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1 Introduction 
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In this paper we study the behavior of solutions of degenerate parabolic equations of the 

form 
. n  

( 1 . 1 )  V(Z)Ut(z, t) = L D.,; (aij(z, t)D"ju(z, t) ) ,  i,j=1 
where the coefficients are measurable functions, and the coefficient matrix A = (aij) is 

symmetric and satisfies 

( 1 .2)  
n n n 

w1 (z) ?: A;(Z)e; :5 .� aij (z, t)eiej :5 w2 (z) ?: AHx)e; J=1 ',J=1 J=l 

for e = (e1 , . . .  , en) E R!' and (z, t )  E n x (a, b) , n a bounded open set in R!'. 
We are goiag to assume some conditions on the weights (non-negative functions that 

are locally integrable) v, W1 ,  W2 and on the functions Aj, j = 1, . . .  , n, in order to be able 

to derive mean value and Harnack inequalities for solutions of ( 1 . 1 ) .  The assumptions on 

Aj , which we list below, are the ones stated in [FL2] . 

( 1 .3) A1 == 1 , Aj (X ) = Aj {Zl , . . .  , zj_d, j = 2, . . . , n, Vz E R". 

( 1 .4) Let 11 = {x E R!' : 11 Xk = O} .  Then .Aj E C (Rn ) n C1(Rn\ m and 0 < Aj (X )  :5 A , 

Vx E  R"\ 11,  j = 1 ,  . . .  , n . 

( 1 .5) Aj (X1 . . . .  , X; ,  . . .  , xj-d = Aj (X1 , . . . , -x; ,  . , . , Xi-1 ) ,  for j = 2 ,  . . . , n  and i = 1 , . . .  , j  - 1 .  

( 1 .6) There is a family ofn(n-1)/2 non-negative numbers pj,i such that 0 :5 xi(D.,;Aj ) (X) :5 
Pj,iAj(X) ,  for 2 :5 j :5 n, 1 :5 i :5  j - 1 and Vx E Rn\ Il. 

lThis work was supported by FAPESP- Fundac;ao de Amparo a Pesquisa do Estado de Sao Paulo
Brazil. 



2 3 1  

Denote r = 0 x (a, b)  and define H = H(r) to be the closure of Lip(r)  under the 

norm 

( 1 .  7)  1 1 1£ 1 1 2 = fir u2 (x ,  t ) (v (x )  + w2 (x » dxdt 

+ fir 1''\1 >.u( x ,  t ) 1 2w2 ( x ) dxdt + fir u� ( x ,  t )� ( x ) dxdt , 

where V.>.u = (A1 Dz, u, . . .  , AnD"'q u ) .  Thus , H(r)  is the collection of all ( n + 2)- triples 

(1£, p, B) such that there exists Uk E Lip( r )  with Uk ---+ 1£, V'>.u,. ---+ p, (u,. ) t ---+ B ,  

the convergence being i n  the appropriate L 2  space. We need t o  verify that P i s  uniquely 

determined and for this it is enough to show that for every F E c.;x>(r) ,  fr uV>.F = 
- fr pF. In order to prove this , note that since 1£ E H, there exists {u,.} C Lip(r) such 

that 1£,. ---+ 1£ in H. Then, by ( 1 . 3 ) ,  

Therefore, 

ir u"V.>.F = - irC'\1.>.u/.:)F. 

By Schwarz's inequality and assuming that W;l E L}oe, 

l ir 1£,. V.>.F -ir 1£'\1 .>.F I :5 ir  1 1£,. - ulw�/2 lV .>.F lw;1/2 

< 1 1 1£,. - u l l L�2 (ir IV .>.FI2w;1 )1 /2 :5 c l lu/.: - uI I L�2 '  
Hence, fr u,.V.>.F ---+ fr uV.>.F and similarly we can show fr (V.>.u,. ) F  ---+ fn PF. In the 

-same way we prove B is uniquely determined ; if v-l E Lloe . We also define Ho ( r )  to he  

the closure of Lipo (r ) ,  Lipschitz functions with compact support in r ,  under the n o rlll 

defined in ( 1 . 7) .  It is easy to see that the bilinear form b on Lip( r )  n H ( r )  defined by 

can be continued to all of H(r) (here and in the res t of the paper the vector \I n  is  

understood to be the vector ( {, PI ,  . . .  , .>.l. Pn) where \7.>.1£ = ({3l ,  . . .  , {3n» . We say 1£ E H ( r )  

i s  a solution of ( 1 . 1) if b(u, ,p) = 0 for any ,p  E Ho ; 1£ E H(r) i s  a subsolution if b (u, 4» :5 0 

for any ,p E Ho(r), ,p positive in the H-sense, i .e . , ,p can be approximat�d in H(r) by 

positive functions with compact support in rj 1£ E H(r) is a supersolution if b(u, 4» � 0 

for any ,p E Ho , 4> positive in the H-sense. 

We also define H =  H(O) to be the closure of Lip(O)  under the norm 
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and Ho(n) to be the closure of Lipo(n) under the norm defined above. 

Next we will define a natural distance (associated with the functions >.; , j = 1, . . .  , n) 

and state some of its properties . This metric was first introduced by [FLl] .  

A vector v E Rn is called a >.-subunit vector at a point x if  (v, e) 2 :$ � >.� (x )e� ,  
"Ie E Rn. An absolutely continuous curve '"'( : [0, T ]  _ Rn i s  called a >.-subunit curve if 
i( t) is a >.-subunit vector at '"'( t) for a.e. t E [0, T] . 

For any x ,  y E Rn we define d : Rn x Rn _ R+ by 

d(x ,  y) = inf{T E R+ : .  there exists a >.-subunit curve '"'( : [0, T] - Rn with '"'( 0) = x,  

'"'( T) = y} .  

