{+}} H_{M}(u)^{2h} (\frac{s}{r^{2}} w_{2} + v) dx dt)^{1/h} \\ \leq c \epsilon^{-b} \frac{r^{2} s}{(r - (1 + \epsilon)\rho)^{2} (s - \sigma)} (\frac{s}{r^{2}} \Lambda(Q_{r}) + 1) (\frac{r^{2}}{s} \frac{1}{\lambda(Q_{r})} + 1)^{1/h} \\ \iint_{R} u^{2} H'_{M}(u)^{2} (\frac{s}{r^{2}} w_{2} + v) dx dt$$

for any ϵ such that $(1 + \epsilon)\rho < r$. Since $u_+^{p/2}\chi_{\{0 \le u \le M\}} \le H_M(u)$ and $uH'_M(u) \le \frac{p}{2}u_+^{p/2}$, if we let $M \longrightarrow \infty$ it follows by Fatou's lemma that

(3.11)
$$(\iint_{R'_{+}} u_{+}^{ph} (\frac{s}{r^{2}} w_{2} + v) dx dt)^{1/h} \\ \leq c p^{2} \epsilon^{-b} \frac{r^{2} s}{(r - (1 + \epsilon)\rho)^{2} (s - \sigma)} (\frac{s}{r^{2}} \Lambda(Q_{r}) + 1) (\frac{r^{2}}{s} \frac{1}{\lambda(Q_{r})} + 1)^{1/h} \\ \iint_{R} u_{+}^{p} (\frac{s}{r^{2}} w_{2} + v) dx dt.$$

Now, we have to iterate (3.11). Fix r, s, ρ, σ with $r/2 < \rho < r$ and $s/2 < \sigma < s$. For k = 1, 2, ... define sequences $\{s_k\}_{k \in N}$ and $\{r_k\}_{k \in N}$ and $\{\epsilon_k\}_{k \in N}$ by $s_1 = s, s_k - s_{k+1} = \frac{s-\sigma}{2^k}$ for $k \ge 1$, $r_1 = r, r_k - r_{k+1} = \frac{r-\rho}{2^k}$ for $k \ge 1$, and $\epsilon_k = \frac{r-\rho}{2^k r_k} = \frac{r_k - r_{k+1}}{r_k}$ for $k \ge 1$. Also, define $R_k = Q_k \times (t_o - s_k, t_o + s)$ for $k \ge 1$, where $Q_k = Q(x, r_k)$. Note that $R_1 = R$ and $\bigcap_{k=1}^{\infty} R_k = R'_+$. Since $\frac{1}{2}sr^{-2} \le s_kr_k^{-2} \le 4sr^{-2}$, if we apply (3.11) with p replaced by ph^{k-1} , $p \ge 2$, and $r = r_k, \rho = r_{k+1}$ and $\epsilon = \epsilon_{k+1}$ (note that $(1 + \epsilon_{k+1})r_{k+1} < r_k$), we obtain

$$(\iint_{R_{k+1}} u_+^{ph^k} (\frac{s}{r^2}w_2 + v) dx dt)^{\frac{1}{h^k}}$$

$$\leq \{c(ph^{k-1})^2 \epsilon_{k+1}^{-b} \frac{r_k^2 s_k}{(r_k - (1 + \epsilon_{k+1})r_{k+1})^2 (s_k - s_{k+1})} (\frac{s}{r^2} \Lambda(Q_r) + 1) (\frac{r^2}{s} \frac{1}{\lambda(Q_r)} + 1)^{1/h} \}^{\frac{1}{h^{k-1}}} \\ \{\iint_{R_k} u_+^{ph^{k-1}} (\frac{s}{r^2} w_2 + v) dx dt \}^{\frac{1}{h^{k-1}}}.$$

But note that

$$\begin{aligned} & \epsilon_{k+1}^{-b} \frac{r_k^2 s_k}{[r_k - (1 + \epsilon_{k+1}) r_{k+1}]^2 (s_k - s_{k+1})} \\ & = 2^{(k+1)b} \frac{r_{k+1}^b}{(r-\rho)^b} \frac{r_k^2 s_k}{(\frac{r-\rho}{2^k} - \frac{r-\rho}{2^{k+1}})^2 (\frac{s-\sigma}{2^k})} \le c 2^{(3+b)k} \frac{r^{2+b} s}{(r-\rho)^{2+b} (s-\sigma)} \le C 2^{(3+b)k}, \end{aligned}$$

where C is given by (3.2). Thus,

$$(3.12) \qquad \qquad (\iint_{R_{k+1}} u_{+}^{ph^{k}} (\frac{s}{r^{2}} w_{2} + v) dx dt)^{\frac{1}{h^{k}}} \\ \leq \quad \{C(ph^{k-1})^{2} 2^{(3+b)k} (\frac{s}{r^{2}} \Lambda(Q_{r}) + 1) (\frac{r^{2}}{s} \frac{1}{\lambda(Q_{r})} + 1)^{1/h} \}^{\frac{1}{h^{k-1}}} \\ \quad \{\iint_{R_{k}} u_{+}^{ph^{k-1}} (\frac{s}{r^{2}} w_{2} + v) dx dt \}^{\frac{1}{h^{k-1}}}.$$

If we iterate (3.12), we obtain

 $ess \ sup_{R'_{\perp}} \ u^p_+$

$$\leq \prod_{k=1}^{\infty} \{C(ph^{k-1})^2 2^{(3+b)k} (\frac{s}{r^2} \Lambda(Q_r) + 1) (\frac{r^2}{s} \frac{1}{\lambda(Q_r)} + 1)^{1/h} \}^{\frac{1}{h^{k-1}}} \iint_R u_+^p (\frac{s}{r^2} w_2 + v) dx dt.$$

Since $\sum_{k=1}^{\infty} \frac{1}{h^{k-1}} = \frac{h}{h-1}$ and $\sum_{k=1}^{\infty} \frac{k}{h^{k-1}} = (\frac{h}{h-1})^2$, it follows that

$$ess \ sup_{R'_{+}}u^{p}_{+} \leq (p^{2}C)^{\frac{h}{h-1}}(\frac{s}{r^{2}}\Lambda(Q_{r})+1)^{\frac{h}{h-1}}(\frac{r^{2}}{s}\frac{1}{\lambda(Q_{r})}+1)^{\frac{1}{h-1}}\iint_{R}u^{p}_{+}(\frac{s}{r^{2}}w_{2}+v)dxdt,$$

and this proves the lemma. Note that if we apply the above result for p = 2, it follows that u_+ is bounded on R'_+ .