One can check that this i s  a well-defined metric. There i s  a quasi-metric 8 (a function 

8 : Rn x Rn _ R+ is called a quasi-metric if there exists M 2:: 1 such that S(x , y) :$ 

M{S(x , z)  + S(z, y)} for all x, y, z E R"') equivalent to d, and sometimes easier to work 

with than d (see [FL2] ) .  If x E Rn and t E R put Ho (x , t) = x and Hk+1 (x , t) = Hk(x , t) + 

t>'k+1 (Hk(x , t» ek+1 for k = O, . . . , n - l ,  where {ek} is the standard basis in R"'. Define 

rp; (x*, . )  = (F;(x* , . » -I , the inverse function of Fj{x* , . ) , where Fj(x ,  s) = s>'j (Hj-dX, s » ,  
for j = 1 ,  . . .  , n and x* = ( l x1 1 ,  . . . , Ix", l ) .  

We define 15 : R'" x Rn - R+ as 

S(x , y) = MaXj=l ,  . . .  ,nrp; (x*, IXj - Yj l } ·  

Note that . 

( 1 . 8) S(x , y) < s is equivalent to IXj - Yj l < F;(x*, s ) , 1 :$  j :$  n .  

In ( 1 .9 ) ,  ( 1 . 10),  ( 1 . 11 )  below we state some basic facts concerning 5 and d (see also 

[FL2] ) .  

( 1 .9) There exists a 2:: 1 such that for any x,  Y E Rn, 

-1 < d(x , y) < a _ S(x , y) _ a. 

Consequently, 8 is a quasi-metric with S(x , y) :$ a2 [S(x ,  y) +c5(z, y) ]  and S(x , y) :$ a2c5(y, x).. 
( 1 . 10) For any x E Rn, s > ° and 0 E]O , I [  

oGj < FAx*, Os) < 0  - Fj (x* , s ) -
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where G1 = 1 and Gj = 1 + E1:: GIPj,l , for j = 2, . . .  , n. 

( 1 . 1 1 )  We denote S(x, r) = {y E Rn :  d(x , y) < r} and Q(x, r) = {y E Rn : 8(x , y) < r} 

and we will call S(x,  r) a d-ball and Q(x,  r) a 8-ball. Note that there is a constant A >  1 

such that IS (x ,  2r) 1 � AIS(x ,  r) 1 and IQ (x , 2r) 1 � AIQ(x ,  r) l , where I I  denotes Lebesgue 

measure. Also, by ( 1 . 8 ) ,  IQ (x ,  r) 1 = nj:l Fj(x*, r) . If Q = Q(x ,  r) , we write r = r(Q) . 

In general we say that a non-negative and locally integrable function w( x) is a doubling 

weight (w E D) if there exists a constant A > 1 such that w(2Q) � Aw(Q)  for any 8-ban 

Q, where 2Q = Q(x, 2r) , if Q = Q(x, r) and w(Q) = fQ w(x)dx . 

( 1 . 12) If w E D  then there exists 0 > 0 such that, Vr > 0, VO E]O, I ] ,  "Ix E Rn, 

w(Q(x ,  Br» ;::: B"w(Q(x , r) ) . 

Given 1 < p < 00 ,  we say w E Ap if there is a constant c > 0 such that for an 8-balls 

Q in Rn , 

( 1 . 13) 

Note that if we have the Ap condition with respect to 8, we have the same condition 

holding for the metric d, i . e. ( 1 . 1 3 )  holds with Q replaced by S ( using doubling and the 

equivalence between d an 8) . If v is a weight , 10 E Ap(v )  means an analogous inequality 

holds with dx and I Q I  replaced by v (x )dx and v ( Q ) , respectively. We use the notation 

A."o (v) = Up>1 Ap(v) .  The theory of weights in homogeneous spaces was studied by A P. 

Calderon in [C] and frequently we refer to this paper. 

If x , y E R", we shall denote by H(t, x , y ) = (H1 ( t , x , y) , . . .  , H,,(t , x , y) ) the solution at 

time t of the Cauchy problem Hj { . , x , y) = yj>'j (H( . , x , y» , Hj (O ,  x , y ) = Xj,  j = 1 , . . . , n . 

Given 0 '= (01 , . . .  , 0,, ) , E = ( E1 , . • .  , En ) with 0 < Ej < OJ , j = 1 , . . . , n , we denote tl.� 
= {y E R'"' : Ej  � Yj ::::; oj , j = 1 , . . . , n} . If a E { - I , l}n , we put Tt7y = (alYl , . . . , anY,, ) '  

Q"' (x ,  r) = {y E Q(x , r) : aj (Yj - Xj )  :::: 0 , j = 1 ,  . . .  , n} and tl.�(a )  = T", ( tl.� ) .  

Now we can state two results proved i n  [FS ] .  
Let , E]O ,  1 [  and a E { -- I , l }n b e  fixed . Then there exists E ,  0 E R"  as above such 

that , Vr > 0 and "Ix E .R" , 

( 1 . 14) I H(r, x , tl.�(a » ) n Q<T(x ,  r) 1  ;::: ( 1 - ,) I Q"' (x ,  r) l , 

where H(r, x , Ll�(a) ) = {H(x , r, y) : Y E tl.�(0") } .  
Also, there are positive constants Cl ,  C2 depending only on € ,  0 and Pj,; such that 
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cl IS(z, r) l :5  rrl' >'i(H(t, z , y»dt :5 c2 IS(z, r) 1  

for each z E RR, r > 0 and y E a:(a) . 
If q ;:: 2,  we say that Soholev inequality holds for WI , W2 if  for any u E Ho(Q) ,  Q a 

5-ball in RR, 

Given q ;:: 2 ,  we say the Poincare inequality holds for WI , W2 and ,." if there are constants 

C > 0 and a > 0 (see ( 1 .9» such that for any 5 ball Q and every u E H(a2Q ) we have 

( 1 . 17)  ( W2�Q) k l u  - av",Qu I QW2d;)l/Q :5 cr( Q ) ( Wl�Q ) 
LQ I V.xu I 2Wldx )l/2 ,  

where aV",Q = ,,(�) JQ ud,." and a2Q = Q (x , a2r) if Q = Q (x , r) . 
The reason that we have a2Q on the right side of ( 1 . 1 7) is that we do not have a 

Kohn type argument (see also [J) ) for the quasi-metric 6. In the d-metric , we can state 

( 1 . 17 )  with equal balls on both sides . For the metric 6, however, we have convenient 

cut-off functions (see[FL1] )  that are important in order to get Caccioppoli estimates for 
\ 

solutions of ( 1 . 1 )  (see (C . 1 ) ,  (C .2) and (C . 3» .  This explains the reason that we work with 

5 instead of d. 

We can now state our main results .  

THEOREM A (Harnack's inequality) .  S'uppose that : 

( i )  v ,  Wt , W2 E A2 
(ii) the Poincare inE:quality holds for Wl , W2 and Wl , v with ,." = 1 and some q > 2 

( iii ) W2V-l E Aoo (v) . 
If u is a non-negative solution of ( 1 . 1 )  in the cylinder R = Q(xo, 0) x ( to - /3, to + /3) , then 

where R- = Q(xo, 0/2) x ( to - 3/3/4, to - /3/4) , R+ = Q (xo , 0/2 ) x ( to + /3/4, to + /3) , 

A(Q )  = W2 (Q ) /V (Q ) , >.(Q)  = Wl ( Q ) /V ( Q ) , for a h'-ball Q .  Here the constants Cl , C2 
depend only on the constants which arise in (i ) , ( ii ) ,  ( iii ) .  

We write 

ftl(z , t)m(z ,  . .  )dzdt = iL I(z,  t)m(z, t)dzdt/ iL �(z ,  t)dzdt. 
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THEOREM B (Mean value inequality) Assume that hypotheses (i) , (ii) , (iii) of Theorem 

A hold. Let 0 < p < 00, 0:, 13 > 0, 0:/2 < 0:' < 0:, 13/2 < 13' < 13 and let Q (zo, a) = Q, 

Q (zo, 0:' ) = Q' and R = Q x ( to - 13, to + 13) , R� = Q' x (�- 13' , to + 13) . If u is a solution 

of ( 1 . 1 )  in R, then '1£ is bounded in R� and 

< D(0:2f3-1).. (Q) -1  + 1 ) 1/ ( h- l ) (0:-2f3A(Q)  + l ) h/(h-ll!t l u IP ( 0:-2{3tv2 + v )dxdt ,  

h D < C -'_ ·f > 2 d D log( i!.) cc · f O 2 d e a2+ b@ H  w ere _ "-l I P  _ , an :::; c p 1 < p < , an = C ( a-a' ) 2+b(J3-J3'J" ere 

h > 1 ,  c > 0 and b > 0 are constants which are independent of '1£, p, a , a' , 13, 13'· 

The organization of the paper is as follows. In section 2 we prove the following Soholev 

interpolation inequality: 

THEOREM D: Let WI , W2 be doubling weights,  v E A2 and suppose ( 1 . 17) holds with 

WI , W2 , f.t = 1 and some q > 2 .  If W2V-1 E Aoo (v )  then there exists h > 1 and constants 

C > 0, b > 0 such that for every € satisfying 0 < € :::; 1 ,  

1 r 1 2h 
W2 (Q)  JQ '1£ 1 W2dz 

<_ - b( 1 1 2 d ) h-l ( r( Q ) 2 1 I ..... 1 2 d 1 
1 2 d ) ce 

(Q) 
'1£ V z -Q ) 

v AU WI Z + ( Q ) U v z v ( 1+�) Q WI ( 1+<)Q v ( 1+.lQ 

for all '1£ E H(( 1  + e)Q ) .  

In sec tion 3 we prove Theorem B.  First we show, for p ;::: 2,  the following mean value 

inequality for subsolutions of ( 1 . 1 ) :  

where C is as in Theorem B and '1£+ = maz(u, O) . This inequality is less precise than 

the one we will eventually obtain because of the presence of the factor p2 on the right . 

In order to prove the above inequality we apply Theorem D to the function HM(U( . ,  T» 

where 



236 

Sp/2 if S E [0, M] 

MP/2 + iM(p-2l/2(S - M) if S :::: M 
o if S < 0 , 

and therefore HM(U( . , T ) )  is an element of H(Q(xo , a) for a.e. T E ( to - (3' , to + (3) .  The 

first idea would be to apply Theorem D to the function U�2 ( . , T) but at this poillt we do 

not know if u�2 ( . , T) belongs to H(Q(xo ,  a ) .  Hence we have to work with HM( U) , and in 

order to proceed with the proof of (*) we show the following Caccioppolli inequality for 

HM(u) . 

(C . l )  Let 2 � P < 00 and U be a subsolution of ( 1 . 1 )  in R. Let W2 E A2 and a,  a' , ' {3, f3' 

satisfy 0'./2 < a' < a, {3/2 < {3' < (3. Then 

ess sUPTE( to-i3' ,to+i3l k HM (U( X , T) ) 2V (x ) dx + ik� IV A ( HM(U) ) 1 2wI (X ) dxdt 

< ff 2 '  2 W2 V 
C JJR 

U HM(u) « a _ 0'.' )2 
+ {3 _ (3' ) dxdt , 

with c independent of all parameters . 

The next step is to apply (*) for P = 2 to deduce that U+ is locally bounded . This 

fact allow us to apply- Theorem D to the function U�2 ( . ,  T) for a.e .  T E ( to - (3' , to + (3) .  

The Caccioppoli inequality we can deduce from ( C . l )  for the function u�2 is not  precise 

enough since it will have a factor r in the right hand side ( note that uH�(u )  � iu�2 ) 
and this is the term we want to eliminate from (*) .  But with a different test fundion 

from the one used in the proof of (C . l ) ,  namely, </J(x ,  t ) = 1/2g( u )x( t ,  TI , T2 ) where { Sp-I if S E [O, M] 

g( s ) = MP-2 S if S :::: M 
o if 8 < 0 ,  

and 1/ is a convenient Coo function with compact support ,  we can deduce the following 

Caccioppolli inequality for subsolutions of ( 1 . 1 ) :  