Proof of Theorem B: By Lemma (3.8) we know that u_+ is bounded in $Q_{(1+\epsilon)\rho} \times (t_{\circ} - \sigma, t_{\circ} + s)$ for all ϵ such that $(1+\epsilon)\rho < r$. If we define $F(x) = u_+^{p/2}(x, \tau)$ then $F \in \tilde{H}(Q_{(1+\epsilon)\rho})$

for a.e. $\tau \in (t_o - \sigma, t_o + s)$ and if we follow the proof of lemma (3.8) using (C.2) instead of (C.1), we get (see the comments in the introduction)

$$ess \ sup_{R'_{+}}u_{+}^{p} \leq C^{\frac{h}{h-1}}(\frac{r^{2}}{s}\frac{1}{\lambda(Q)}+1)^{\frac{1}{h-1}}(\frac{s}{r^{2}}\Lambda(Q)+1)^{\frac{h}{h-1}} \iint_{R}u_{+}^{p}(\frac{s}{r^{2}}w_{2}+v)dxdt$$

for $p \ge 2$. For $0 , define <math>I_p$ and I_{∞} as in lemma (3.4) of [GW2]. The only difference in our case is that

$$I_{\infty}(\alpha^{'},\beta^{'})^{2} \leq c\{\frac{1}{(\alpha-\alpha^{'})^{2+b}(\beta-\beta^{'})}\}^{\frac{h}{h-1}}I_{2}(\alpha,\beta)^{2}$$

if $\frac{1}{2} < \alpha' < \alpha < 1$ and $\frac{1}{2} < \beta' < \beta < 1$. Thus, arguing as in lemma (3.4) of [GW2] we prove that if u is a solution of (1.1) and p > 0 then

$$(3.13) \quad ess \ sup_{R'_{+}}u^{p}_{+} \leq D(\frac{r^{2}}{s}\frac{1}{\lambda(Q)}+1)^{\frac{1}{h-1}}(\frac{s}{r^{2}}\Lambda(Q)+1)^{\frac{h}{h-1}} \iint_{R}u^{p}_{+}(\frac{s}{r^{2}}w_{2}+v)dxdt$$

where D is as in Theorem B.

If we apply (3.13) to both u and -u, we obtain Theorem B of the introduction, with $\alpha, \beta, \alpha', \beta'$ taken there to be r, s, ρ, σ .

In order to prove Harnack's inequality we need a mean value inequality for u^p when $-\infty and u is a non-negative solution.$

We begin by noting that if we use (C.3) instead of (C.1) we can prove the following analogue of (3.11):

Lemma 3.14 Suppose (3.1) holds, $0 < m < u(x,t) \le M < \infty$ in $R = R_{r.s.}$, $r/2 < \rho < r.$ $s/2 < \sigma < s$ and $\epsilon > 0$, $(1 + \epsilon)\rho < r$. Then, if p > 1 and u is a subsolution in R. or if p < 0 and u is a supersolution in R.

$$(\iint_{R'_{+}} u^{ph} (\frac{w_{2}}{w_{2}(Q_{r})} + \frac{v}{v(Q_{r})}) dx dt)^{1/h}$$

$$\leq c\epsilon^{-b} \frac{r^{2}s}{(r - (1 + \epsilon)\rho)^{2}(s - \sigma)} (\frac{p}{p - 1} \frac{s}{r^{2}} \Lambda(Q_{r}) + 1) (\frac{p}{p - 1} \frac{r^{2}}{s} \frac{1}{\lambda(Q_{r})} + 1)^{1/h}$$

$$\iint_{R} u^{p} (\frac{p}{p - 1} \frac{s}{r^{2}} w_{2} + v) dx dt.$$

Moreover, if 0 and u is a supersolution in R, then

$$(\iint_{R'_{-}} u^{ph}(\frac{w_{2}}{w_{2}(Q_{\tau})} + \frac{v}{v(Q_{\tau})}) dx dt)^{1/h}$$

$$\leq c\epsilon^{-b} \frac{r^{2}s}{(r - (1 + \epsilon)\rho)^{2}(s - \sigma)} (\frac{p}{|p - 1|} \frac{s}{r^{2}} \Lambda(Q_{\tau}) + 1) (\frac{p}{|p - 1|} \frac{r^{2}}{s} \frac{1}{\lambda(Q_{\tau})} + 1)^{1/h}$$

$$\iint_{R} u^{p}(\frac{p}{|p - 1|} \frac{s}{r^{2}} w_{2} + v) dx dt.$$

Both inequalities are still true if we replace the integral averages on the right by the larger integral average

$$\iint_R u^p(\frac{w_2}{w_2(Q_r)}+\frac{v}{v(Q_r)})dxdt.$$

Theorem 3.15 Assume (3.1) holds, r, s > 0, $r/2 < \rho < r$, $s/2 < \sigma < s$. If u is a non negative solution of (1.1) in R, then for p > 0

ess $sup_{R'}u^p$

$$\leq C^{c}(p\frac{s}{r^{2}}\Lambda(Q_{r})+1)^{\frac{h}{h-1}}(p\frac{r^{2}}{s}\frac{1}{\lambda(Q_{r})}+1)^{\frac{1}{h-1}}\iint_{R}u^{p}_{+}(\frac{w_{2}}{w_{2}(Q_{r})}+\frac{v}{v(Q_{r})})dxdt,$$

and for p < 0

 $ess \ sup_{R'_1} u^p$

$$\leq C^{\frac{h}{h-1}}(|p|\frac{s}{r^2}\Lambda(Q_r)+1)^{\frac{h}{h-1}}(|p|\frac{r^2}{s}\frac{1}{\lambda(Q_r)}+1)^{\frac{1}{h-1}}\iint_R u^p(\frac{w_2}{w_2(Q_R)}+\frac{v}{v(Q_R)})dxdt,$$

where C is given by (3.2).

Proof: In Lemma (3.17) of [GW2] we replace (3.20) by the result given here in Lemma (3.14) and then argue as in Lemma (3.17) of [GW2].

4 Proof of Theorem E

We start with the following lemma.

Lemma 4.1 Suppose $Q = Q(\xi, r)$ and φ is a C^1 function such that $\varphi \equiv 1$ in $kQ = Q(\xi, kr), \ 0 < k < 1, \ 0 \le \varphi \le 1$, $supp \varphi \subset Q$ and

(4.2)
$$\varphi(x)\varphi(H(t_{\circ}, x, y)) \leq \varphi(H(t, x, y))$$

for all x, y, t, t_0 with $0 \le t \le t_0$. If u is a Lipschitz function, $E = \{x \in Q(\xi, kr) : u(x) = 0\}$ and $|E| \ge \beta |Q|$ for some $0 < \beta < 1$, then if $x \in Q$,

(4.3)
$$|u(x)|\sqrt{\varphi(x)} \leq c \int_{Q} |\nabla_{\lambda} u(z)| \sqrt{\varphi(z)} \frac{\delta(x,z)}{|Q(x,\delta(x,z))|} dz,$$

where c is independent of Q, u, x.

Proof: (The general outline of this proof follows the steps of the proof of lemma 4.3 in [FS].) If $x \in Q = Q(\xi, r)$ then $Q(\xi, r) \subset Q(x, 2a^2r)$ and $Q(x, r) \subset Q(\xi, 2a^2r)$. Therefore, by doubling, $|Q(x,r)| \simeq |Q|$. Now, we note that there exists $\sigma \in \{-1,1\}^n$ such that $|E \cap Q^{\sigma}(x, 2a^2r)| \ge c\beta |Q^{\sigma}(x, 2a^2r)|$. In fact, $E = \bigcup_{\sigma} (Q^{\sigma}(x, 2a^2r) \cap E)$ and so there exists σ such that

$$(4.4) \qquad \qquad |Q^{\sigma}(x,2a^2r) \cap E| \ge \beta 2^{-n}|Q| \ge c\beta |Q^{\sigma}(x,2a^2r)|.$$

We also claim that there exists $\alpha, \epsilon \in \mathbb{R}^n$, independent of x and r, $0 < \epsilon_j < \alpha_j, j = 1, ..., n$, such that

(4.5)
$$|E \cap Q^{\sigma}(x, 2a^2r) \cap H(2a^2r, x, \Delta^{\alpha}_{\epsilon}(\sigma))| \geq \frac{c\beta}{2} |Q^{\sigma}(x, 2a^2r)|.$$

To prove this fact, apply (1.14) to $\gamma = \frac{c\beta}{2}$ and find $\alpha, \epsilon \in \mathbb{R}^n$, $0 < \epsilon_j < \alpha_j$, j = 1, ..., n, such that

$$|H(2a^2r,x,\Delta^lpha_\epsilon(\sigma))\cap Q^\sigma(x,2a^2r)|\geq (1-rac{ceta}{2})|Q^\sigma(x,2a^2r)|.$$

Then,

$$\begin{aligned} |Q^{\sigma}(x,2a^{2}r)| &\geq |(Q^{\sigma}(x,2a^{2}r)\cap E) \bigcup (Q^{\sigma}(x,2a^{2}r)\cap H(...))| \\ &= |Q^{\sigma}(x,2a^{2}r)\cap E| + |Q^{\sigma}(x,2a^{2}r)\cap H(...)| - |E\cap Q^{\sigma}(x,2a^{2}r)\cap H(...)| \\ &\geq |Q^{\sigma}(x,2a^{2}r)|(c\beta+1-\frac{c\beta}{2}) - |E\cap Q^{\sigma}(x,2a^{2}r)\cap H(...)| \end{aligned}$$

and therefore the claim follows.

We can assume $x \notin E$ and define $\sum = \{y \in \Delta^{\alpha}_{\epsilon}(\sigma) : H(2a^2r, x, y) \in E\}$. Let K be a smooth function supported in $\Delta^{2\alpha}_{\epsilon/2}(\sigma)$, $0 \leq K \leq 1$, $K \equiv 1$ on $\Delta^{\alpha}_{\epsilon}(\sigma)$. Suppose $u \in Lip(Q)$. If $y \in \Sigma$ then

$$|u(x)|\sqrt{\varphi(x)} = |u(x) - u(H(2a^2r, x, y))|K(y)\sqrt{\varphi(x)},$$

and if we integrate on \sum , we obtain

$$|u(x)|\sqrt{\varphi(x)}|\sum|=\int_{\sum}|u(x)-u(H(2a^2r,x,y))|K(y)\sqrt{\varphi(x)}dy.$$

Now we note that $\varphi(H(2a^2r, x, y)) = 1$ if $y \in \sum$ and using (4.2) we get $\varphi(x) \leq \varphi(H(t, x, y))$ for any $0 \leq t \leq 2a^2r$. Therefore,

$$\begin{split} |u(x)|\sqrt{\varphi(x)}|\sum |&\leq \int_{suppK} |\int_0^{2a^2r} \frac{d}{dt}(u(H(t,x,y)))dt|\sqrt{\varphi(H(t,x,y))}dy\\ &\leq \int_{suppK} |\int_0^{2a^2r} \langle \nabla u(H(t,x,y)), \dot{H}(t,x,y)\rangle dt|\sqrt{\varphi(H(t,x,y))}dy \end{split}$$

$$\leq \int_0^{2a^2r} \int_{suppK} |
abla_\lambda u(H(t,x,y))||y|\sqrt{arphi(H(t,x,y))}dydt.$$

If we make change of variables z = H(t, x, y) in $\Delta_{\epsilon/2}^{2\alpha}(\sigma)$, then $|\det \frac{\partial x}{\partial y}(t, x, y)| = \prod_{j=1}^{n} \int_{0}^{t} \lambda_{j}(H(s, x, y)) ds$. For $y \in \Delta_{\epsilon/2}^{2\alpha}(\sigma)$, the last product is equivalent to |Q(x, t)| by (1.15). Hence,

$$(4.6) |u(x)|\sqrt{\varphi(x)} \leq \frac{c}{|\sum|} \int_0^{2a^2\tau} \frac{1}{|Q(x,t)|} \int_{H(t,x,\Delta^{2\alpha}_{\ell/2}(\sigma))} |\nabla_\lambda u(z)| \sqrt{\varphi(z)} dz dt$$

Note that there exists c > 0 such that $H(t, x, \Delta^{2\alpha}_{\epsilon/2}(\sigma)) \subset Q(x, ct)$. In fact, if we define $\gamma(s) = H(s/|y|, x, y)$ then

$$\langle \dot{\gamma}(s), \xi \rangle^2 = \{\sum_{j=1}^n \lambda_j (H(\frac{s}{|y|}, x, y)) y_j \xi_j \}^2 \frac{1}{|y|^2} \le \sum_{j=1}^n \lambda_j^2 (H(\frac{s}{|y|}, x, y)) \xi_j^2 = \sum_{j=1}^n \lambda_j (\gamma(s)) \xi_j^2 + \sum_{j$$

 $\forall \xi \in \mathbb{R}^n$. So, γ is a λ -subunit curve starting from x and attaining H(t, x, y) at the time s = t|y|. Therefore by (1.9),

$$\delta(x, H(t, x, y)) \leq ad(x, H(t, x, y)) \leq at|y| \leq ct$$

where $c = 2\alpha a$

Thus, from (4.6), we obtain

$$|u(x)|\sqrt{arphi(x)} \leq rac{c}{|\sum|} \int_{0}^{2a^{2}r} rac{1}{|Q(x,t)|} \int_{Q(x,ct)} |
abla_{\lambda}u(z)|\sqrt{arphi(z)}dzdt$$

and, interchanging the order of integration and using the fact that $supp\varphi \subset Q$ (the argument we are going to present next is due to Chanillo, Sawyer and Wheeden), we get

$$(4.7) |u(x)|\sqrt{\varphi(x)} \le \frac{c}{|\sum|} \int_{Q} |\nabla_{\lambda} u(z)| \sqrt{\varphi(z)} (\int_{c\delta(x,z)}^{\infty} \frac{dt}{|Q(x,t)|}) dz$$