(C .2) Let 2 � P < 00 and u b e  a subsolution of ( 1. 1 )  i n  R. Let W2 E A2 and a,  a' , {3, {3' 
satisfy 0'./2 < a' < a ,  f3/2 < p' < {3. Then 

ells SUPTECto-i3' ,to+i3l k u+ (x , T )Pv(z)dz + ik, I VAU�2 1 2wl (X )dzdt 
. + 

� cik u� « a ::':' ) 2
+ {3 � {3, )dzdt, 

with c independent of all parameters. 
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Now following the steps of the proof of (*) using (C .2 )  instead of (C .  1 ) we can prove that 

for p � 2 

and Theorem B will follow from (**) and an iteration argument like the one given in 

lemma (3 .4 )  of [GW2] . Finally we conclude section 3 by making some comments about 

the proof of mean value inequalities for uP , when p < 0, where u is a positive solution 

of ( 1 . 1 ) .  These inequalities will be necessary in the proof of Theorem A and in order to 

show them we need the following generalization of (C . 2 ) :  

(C.3 )  Let - 00  < p < + 00 ,  p =f:. 0 , 1 , u satisfy 0 < m < u(x ,  t) < M < 00 in R. W 2  E A2 . 
Then if p > 1 and u is a subsolution in R, or if p < 0 and u is a supersolution in R. 

Moreover, if 0 < p < 1 and u is a supersolution in R, then 

In this paper we do not present the proofs of (C .2 )  and (C . 3 )  since their proofs are 

similar to the ones given in section 2 of [GW2] .  

I n  section 4, we prove 

THEOREM E: Let v and WI be weights such that there exists  s > 1 with 

( 1 .18)  ((I) ) 2 ( �  f ( _v_)'dx ) l/ S ( �  f ( _:!!:2_rSdx ) l/8  < c 
r (B)  I I I  J[ v (B)  I I I  J[ wd B ) 

-

for ail S-balls I ,  B with I C 2a2 B ( a  as in ( 1 . 9 ) ) ,  where c is a constant independent of the 

balls . Let Q = Q(e, r) and cp be a Cl function such that cp == 1 in Q(e ,  kr) , 1/2 � k < 1 ,  

o � cp :::; 1 ,  suppcp C Q and 

cp(x )cp(H(to , x , y) )  � cp(H(t , x , y) )  
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for all z, y, t, to with 0 ::::; t ::::; to . Then, if u E Lip( Q) ,  

k l u (z )  - AQ I 2<p(z)v(z)dz ::::; C ;
I
(�) r (Q)2 iQ IV>.u(xW<P(Z)WI (X)dx , 

where AQ = 'P/Q) fQ u(x )<p(x )dz . 

Finally, in section 5 , we prove Theorem A. This theorem follows as an application of 

Bombieri's lemma ( [GW2] ) .  In order to verify the hypotheses of Bombieri's lemma we need 

Theorem B and Theorem F, which we state next . We write (v ® l ) (A) = f fA v (x )dxdt, 

where v = v(x ) , x E Rn, and A C Rn+l = { (z , t ) : x E Rn, t E R}. 

THEOREM F: Suppose v is a doubling weight, W2 E A2 , ( 1 . 18 )  holds and W2V-1 E A",(v ) .  

Let QR be a 8-ball of radius R, to E (a , b) and W2 = W2/W2 ( QR) and v = V/V(QR) . If u is 

a solution of ( 1 . 1 ) in Q3R/2 x (a ,  b) which is bounded below by a positive constant , then 

there are constants Cl l M2 , '" and V such that if for 8 > 0 we define 

then 

and 

E+ = { ( x , t ) E QR x ( to , b) : logu < -8 - M2(b - to )  - V} 

E- = { (x ,  t) E QR x ( a ,  to )  : logu > 8 - M2(a - to )  - V}, 

_ _ _ 1 v ( Q R) R2 It 
( ( V + W2 ) ® 1 ) (  E ) ::; CI ( - (Q ) ) ( to - a) .  8 WI R to - a 

Here CI and ", depend only on the constants in the conditions on v and W2 , M2 � ;22�(��) , 
and V is a constant which depends on u. 

In order to prove this theorem, if we follow the steps of Lemma ( 4 . 9 )  of [GW2] , we jus t  

have to  verify that a certain tes t function ( see [FLl ] )  satisfies the conditions o f  T heorem 

E .  This will be done in Lemma 5 .4 .  

2 Interpolation Inequality 

In this section we prove Theorem D . We start with 

Theorem 2 . 1  Let WI , w2 , and J.£ be doubling weight8 and 8UPP08e (1 . 1 7) hold8 for WI , 
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W2 with any IL, and for some q > 2. Irq = Q(e, r) and W2V-l E Aoo (v) then there exist 

h > 1 and a constant c > 0, independent of Q and 1£, s1£ch that 

1 r 2h 
W2 (Q)  iQ 1 1£ 1 w2dx 

( 1 1 2 h 1 'r2 1 2 2 ::; C (Q ) 1£ vdx ) - ( -(Q)  Iv\ul  wldx + (av"" Q lu l ) ) v Q Wl Q(e ,a1r) 
for all 1£ E H(a2Q)  (a as in (1 . 9}) . Also if {1 . 1 7} is replaced by (1 . 1 6), then 

1 r 1 1 2h 1 r 2 h-l r2 r 2 . W2 (Q) iQ 1£ W2dx ::; C( v (Q ) lQ 1£ vdx )  ( Wl (Q)  iQ 1 \7,xu l wl dx )  

for all u E  Ho (Q) . 

Proof: The proof follows as in [GWIJ , theorem 3; the only differences are that we obtain 

Q(e, a2 r) in the second integral on the right when we apply Poincare's inequality and in 

the end we use the results of Calderon for weights in homogeneous spaces ( see [CD . 
Corollary 2 . 2  Let Wl , W2 be doubling weights and suppose (1 . 1 7) holds with WI , W2 , 
IL = 1 and some q > 2 .  If W2V-l E Aoo ( v) , then there exists h > 1 and a constant c > 0 

such that 

1 r 1 2h 
W2 (Q )  iQ 1£1 W2dx 

< c( V (� ) 10 U2Vdx )h-I ( WI
�2

Q ) 
l'Q 1\7,xu I 2w1dx + V (�2 )  10 u2vdx ) 

for all u E H(a2Q ) ,  Q = Q ( e , l' ) . 
Proof: The conclusion of Theorem ( 2 . 1 )  holds for 1£ = 1 .  But .  by Schwarz 's  inequali ty. 

where in the last inequality we used the fact that v E A2 • 

In the next section we prove mean value inequalities . In order to be able to iterate 

a certain inequality as was done in [GW2] we need a refinement of the above corollary 

This refinement is Theorem D and to prove it we need the following lemmas. 