We claim that $\int_{ch}^{\infty} \frac{dt}{|Q(x,t)|} \leq c \frac{ch}{|Q(x,h)|}$. To prove this we note that, by (1.8), $\frac{|Q(x,t)|}{t} = \prod_{j=2}^{n} F_j(x^*, t)$, and consequently by (1.10), there exists $\epsilon > 0$ such that if $t > \tau$ then

$$rac{|Q(x,t)|}{t} \geq c(rac{t}{ au})^\epsilon rac{|Q(x, au)|}{ au}.$$

Hence,

$$\int_{ch}^{\infty} \frac{dt}{|Q(x,t)|} = \int_{ch}^{\infty} \frac{t}{|Q(x,t)|} \frac{dt}{t} \le \int_{ch}^{\infty} \frac{h}{|Q(x,h)|} (\frac{h}{t})^{\epsilon} \frac{dt}{t} = c \frac{h}{|Q(x,h)|}.$$

Finally, we note that $|\Sigma| \ge c > 0$, with c independent of x, since, by the change of variables $z = H(2a^2r, x, y)$,

$$\begin{split} &|\sum|=\int_{\Sigma}dy\simeq\int_{H(2a^2r,x,\sum)}\frac{1}{|Q(x,2a^2r)|}dz\\ &=\frac{|H(2a^2r,x,\sum)|}{|Q(x,2a^2r)|}=\frac{|E\cap H(2a^2r,x,\Delta^{\alpha}_{\epsilon}(\sigma)|)}{|Q(x,2a^2r)|}\geq c\beta\frac{|Q^{\sigma}(x,2a^2r)|}{|Q(x,2a^2r)|}\geq c>0. \end{split}$$

The lemma follows by combining the last two last estimates with (4.7).

Proof of Theorem E.

Define $Tf(x) = \int_{\mathbb{R}^n} f(y)K(x,y)dy$, where $K(x,y) = \frac{\delta(x,y)}{|Q(x,\delta(x,y))|}$. Fix S a d-ball. In order to show that for a pair of weights \tilde{v} . \tilde{w} we have $||Tf||_{L^2(S,\tilde{v})} \leq ||f||_{L^2(S,\tilde{w})}$ (where $||f||_{L^2(S,\tilde{v})} = (\int_S f^2 \tilde{v})^{1/2}$) for all $f \geq 0$. $supp f \subset S$. according to [SW], we need to verify that the following conditions hold:

(a) there exists s > 1 such that

$$|arphi(I)|I|(rac{1}{|I|}\int_{I}\check{v}^{s}dx)^{rac{1}{2s}}(rac{1}{|I|}\int_{I}\check{w}^{-s}dx)^{rac{1}{2s}}\leq c$$

for all d-balls $I \subset 2S$, where $\varphi(I)$ is defined to be

$$\varphi(I) = sup\{K(x, y) : x, y \in I. d(x, y) \geq \frac{1}{2}r(I)\};$$

(b) there is $\epsilon > 0$ such that

$$rac{|I^{'}|}{|I|} \leq c_{\epsilon} rac{arphi(I)}{arphi(I^{'})} (rac{r(I^{'})}{r(I)})^{\epsilon}$$

for all pairs of *d*-balls $I' \subset I$.

Note that it is convenient to work with d since the results of [SW] hold for pseudometrics (a pseudo-metric d is a quasi-metric satisfying d(x, y) = d(y, x) for all $x, y \in \mathbb{R}^n$).

Define $\tilde{v} = \frac{v}{v(S)}$ and $\tilde{w} = \frac{w_1}{w_1(S)}r(S)^2$. Note that if $x, y \in I$ and $d(x, y) \ge \frac{1}{2}r(I)$, then by (1.9)

$$K(x,y) = \frac{\delta(x,y)}{|Q(x,\delta(x,y))|} \le \frac{2ar(I)}{|Q(x,\frac{1}{2a}r(I))|} \le c\frac{r(I)}{|Q(x,r(I))|}$$

and since $x \in I$, $|Q(x, r(I))| \simeq |I|$. Therefore,

$$\varphi(I) \leq c \frac{r(I)}{|I|}.$$

So, the expression in (a) is bounded by

$$c\frac{r(I)}{|I|}|I|(\frac{1}{|I|}\int_{I}(\frac{v}{v(S)})^{s}dx)^{\frac{1}{2s}}(\frac{1}{|I|}\int_{I}(\frac{w_{1}}{w_{1}(S)}r(S)^{2})^{-s}dx)^{\frac{1}{2s}}$$

$$\leq c\frac{r(I)}{r(S)}(\frac{1}{|I|}\int_{I}(\frac{v}{v(S)})^{s}dx)^{\frac{1}{2s}}(\frac{1}{|I|}\int_{I}(\frac{w_{1}}{w_{1}(S)})^{-s}dx)^{\frac{1}{2s}},$$

which is equivalent to the expression in condition (1.18) (if we use doubling and (1.9)). This proves (a).

To show (b) we note that if $x, y \in I$ and $d(x, y) \ge \frac{1}{2}r(I)$ then

$$K(x, y) \ge \frac{(2a)^{-1}r(I)}{|Q(x, 2ar(I))|} \ge c\frac{r(I)}{|I|}.$$

Thus $\varphi(I) \simeq \frac{r(I)}{|I|}$. Then, if $I' \subset I$, $\frac{\varphi(I)}{\varphi(I')} \simeq \frac{r(I)}{r(I')} \frac{|I'|}{|I|}$ and we obtain (b) with $\epsilon = 1$. By doubling and (1.9), it follows that

$$\|Tf\|_{L^2(Q,\tilde{v})} \le c \|f\|_{L^2(Q,\tilde{w})}$$

for all $f \ge 0$, $supp f \subset Q$, where $\tilde{v} = \frac{v}{v(Q)}$ and $\tilde{w} = \frac{w_1}{w_1(Q)} r(Q)^2$.

Suppose u is a Lipschitz function in Q and $|E| = |\{x \in Q(\xi, kr) : u(x) = 0\}| \ge \beta |Q|,$ 1/2 < k < 1. If we combine lemma (4.1) and the fact that $||Tf||_{L^2(Q,\bar{v})} \le c ||f||_{L^2(Q,\bar{w})}$ we obtain

$$(4.8) \quad (\frac{1}{v(Q)}\int_{Q}|u(x)|^{2}\varphi(x)v(x)dx)^{\frac{1}{2}} \leq cr(Q)(\frac{1}{w_{1}(Q)}\int_{Q}|\nabla_{\lambda}u(z)|^{2}\varphi(z)w_{1}(z)dz)^{\frac{1}{2}}.$$

Given Q and a general Lipschitz function u, there is a number $\mu = \mu(u, Q)$, the median of u in Q, such that if $Q^+ = \{x \in Q : u(x) \ge \mu\}$ and $Q^- = \{x \in Q : u(x) \le \mu\}$ then $|Q^+| \ge \frac{|Q|}{2}$ and $|Q^-| \ge \frac{|Q|}{2}$. Hence, $u_1 = max\{u - \mu(u, kQ), 0\}$ and $u_2 = max\{\mu(u, kQ) - u, 0\}$ satisfy the hypothesis of Lemma (4.1) for some β depending on k and so if we apply (4.8) to u_1 and u_2 and add both inequalities, we get

(4.9)
$$\int_{Q} |u(x) - \mu|^2 \varphi(x) v(x) dx \leq cr(Q)^2 \frac{v(Q)}{w_1(Q)} \int_{Q} |\nabla_{\lambda} u(z)|^2 \varphi(z) w_1(z) dz.$$

Finally, it is easy to see that in (4.9) μ can be replaced by the average A_Q of u defined in Theorem E. In fact,

(4.10)
$$\int_{Q} |u(x) - A_{Q}|^{2} \varphi(x) v(x) dx$$
$$\leq 2 \int_{Q} |u(x) - \mu|^{2} \varphi(x) v(x) dx + 2 \int_{Q} |\mu - A_{Q}|^{2} \varphi(x) v(x) dx.$$

and

$$\begin{split} &\int_{Q}|\mu-A_{Q}|^{2}\varphi(x)v(x)dx=(\varphi v)(Q)|\mu-A_{Q}|^{2}\\ = &(\varphi v)(Q)|\mu-\frac{1}{\varphi(Q)}\int_{Q}u(x)\varphi(x)dx|^{2}\leq(\varphi v)(Q)(\frac{1}{\varphi(Q)}\int_{Q}|u(x)-\mu|\varphi(x)dx)^{2}\\ \leq &\frac{(\varphi v)(Q)}{(\varphi(Q))^{2}}\int_{Q}|u(x)-\mu|^{2}\varphi^{2}(x)v(x)dx\int_{Q}\frac{1}{v(x)}dx, \end{split}$$

where in the last inequality we used Schwarz's inequality. Since $v \in A_2$ and $0 \le \varphi \le 1$, it follows from (4.9) and (4.10) that

$$\int_{Q} |u(x) - A_{Q}|^{2} \varphi(x) v(x) dx$$

$$\leq cr(Q)^{2} [1 + (\frac{|Q|}{\varphi(Q)})^{2}] \frac{v(Q)}{w_{1}(Q)} \int_{Q} |\nabla_{\lambda} u(z)|^{2} \varphi(z) w_{1}(z) dz.$$

This finishes the proof of Theorem E if we note that $\varphi(Q) \simeq |Q|$ since $1/2 \le k \le 1$.

The next corollary is also helpful.

Corollary 4.11 Theorem E is also true with $A_Q = \frac{1}{(\varphi v)(Q)} \int_Q u \varphi v dx$.

Just note that

$$\begin{split} &\int_{Q}|\mu-A_{Q}|^{2}\varphi vdx=(\varphi v)(Q)|\mu-A_{Q}|^{2}\\ \leq &(\varphi v)(Q)|\frac{1}{(\varphi v)(Q)}\int_{Q}|\mu-u|\varphi vdx|^{2}\leq\int_{Q}|\mu-u|^{2}\varphi vdx, \end{split}$$

where the last inequality follows by Schwarz's inequality.

5 Harnack's inequality

The proof of Theorem A follows as an application of Bombieri's lemma which we state next. For its proof see section 5 of [GW2].

Lemma 5.1 Let $R(\rho)$ be a one parameter family of rectangles in \mathbb{R}^{n+1} , $R(\sigma) \subset R(\rho)$, $1/2 \leq \sigma \leq \rho \leq 1$ and let ν be a doubling measure in \mathbb{R}^{n+1} . Let A, μ , M, m, θ and κ be positive constants such that $M \geq \frac{1}{\mu}$ and suppose that f is a positive measurable function defined in a neighborhood of R(1) satisfying

(5.2)
$$ess \ sup_{R(\sigma)}f^{p} \leq \frac{A}{(\rho-\sigma)^{m}} \iint_{R(\rho)} f^{p}\nu(x)dxdt$$

for all σ , ρ , p, $1/2 \le \theta \le \sigma < \rho < 1$, 0 and

(5.3)
$$\nu(\{(x,t) \in R(1) : \log f > s\}) \le (\frac{\mu}{s})^{\kappa} \nu(R(1))$$

for all s > 0. Then there is a constant $\gamma = \gamma(A, m, \kappa) > 0$ such that

$$log(ess \ sup_{R(\theta)}u) \leq rac{\gamma}{(1- heta)^{2m}}\mu.$$

Hence, in order to prove Theorem A, we need a mean value inequality (that we proved in section 3) and a logarithm estimate which is given by Theorem F (some steps of its proof we will present in this section). The next lemma shows that the test function described on page 537 of [FL1] satisfies the conditions of Theorem E. Then, as we said before, the proof of Theorem (F) follows as Lemma (4.9) of [GW2].

Lemma 5.4 Given $Q = Q(\xi, r)$ and 0 < k < 1, there exists $\varphi \in C^1$ such that $\varphi \equiv 1$ in $kQ, 0 \leq \varphi \leq 1$, $supp \varphi \subset Q, |\nabla_\lambda \varphi| \leq \frac{c}{r(1-k)}$ and $\varphi(x)\varphi(H(t_o, x, y)) \leq \varphi(H(t, x, y))$ for all x, y, t, t_o with $0 \leq t \leq t_o$.

Proof: Consider the function φ given by [FL1], page 537:

$$\varphi(x) = \prod_{j=1}^{n} \psi(\frac{|x_j - \xi_j|}{F_j(\xi^*, r)}),$$

where $\psi \in C^{\infty}(R)$, $0 \leq \psi \leq 1$, $\psi(t) = \psi(-t)$, $\psi \equiv 1$ on [-k, k], $\psi = 0$ outside] -1, 1[, $|\psi'(t)| \leq 2(1-k)^{-1}$, for all $t \in R$. Here, we show that φ satisfies the last condition since all the others are proved in [FL1], page 537.