Lemma 2.3  Given Q = Q(e, s )  and 0 < r < s , there exists X l ,  . . .  , Xm(r,.) in Q,  and k 2: 1 

independent of e, r, s , such that 
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( i) Q(xj, r/k ) n Q(Xh, r/k) = 0, h =1= j 

Moreover, m(r, s )  :::; c( ;Y for some constant v depending only on the dimension. 

Proof: If we apply theorem ( 1 . 2 ) ,  page 69, of [CoW] to the open covering of Q given by 

(S(x ,  tJ )"'EQ, there exist Xl , . . .  , xm(r,.) in Q such that : S(Xh '  tJ n S(xj ,  {;;) = 0 if j =1= h 

and Q({, s )  C Ujj;,B) S(Xj ,  � ) .  By ( 1 . 9 ) ,  S(Xj, {;; ) :::::> Q(Xj, 4:2 ) and S(Xj , �) C Q (xj , r) . 
Therefore, if we choose k = 4a2 , ( i )  and ( ii )  follow. It remains to find an upper bound for 

m(r,s ) .  First ,  we note that Q (Xj , f) c Q({, a2 ¥s) .  But, f = 2a'(�+I)B 2a4 (�+1 ) . , and so 

by ( 1 . 10 ) ,  there exists v > 0 ,  such that 

r r " 2a4( k + l ) s  
/ Q (xj, k) / � ( 2a4 ( k + l ) s ) / Q ( Xj , k ) / , 

and since the Q(Xj , f) are disjoint, 

I Q (e. a2 (k: I ) S ) 1 � L I Q ( xj .  � ) I  � c( ; ) "  L I Q ( xj . 2a4 ( kk+ ns ) 1 . 
J J 

B t Q ( . 2a' ( k+l)' ) ' Q ( t a2 ( k+l ) B ) d '  I Q ( t  a2 ( k+ l ) S ) 1  > ( !:. ) " ( . ' ) I Q ( t  a2 ( k+l ) S ) 1 U ,  X J ' k -' <" k an �o <, .  k _ C .  711. 1 . .  � <" k . 

Therefore. m ( r, s )  :::; c( � )" . 

P roof: Since Q(z , s )  C Q(y , 2a2s ) ,  Fj ( z" . s ) :::; Fj ( Y" , 2a2 s ) .  By ( 1 . 1 0 ) .  i t  follows that 

Lemma 2.5 If 0 < f < 1 and T/ E Q = Q(e, s ) ,  then Q (T/, fs/ ( 2a2 )' ) C Q(e, ( 1  + f)S ) , 

where ( = maxj=l , . . .  ,n Gj . 

Proof: If y E Q(T/ , fs/ (2a2 ) ' )  then by ( 1 . 8 ) ,  IYj - T/J I :::; Fj(T/* , €s/ ( 2a2 ) ' )  and by ( 1 . 10 )  and 

Lemma ( 2 . 4) 

Therefore, 

where in the last inequality we used ( 1 . 10 ) .  
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Proof of Theorem D .  

Let Q = Q (e, s ) .  By Lemma ( 2 .5) , 8(Q , 8( 1 + E)Q )  2 ( 2:�)C Apply Lemma (2 .3) to 

r = (
2
a;j<a2 to find XI ,  . . .  , Xm(r .• ) E Q such that : Q(Xj, rlk) n Q (Xh,  rlk) = 0 if j =I- h, 

Q(e, s) c ujj�"
)
Q (xj , r) and m(r, s ) :::; c(slr)v .  

Note that , by (2 . 5 ) ,  Q (xj , a2r) = Q (Xj , (2:�)' )  C Q(e, ( l + E)s )  = ( l + E)Q .  Then using 

Corollary ( 2 .2 ) , doubling for W2 , doubling for v and Wl and the fact that Q (xj, 2a2s) ::) 

Q (e , s )  and Q (e, 2a
2
s ) ::) Q (xj , s ) ,  

The theorem follows i f  w e  choose b = v + 2a, since s ir  = eel . 

3 Mean value inequalities . 

In this section we prove Theorem B and some other mean value inequalities . S ince the 

proofs are similar to the ones given by [GW2] , we just point out the differences . Basically, 

we have to be a little more careful in the iteration argument since there is a factor E in 

Theorem D .  

We asume throughout this section that : 

( 3 . 1 )  

(a )  Wl , W2 , v E A2 

(b) Poincare's inequality, ( 1 . 17) ,  holds for both of  the pairs Wl , w2 and Wl , v 

with some q > 2 and J-£ = 1 

(c ) W2V-l F. Aoo (v) .  

Denote R.. .• = Q(xo , r) x ( to - s , to + s) and let R = Rr •• , R
' 

= Rp•lT with r/2 < p < r 

and s/2 < 0' < s and define 

(3 .2)  
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where b is given by Theorem D and c is a constant that may vary, but which only depends 

on the weights and on h, where h > 1 is the index for which Theorem D holds for both 

W2 and v on the left hand side. 

We also write A(Q) = W1 (Q ) /V(Q ) and A (Q ) = W2 (Q)/V(Q) . We. start this section 

with the proof of (C . 1 ) .  This estimate will be  important in  deducing a mean value 

inequality for subsolutions of ( 1 . 1 ) .  

Proof of (C . l ) :  If u E H define 

<p(x ,  t) = rl (x , t) [lU(z.
t) H�(S )2ds + u(x ,  t )H�(u( x .  t )?lx ( t ,  Tl ,  T2 ) ,  

where ." E C;:O (R)  will b e  specified later, t o  - s < T1 < T2 < t o  + s and X(t , Tl , T2 ) denotes 

the characteristic function of (T1 '  T2 ) . The fact that the fUllction <p is in Ho follows as a 

consequence of the following result :  if f is a piecewise smooth function on the real line 

with j' E Loo (-oo, oo)  and if u E H, then l o u  E H. Here we use the cOllvention 

that j' ( u ) = 0 if u E L where L denotes the set of corner points of I ( the proof follows 
the steps of theorem 7 .8 of [GT] and it also shows that V,,(f 0 u) = i' (u)V"u and 

(f(u) } t  = j' (u)Ut) . The proof of the above fact also verifies that in our case <p � 0 in the 

Ho-sense since HM(S) = 0 for s < o.  
Since u is  a subsolution, we have 

(3 .3 )  

Note that by another limiting argument 

and then by definition of <p, for T1 < t < T2 , 

and 

Ut<P = [u.,,2 loU H�(S)2dsl e  - (.,,2 ) eu loU H�(s) 2ds 

V<p = 2."V.,, [lou H�(s ) 2ds + uH�(u)2 1 + .,,2 [H�(u) 2Vu + 1�(u)Vul , 
where IM(S)  = sH�(s) 2  (note that V(fM(U» = Ik(u)Vu, since 1M is piecewise smooth 

with I� E Loo ) .  If we substitute the two last equations in (3 . 3 )  we get, with Q = Q(xo , r) , 

k £'T2 [U.,,2 lou H�(s) 2dsl tvdxdt + k £'T2 .,,2 H�(U)2 (AVu, Vu)dxdt _ 

� k £'T2 [(.,,2 ) tU loU H�(s)2dslvdxdt - 2 k £'T2 .,, (AVu, V.,,) [lu H�(S )2ds + uH�(�21dxdt 

k £'T2 .,,2 (AVu, Vu)/�(u)dxdt. 
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We can drop the last term on the right since the integrand is non-negative. The second 

term on the right is majorized in absolute value by 

r l-r:l I (AVu, V77) 1 477H�A1£)21£dxdt = 4 r l-r:l I (AH�(1£)77V1£, 1£H�(1£)V77) ldxdt JQ � JQ � 
< 4-2£ r lT2 (AV (HM(1£) ) ,  V( HM( 1£) ) ) 772dxdt + .!  r lT2 (AV77, V77) 1£2H�(1£?dxdt JQ � 2£ JQ � 

where we used the fact that I (Ax , y) 1 :::; (AX , X)1/2 (Ay, y) 1/2 :::; t (Ax, x )  + t(Ay, y) . If we 

pick £ = t we get 

( 3 . 4) 

Choose 77 to be zero in a neighborhood of {8Q x ( to - s , to + s )}  U {Q x ( t = to - s ) } ,  

77 == 1 i n  R� ,  0 :::; 77 :::; 1 , I V  A77 1 :::; c/ {r - p) ,  l 77t l  :::; c/ (s - 0") ( see page 537 of [FL1] ) . I f  we 

pick 7"1 so close to to - s that 77( x , rd = 0 for all x E Q,  drop the second term on the left 

of (3 .4) (which is non-negative) and use lemma 5 of [AS ] it follows that 

(3 .5)  r r*'·-r:l ) , ess s1£P-r:lE(to -<7.to +') JQ
, 1£( X ,  7"2 ) Jo HM(S )2ds vdx 

lh 2 ' 2 W2 V < C 1£ HM(1£) [ ( ) 2 + --jdxdt. R r - p S - O"'  

If we fix 7"2 E ( to - 0"', to + s )  and 7"1 as before and if we drop the first term on the left of 

(3 .4) ( which we can see is non-negative after performing the integration) we obtain 

Letting 7"2 � to + s and using ( 1 . 2 ) we get 

(3 .7 )  

Finally note that 

HM(1£? = lou(HM(S)2 ) ' ds = loU 2HM(S )H� (s )ds :::; 2 loU sIi� (s ) 2ds :::; 21£ loU H� (s )2ds , 

since HM (s)  :::; sH� (s ) . Combining this with (3 .5)  and (3 .7) , (C .  I )  follows with a ,  f3, a' , 

f3' taken there to be r, s ,  p, 0"' .  

Lemma 3.8 Let P � 2 ,  R, R' be as defined above and assume {3. 1} holds. If u is a 

subsolution of {1 . 1} in R, then 1£+ is bounded in R� = Q(xo ,  p) x ( to - 0"', to + s )  and 
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with C as in (9.2) . 

Proof: HM(U) is a function in H since U E H and HM is a C1 function with bounded 

derivative. Then by Fubini's theorem we have that HM(U( . , r» E if for a.e r E (to -
q, to + 8) . If we apply Theorem D to the function F(z) = HM( u(z, r» , Q = Qp and f > 0 

such that ( 1  + f)p < r and combine this with (C .l )  we obtain 

for a.e. r E (to - q, to + 8) . 

Integrate with respect to r over ( to - q, to + 8) and apply (C .l )  to get 

Since r/2 < p < r and 8/2 < q < 8, by the doubling property of the weights and the 

definitions of A and A, it follows that 

A similar inequality holds with W2 replaced by v on the left , and if we add the two 

inequalities, we obtain 

(3 .9 )  Jk� HM(u)2h( W27Qr) + V(�r» dzdt 
-b 2 . f r r r 2 I ( )2 W2 V h < c v(Qr)h ( A(Qr ) + 8 ) (JJR U HM U «

r _ ( 1 + f)p)2 + � )dxdt) 

for any f such that ( 1  + f)p < 'r .  
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Now, note t hat 

Jrr W2 v 

iR� { W2 ( Qr ) + V ( Qr ) }dxdt � 8 , 

8r-2 w2 ( x )  + V ( X )  Wz ( X )  V ( X }  --:--:':--'---:-� < --- + --8 r- 2 wZ ( Qr ) + V ( Q r ) - W2 ( Qr ) V ( Qr ) ' 
Thus . by raising both sides of ( 3 . 9 )  to the power l /h ,  normalizing and using the fa.ct tha.t 