Fix t, $0 < t < t_0$, x and y. Define z = H(t, x, y). Then, $z_j = x_j + y_j \int_0^t \lambda_j (H(s, x, y)) ds$. Suppose $z_j - \xi_j \ge 0$. If $y_j \ge 0$ then

$$|z_j-\xi_j|\leq x_j-\xi_j+y_j\int_0^{t_\circ}\lambda_j(H(s,x,y))ds=H_j(t_\circ,x,y)-\xi_j.$$

On the other hand, if $y_j < 0$,

$$|z_j-\xi_j|\leq |x_j-\xi_j|.$$

Thus, if $z_j - \xi_j \ge 0$ then $|z_j - \xi_j| \le |H_j(t_o, x, y) - \xi_j|$ or $|z_j - \xi_j| \le |x_j - \xi_j|$. The same holds if $z_j - \xi_j < 0$. Since $\psi(t)$ can be chosen to be non-increasing for positive t, then $\varphi(z) \ge a_1...a_n$, where $a_j = \psi(\frac{|x_j - \xi_j|}{F_j(\xi^*, r)})$ or $a_j = \psi(\frac{|H_i(t_o, x, y) - \xi_j|}{F_j(\xi^*, r)})$. Since $0 \le \psi \le 1$, $a_j \ge \psi(\frac{|H_j(t_o, x, y) - \xi_j|}{F_i(\xi^*, r)})\psi(\frac{|x_j - \xi_j|}{F_j(\xi^*, r)})$

for
$$1 < j < n$$
. Therefore,

$$\varphi(z) \geq \varphi(x)\varphi(H(t_{\circ}, x, y)).$$

The next 3 lemmas are needed in order to show that the hypothesis in Theorem A imply those in Theorems D and E.

$$\left(\frac{r(I)}{r(B)}\right)^2 \frac{w_2(I)}{w_2(B)} \le c \frac{w_1(I)}{w_1(B)}$$

for any pair of δ -balls I, B, with $I \subset 2B$.

Proof: Suppose $I = Q(u_o, r(I))$ and B = Q(x, r(B)) and define

$$F(u) = \sum_{j=1}^{n} \frac{|u_j - (u_\circ)_j|}{F_j(u_\circ^\star, r(I))} r(I)\varphi(u)$$

where φ is the function described in lemma (5.4) associated with I (as opposed to B) and k = 1/2. If $u \in I$, by (1.8)

$$|rac{\partial F}{\partial u_k}(u)| \leq rac{r(I)}{F_k(u^\star_{\diamond},r(I))} + rac{\partial arphi}{\partial u_k}(u)nr(I),$$

for $k \in \{1, ...n\}$, and using the fact that $\lambda_k(u) = \lambda_k(u^\star) \le \lambda_k(H(u^\star, r(I)))$ if $u \in I$ we get

$$|\lambda_k(u)\frac{\partial F}{\partial u_k}(u)| \leq \frac{F_k(u^*,r(I))}{F_k(u^*_\circ,r(I))} + nr(I)\lambda_k(u)\frac{\partial \varphi}{\partial u_k}(u)$$

and by lemma (2.4) and the fact that $|\nabla_{\lambda}\varphi| \leq c/r(I)$ we have $|\nabla_{\lambda}F(u)| \leq c\chi_{I}$.

We have Poincaré's inequality for F, i.e.,

(5.6)
$$(\frac{1}{w_2(B)} \int_{n4^{\eta+1}B} |F(u) - av_{n4^{\eta+1}B}F|^2 w_2(u) du)^{1/2} \\ \leq cr(B) (\frac{1}{w_1(B)} \int_{na^2 4^{\eta+1}B} |\nabla_{\lambda}F(u)|^2 w_1(u) du)^{1/2},$$

where $\eta = \max_{j=1,...n} \{G_j\}$. The right side of (5.6) is bounded by $cr(B)(\frac{w_1(I)}{w_1(B)})^{1/2}$ by doubling and the fact that $|\nabla_{\lambda}F| \leq c\chi_I$. Now, if $u \in \frac{1}{4}I$ there exists $k \in \{1,...,n\}$ such that $|u_k - (u_o)_k| \geq F_k(u_o^*, \frac{1}{4}r(I))$ and then if $u \in \frac{1}{2}I/\frac{1}{4}I$ (note that $\varphi(u) = 1$)

(5.7)
$$F(u) \ge \frac{F_k(u_o^*, \frac{1}{4}r(I))}{F_k(u_o^*, r(I))} r(I) \ge (\frac{1}{4})^{G_k} r(I) \ge \frac{1}{4^{\eta}} r(I).$$

Also, if $u \in I$, $F(u) \leq nr(I)$ and therefore

$$av_{n4^{\eta+1}B}F \leq \frac{|I|}{|n4^{\eta+1}B|}nr(I).$$

But, by (1.10), $F_j(x_B^*, n4^{n+1}r(B)) \ge 2n4^n F_j(x_B^*, 2r(B))$, and by (1.11), $|n4^{n+1}B| \ge (2n4^n)^n |2B| \ge 2n4^n |2B|$. Hence, since $I \subset 2B$, $av_{n4^{n+1}B}F \le \frac{r(I)}{2.4^n}$ and then if $u \in \frac{1}{2}I/\frac{1}{4}I$ (using also (5.7)),

$$|F(u) - av_{n4^{\eta+1}B}F| \ge cr(I).$$

Therefore, the left hand side of (5.6) is larger than a constant times

$$[\frac{(r(I))^2}{w_2(B)}w_2(\frac{1}{2}I\setminus\frac{1}{4}I)]^{1/2} \ge cr(I)(\frac{w_2(I)}{w_2(B)})^{1/2},$$

where in the last inequality we used the fact that $w_2(\frac{1}{2}I\setminus\frac{1}{4}I) \simeq w_2(I)$, which is shown in the next lemma.

Lemma 5.8 If w is a doubling weight then $w(Q(u, 2s) \setminus Q(u, s))$ is equivalent to w(Q(u, s)). Proof: Choose $\eta \in Q(u, 2s)$ such that $\delta(u, \eta) = \frac{3s}{2}$. By Lemma 2.5,

$$Q(\eta, rac{3\epsilon s}{2(2a^2)^{\zeta}}) \subset Q(u, (1+\epsilon)rac{3s}{2})$$

for any $0 < \epsilon < 1$.