Cb/h ::; cb • we obtain 

( 3 . 1 0 )  (Jt H " h S d 1 ) l /h 21:,( 11. ) - ( 2'wz + v ) xd . R� r 
2 2 1 < - b r 8 ( .S A ( Q ) l ) ( r l ) l / h CE ( r _ ( 1 + t )  p ) 2 ( 8 - a ) r2 r + -:;- -' ( Q r )  + 

for any € such that ( 1  + € ) p < r .  Since U�2X{o<u<M} ::; HM ( U)  and uH�(u )  ::; �u�2 , if 

we let }vI ---> 00 i t  follows by Fatou ' s  lemma that 

( 3 . 1 1 )  Jt h oS l ' h  ( u�  ( --;;wz + v ) dxdt ) I R� r -
" 

2 1 2 _ b r - 8 8 r 1/ h < cp t ( r _ ( 1 + t ) p ) 2 ( S _ a ) ( T2 A ( Qr ) + 1 ) ( -:;- -' ( Qr ) + 1 ) 

rJ--u� ( 82 W2 + v ) dxdt . 1iR l' 

N ow. we have to iterate ( 3 . 1 1 ) . Fix 1' , 8 .  p, a with 1'/2 < p < r and 8/2 < 17 < 8 . For 

k = 1 , 2  . . . .  define sequences {8dkEN and { 1'dkEN and {tdkEN by 8 1 = 8 ,  8k - Sk+l = 8;." 
for k 2: 1 ,  1'1 = 1',  Tk - Tk+1 = � for k 2: 1 ,  and tk = � = rk -;'k t t  for k 2: 1 .  Also, 

define Rk = Qk x ( to - 8k ,  to + 8 ) for k 2: 1 , where Qk = Q ( x ,  Td . Note that R1 = R and 

n%"=1 Rk = R� . Since �ST- 2 ::; Sk 1'-,; 2 ::; 4ST-2 . if we apply ( 3 . 1 1 ) with p replaced by phk-1 , 

P 2: 2 ,  and l' = Tk , P = Tk+1 and t = tk+l ( note that ( 1 + tk+dTk+1 < Td , we obtain 



246 

{ ( hlc-l )2 -b - r�slc ( S A(Q ) ) ( r2 1 
) l/h} .i=r $ c p - flcH ( ( 1  + ) )2 ( ) 2" r + 1 - ' (Q ) + 1 h 

ric - fk+l rk+l Sic - Sk+l r S A r 

But note that 

-b r�Sk fk+l h - ( 1  + fkH )rkH]2 (slc - Sk+d 
b 2 2+b = 2(kH)b rkH rkslc < C2(3+b)k r S < C2(3+b)k (r - p)b ( V - irn")2 ( !if) - (r - p)2+b(s - u) - , 

where C is given by (3 .2 ) .  Thus, 

(3 . 12) 

If we iterate (3 .12) , we obtain 

Since 2:1:1 i-l = h�l and El:l hl:l = ( h�1 )2 , it follows that 

and this proves the lemma. Note that if we apply the above result for p = 2, it follows 

that u+ is bounded on R� . 

Proof of Theorem B :  By Lemma (3 .8 )  we know that u+ is bounded in Q(1+<)p x ( to -
u, to + s ) for all f such that ( I + f)p < r. If we define F (x ) = U�2 (X , T )  then F E H(Q(1+<)p) 

for a.e. T E (to - u, to + s ) and if we follow the proof of lemma (3.8) using (C .2) instead 

of (C .I ) ,  we get (see the comments in the introduction) 
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h r2 1 I S h It S ess SUPR' U� ::; G ;;=r (  - -- + 1 ) ;;=r (  -A ( Q) + 1 ) ;;=r  u� (  -W2 + v)dxdt + S A ( Q )  r2 R r2 

for P 2:: 2 .  For 0 < P < 2 ,  define 1p and L)O as in lemma ( 3 . 4) of [GW2] . The only 

difference in our case is that 

, ' 2 1 ..JL.. 2 100 (a  , 13 ) ::; c{ ( a _ a' ) 2+b(j3 _ j3, ) } h- 1 12 ( a, j3) 

if � < a' < a < 1 and � < 13' < 13 < 1 . Thus , arguing as in lemma ( 3 . 4) of [GW2] we 

prove that if u is a solution of ( 1 . 1 ) and p > 0 then 

r2 1 I S h jf; S 
( 3 . 13 )  ess sUPR' u� ::; D(  - -- + 1 ) ;;=r ( -A( Q )  + 1 ) ;;=r u� (  -W2 + v)dxdt , + S A ( Q ) r2 R r2 

where D is as in Theorem B .  

If we apply ( 3 . 13 )  t o  both u and - u ,  we obtain Theorem B o f  the introduction, with 

a .  13.  a
'

, ;3' taken there to be r , s ,  p, a . 

In order to prove Harnack's inequality we need a mean value inequality for uP when 

� oo < P < 00 and u is a non-negative solution. 

We begin by noting that if we use ( C . 3 )  instead of ( C . 1 )  we can prove the following 

analogue of ( 3 . 1 1 ) :  

Lemma 3 . 1 4  Suppose (3. 1 )  holds, 0 < m < u(x , t ) ::; M < 00 i n  R = Rr.8 ! r/2 < p < r .  

s / 2  < a < s and € > 0 ,  ( 1  + t ) p < r . Then. if P > 1 and u i s  a s ubsolution i n  R . o r  if 
p < 0 and u is a supersolution in R.  