Choose j such that $\delta(u,\eta) = \varphi_j(u^\star, |\eta_j - u_j|)$. Then, if $y \in Q(\eta, \frac{3\epsilon s}{2(2a^2)\zeta})$,

$$F_j(u^\star,rac{3s}{2}) = |\eta_j - u_j| \leq |\eta_j - y_j| + |y_j - u_j| \leq F_j(\eta^\star,rac{3\epsilon s}{2(2a^2)^\zeta}) + |y_j - u_j|.$$

By (1.10) and Lemma 2.4,

$$F_j(u^\star,rac{3s}{2})\leq \epsilon F_j(u^\star,rac{3s}{2})+|y_j-u_j|.$$

Thus,

$$|y_j-u_j|\geq (1-\epsilon)F_j(u^\star,rac{3s}{2})\geq F_j(u^\star,(1-\epsilon)rac{3s}{2}).$$

If we choose $\epsilon = 1/3$ we have proved that

$$Q(\eta, rac{s}{2(2a^2)^{\zeta}}) \subset Q(u, 2s) ackslash Q(u, s).$$

The lemma follows by doubling.

Lemma 5.9 If $w_1 \in A_2$, $v \in A_\infty$ and Poincaré's inequality holds for w_1 , v with q = 2 and $\mu = 1$, then condition (1.21) holds.

Proof: If $v \in A_{\infty}$ there exists s > 1 such that

$$(\frac{1}{|I|}\int_{I}(\frac{v}{v(B)})^{s}dx)^{1/s} \leq \frac{1}{|I|}\frac{v(I)}{v(B)}.$$

So, since Poincaré's inequality holds for w_1 , v with q = 2, by Lemma 5.5

$$(\frac{r(I)}{r(B)})^2 (\frac{1}{|I|} \int_I (\frac{v}{v(B)})^s dx)^{1/s} \le c \frac{1}{|I|} \frac{w_1(I)}{w_1(B)},$$

and the above condition is equivalent to condition (1.18) since $w_1 \in A_2$.

Now we are ready to prove Theorem A.

Proof of Theorem A

Let u be a non-negative solution of (1.1) in the cylinder $R_{\alpha,\beta} = R_{\alpha,\beta}(x_o, t_o) = Q(x_o, \alpha) \times (t_o - \beta, t_o + \beta)$. If we define $T(x, t) = (x, \beta t + t_o)$ and $\bar{u}(x, t) = u(T(x, t))$ then u is a solution in $R_{\alpha,1}(x_o, 0)$ of the equation

$$v(x)\bar{u}_t = div(\bar{A}(x,t)\nabla\bar{u}),$$

where the coefficients matrix $\bar{A} = (\bar{a}_{ij})$ is defined by $\bar{a}_{ij}(x, t) = \beta a_{ij}(x, \beta t + t_o)$ and satisfies the degeneracy condition

$$ar{w_1}(x)\sum_{j=1}^n \lambda_j^2(x) \xi_j^2 \leq \sum_{j=1}^n ar{a_{ij}}(x,t) \xi_i \xi_j \leq ar{w_2}(x)\sum_{j=1}^n \lambda_j^2(x) \xi_j^2,$$

if we put $\bar{w}_i = \beta w_i$, for i = 1, 2.

Suppose $|p| < [\alpha^{-2}\overline{\Lambda}(Q(x_{\circ},\alpha)) + \alpha^{2}/\overline{\lambda}(Q(x_{\circ},\alpha))]^{-1}$, where $\overline{\Lambda}(Q) = \overline{w}_{2}(Q)/v(Q)$, $\overline{\lambda}(Q) = \overline{w}_{1}(Q)/v(Q)$. Write

$$R^{-}(\rho) = Q(x_{\circ}, \frac{(\rho+1)\alpha}{3}) \times \left(-\frac{1}{2} - \frac{\rho}{2}, -\frac{1}{2} + \frac{\rho}{2}\right)$$
$$R^{+}(\rho) = Q(x_{\circ}, \frac{(\rho+1)\alpha}{3}) \times \left(\frac{1}{2} - \frac{\rho}{2}, 1\right)$$

If we take $1/2 \le \rho < r < 1$ then the mean value inequalities in Theorem (3.15) applied to u give

(5.10)
$$ess \ sup_{R^{-}(\rho)} \bar{u}^{p} \leq c \frac{1}{(r-\rho)^{m}} \iint_{R^{-}(r)} \bar{u}^{p} (\frac{\bar{w}_{2}}{\bar{w}_{2}(Q_{\alpha})} + \frac{v}{v(Q_{\alpha})}) dx dt,$$

for some m > 0, if p > 0, where $Q_{\alpha} = Q(x_{\circ}, \alpha)$, and

(5.11)
$$ess \ sup_{R^+(\rho)}\bar{u}^p \le c \frac{1}{(r-\rho)^m} \iint_{R^+(r)} \bar{u}^p (\frac{\bar{w}_2}{\bar{w}_2(Q_\alpha)} + \frac{v}{v(Q_\alpha)}) dx dt,$$

if p < 0. Moreover, by Theorem B, \bar{u} is locally bounded and by adding $\epsilon > 0$, we may assume by letting $\epsilon \longrightarrow 0$ at the end of the proof that \bar{u} is bounded below in $R_{\alpha,1}(x_0, 0)$ by a positive constant.

Now, by Theorem F, we have

(5.12)
$$[\left(\frac{v}{v(Q_{\alpha})} + \frac{\bar{w}_{2}}{\bar{w}_{2}(Q_{\alpha})}\right) \otimes 1](E^{+}) \\ \leq \left\{\frac{1}{s}\frac{v(Q_{\alpha})}{\bar{w}_{1}(Q_{\alpha})}\alpha^{2}\right\}^{\kappa} \leq c\left\{\frac{1}{s}[\alpha^{-2}\bar{\Lambda}(Q_{\alpha}) + \alpha^{2}\frac{1}{\bar{\lambda}(Q_{\alpha})}]\right\}^{\kappa},$$

and the same inequality holds for E^- , where E^+ , E^- are defined in Theorem F with $u = \bar{u}, R = \frac{2}{3}\alpha, a = -1, b = 1, t_o = 0, M_2 \simeq \bar{\Lambda}(Q_{\alpha})/\alpha^2$.

By (5.10) and (5.12), we can apply Bombieri's lemma to the family of rectangles $R^-(\rho)$ with $\mu = \alpha^{-2} \bar{\Lambda}(Q_{\alpha}(x_{\circ})) + \alpha^{2}/\bar{\lambda}(Q_{\alpha}(x_{\circ})), M = 1/\mu$ and $f = e^{-M_{2}+V(0)}\bar{u}$, obtaining

$$ess \ sup_{R^{-}(1/2)}f \leq Ce^{c[\alpha^{-2}\bar{\Lambda}(Q_{\alpha})+\alpha^{2}/\bar{\lambda}(Q_{\alpha})]},$$

and this implies that

(5.13)
$$ess \ sup_{R^{-}(1/2)}\bar{u} \leq C e^{c[\alpha^{-2}\bar{\Lambda}(Q(\boldsymbol{x}_{0},\alpha))+\alpha^{2}/\bar{\lambda}(Q(\boldsymbol{x}_{0},\alpha))]} e^{-V(0)}.$$

Also, by (5.11) and (5.12), we can apply Bombieri's lemma to the family of rectangles $R^+(\rho)$, $f = e^{-M_2 - V(0)}\bar{u}^{-1}$, with μ , M, M_2 and V(0) as before, and we obtain

ess
$$sup_{R^+(1/2)} f \leq Ce^{c[\alpha^{-2}\bar{\Lambda}(Q_\alpha)+\alpha^2/\bar{\lambda}(Q_\alpha)]}$$

which implies that

(5.14)
$$e^{-V(0)} \leq C e^{c[\alpha^{-2}\overline{\Lambda}(Q(x_{\circ},\alpha)) + \alpha^{2}/\overline{\lambda}(Q(x_{\circ},\alpha))]} e^{ss} \inf_{R^{+}(1/2)} \overline{u}.$$

Combining (5.13) and (5.14) it follows that

$$ess \ sup_{R^{-}(1/2)}\bar{u} \leq c_1 e^{c[\alpha^{-2}\bar{\Lambda}(Q(x_0,\alpha)) + \alpha^2/\bar{\lambda}(Q(x_0,\alpha))]} ess \ inf_{R^{+}(1/2)}\bar{u}.$$

Since, $T(R^{-}(1/2)) = R^{-}$. $T(R^{+}(1/2)) = R^{+}$ and $\alpha^{-2}\overline{\Lambda}(Q_{\alpha}) + \alpha^{2}/\overline{\lambda}(Q_{\alpha}) = \alpha^{-2}\beta\Lambda(Q_{\alpha}) + \alpha^{2}\beta^{-1}/\lambda(Q_{\alpha})$, Theorem A follows.

Remark: Using the equivalence between d and δ we can prove the following analogues of Theorem A and B for the metric d.

THEOREM A': Assume (i), (ii), (iii) of Theorem A. If u is a non-negative solution of (1.1) in the cylinder $R = S(x_0, \alpha a^2) \times (t_0 - \beta, t_0 + \beta)$, then

$$ess \ sup_{R^-} u \leq c_1 exp\{c_2[\alpha^{-2}\beta\Lambda(S(x_0,\alpha)) + \alpha^2\beta^{-1}\lambda(S(x_0,\alpha))^{-1}]\}ess \ inf_{R^+} u$$

where $R^- = S(x_0, \alpha/2) \times (t_0 - 3\beta/4, t_0 - \beta/4), R^+ = S(x_0, \alpha/2) \times (t_0 + \beta/4, t_0 + \beta),$ $\Lambda(S) = w_2(S)/v(S)$ and $\lambda(S) = w_1(S)/v(S)$ for a d-ball S. Here the constants c_1, c_2 depend only on the constants which arise in (i), (ii), (iii).

THEOREM B': Assume hypothesis (i), (ii), (iii) of Theorem A hold. Let 0 , $<math>\alpha, \beta > 0, \alpha/2 < \alpha' < \alpha, \beta/2 < \beta' < \beta$ and let $S(x_0, \alpha) = S, S(x_0, \alpha') = S'$ and $R(\alpha, \beta) = S \times (t_0 - \beta, t_0 + \beta), R'_+(\alpha, \beta) = S' \times (t_0 - \beta', t_0 + \beta)$. If u is a solution of (1.1) in $R(a^2\alpha, \beta)$, then u is bounded in $R'_+(\alpha, \beta)$ and

ess
$$sup_{R', (\alpha, \beta)}|u|^p$$

 $\leq D(\alpha^{2}\beta^{-1}\lambda(S)^{-1}+1)^{1/(h-1)}(\alpha^{-2}\beta\Lambda(S)+1)^{h/(h-1)} \mathcal{H}_{R(\alpha^{2}\alpha,\beta)}|u|^{p}(\alpha^{-2}\beta w_{2}+v)dxdt$

where D is as in Theorem B, and $C = c \frac{\alpha^{2+b\beta}}{(\alpha-\alpha')^{2+b}(\beta-\beta')}$. Here h > 1, c > 0 and b > 0 are constants which are independent of $u, p, \alpha, \alpha', \beta, \beta'$.

References

[AS] D. Aronson and J. Serrin, "Local behavior of solutions of quasilinear parabolic equations", Arch Rat. Mech. Anal. 25 (1967), 81-122.

[CW1] S. Chanillo and R. Wheeden, "Harnack's inequality and mean value inequalities for solutions of degenerate elliptic equations", Comm. P.D.E. 11 (10) (1986), 1111-1134.
[CW2] S. Chanillo and R. Wheeden, "Weighted Poincaré and Sobolev inequalities for the Peano maximal function", Amer. J. Math. 107 (1985), 1191-1226.

[CoW] R. Coifman and G. Weiss, "Analyse harmonique non-commutative sur certain espaces homogenes", Springer-Verlag, Berlin, 1971.

[CS] F. Chiarenza and R. Serapioni, "A Harnack inequality for degenerate parabolic equations", Comm. P.D.E. 9 (1984), 719-749.

[C] A.P. Calderon, "Inequalities for the maximal function relative to a metric", Studia Math. 57 (1976), 297-306.

[CF] R.R. Coifman and C. Fefferman, "Weighted norm inequalities for maximal functions and singular integrals", Studia Math. 51 (1974), 241-250. [FS] B. Franchi and R. Serapioni, "Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach", Ann. Scuola Norm. Sup. Pisa (IV) 14 (1987), 527-568.

[FL1] B. Franchi and E. Lanconelli, "Holder regularity for a class of linear non uniformily elliptic operators with measurable coefficients", Ann. Scuola Norm. Sup. Pisa (IV) 10 (1983), 523-541.

[FL2] B. Franchi and E. Lanconelli, "Une metrique associée a une classe d'operateurs elliptiques dégénérés", Rend. Sem. Mat. Univ. Politec. Torino (1983), 105-114.

[GW1] C. Gutierrez and R. Wheeden, "Sobolev interpolation inequalities with weights", Trans. Amer. Math. Soc, to appear.

[GW2] C. Gutierrez and R. Wheeden, "Mean value and Harnack inequalities for degenerate parabolic equations", Colloquium Math.

[GT] D. Gilbarg and N.S. Trudinger, "Elliptic Partial Equations of Second Order", second edition, Springer-Verlag, Berlin, 1977.

[J] D. Jerison, "The Poincaré inequality for vector fields satisfying Hormanders's condition", Duke Math. J. 53 (1986), 503-523.

[SW] E. Sawyer and R. Wheeden, "Weighted inequalities for fractional integrals in Euclidean and homogeneous spaces", to appear.

Rutgers University New Brunswick, NJ, 08903