It h W2 V l / h ( uP ( --- + -- ) dxdt )  R� W2 ( Qr )  v ( Q r )  

< CE-b r2 s  
( _P_ '::"A ( Qr )  + 1 ) ( _p _

r2 
_1_ + l ) l / h 

( r - ( 1  + € ) p ) 2 ( S - a ) P - 1 r2 p - 1 s A ( Qr ) 

Moreover, if 0 < P < 1 and U is a supersolution in R, then 

( lJ- ph( W2 v )d d )l/h 
1JR,-U W2 ( Qr ) + v(Qr ) 

x t 
2 2 1 -b r s 

(
p S A(Q ) ) ( p r ) l/h < C€ 

(r - ( 1 + €)p)2 (s - a) Ip - 1 1 r2 r + 1 IP - 1 1 -; A(Qr )
+ 1  
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Both inequalities are still true if we replace the integral averages on the right by the larger 

integral average 

Theorem 3 . 1 5  Assume (9. 1) holds, r, 8 > 0, r/2 < p <  r, 8/2 < iT < s . If u is ' a  non 

negative solution of (1 . 1) in R, then for p > 0 

� CC(p;2 A(Qp ) + 1 )'b(/: A(�p ) + 1 ) 6Jtu� ( W27Qp) + v(�p» dxdt , 

and for p < 0 

h S • r2 1 6 [J- W2 v < C r-r( lpl r2 A( Qp ) + 1 ) r-r( lpl -; A(Qp ) + 1 ) - 1 1JR UP( W2 (QR) + V (QR) )dxdt, 
where C is given by (9, 2) ,  

Proof: In  Lemma (3 . 17 ) of [GW2] we  replace ( 3 .20 )  by  the result given here i n  Lemma 

(3 . 14) and then argue as in Lemma ( 3 . 1 7 )  of [GW2] . 

4 Proof of Theorem E 

We start with the following lemma. 

Lemma 4 . 1  Suppose Q = Q(e, r) and cp is a Cl function such that cp =: -1 in kQ = 
Q(e, kr) , 0 < k < 1 , 0 � cp � 1 , suppcp C Q and 

(4.2) cp(x)cp(H(to ,  x ,  y» � cp(H(t ,  x ,  y» 

for all x ,  y, t, to with 0 � t � to . If u is a Lipschitz function, 
E = {x E Q(e , kr) : u(x) = O} and l E I ;::: ,B IQ I  for some 0 < ,B  < 1 , then if x E Q,  

(4.3 ) r:t::\ r � o(x , z ) lu(x ) l v cp(x) � c JQ r��u(z) l v cp(z ) I Q (x , o(x , z» l
dz , 

where c is independent of Q,  u, x .  
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Proof: (The general outline of this proof follows the steps of the proof of lemma 4.3 in 

[FS j . )  If x E Q = Q({ ,  r) then Q({, r) C Q(x, 2a2r) and Q(x , r) C Q({, 2a2r) . Therefore, 

by doubling, IQ (x ,  r) 1 � I Q I . Now, we note that there exists 17 E {-I ,  l}n such that 

IE n QO' (x , 2a2r) I 2: c,B IQO'(x , 2a2r) l . In fact ,  E = UO'( QO'( x , 2a2r) n E) and so there exists 

17 such that 

( 4.4) 

We also claim that there exists a,  EO E Rn, independent of x and 7' , 0 < EOj < aj , j = 1 , . . . , n ,  

such that 

( 4.5)  

To prove this fact ,  apply ( 1 . 14) to I = "f and find a,  EO E Rn, 0 < EOj  < a] , j = 1 ,  . . . , n ,  

such that 

Then, 

I QO' (x , 2a2r) 1  2: I (Q" (x , 2a2r) n E) U(QO' (x ,  2a2r ) n H( . . . ) ) I 

I Q" (x , 2a2r) n E I + I QO' (x , 2a2r )  n H( . . .  ) I - I E n Q" ( x , 2a2r )  n H( . . .  ) I  

> I Q"(x , 2a2r) l ( c,B + 1 - c: ) - IE n Q"(x , 2a2r ) n H( . . .  ) I  

and therefore the claim follows . 

We can assume x � E and define L: = {y E D.�(I7) : H(2a2r, x , y) E E} .  Let K 

be a smooth function supported in D.;M(7) ,  0 :::; K :::; 1 ,  K == 1 on D.�(I7) .  Suppose 

1£ E Lip( Q) .  If y E 2: then 

1 1£(x) I Vcp(x)  = 11£(x) - u(H(2a2r, x , y) ) IK (y)Vcp(x) , 

and if we integrate on 2:,  we obtain 

l u(x ) l vcp(x) 1 L 1 = 12: l u(x )  - u(H(2a2r, x , y) ) IK(y)Vcp(x)dy. 

Now we note that cp(H(2a2r, x , y))  = 1 if y E L and using (4.2) we get cp(x)  :::; cp(H(t, x ,  y) ) 
for any 0 :::; t :::; 2a2r. Therefore, 

lu(x) I Vcp(x ) 1 L I ::; 1. I ra2r d
d (u(H(t, x , y) ) )dt I Vcp(H(t, x , y) )dy 

.uppK 10 t 
:::; 1. I ra2r (Vu(H(t, x , y) ) ,  H(t, x , y) }dt I Vcp(H(t ,  x , y) )dy 

.uppK 10 
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H we make change of variables z = H(t, z , y) in a�Mu) , then I det :;(t, z , y) 1 = 

IIi=1 fJ Aj(H(s , z , y) )ds . For y E a!Mu), the last product is equivalent to I Q (z ,  t ) 1  by 

( 1 . 15) . Hence, 

(4.6) 

Note that there exists c > 0 such that H( t, z ,  a�i2 (q) ) c Q (z , ct) .  In  fact , i f  we  define 

1'( s ) = H (s/ Iy l , z , y ) then 

(i' ( s ) , e) 2 = {t Aj (H(-l
s
l , Z , y» Yjej}

2-1 11 2 :5 tA� (H( I: I , x , y» e� = t Aj(-y( s»eJ 
3=1 Y Y 3=1 Y 3=1 

'Ie E Rn. So, l' is a A-subunit curve starting from x and attaining H(t, x, y) at the time 

s = t l y i .  Therefore by ( 1 . 9 ) , 

t5 (x , H(t , x , Y » :5  ad(x , H(t , x , Y» :5  at l y l :5 ct 

where c = 2aa 

Thus, from (4.6 ) ,  we obtain 

� C 12a�.. 1 1 ct::\ l u(z ) l v cp(z ) :5 I " I ' Q ( ) I  rV�u(z) l v cp(z)dzdt 
'-' 0 I z ,  t Q(z,ct) 

and, interchanging the order of integration and using the fact that supw C Q ( the 

argument we are going to present next is due to Chanillo, Sawyer and Wheeden) ,  we get 

We claim that ' fch IQt:,t) 1 $ c lQt�h) l '  To prove this we note that , by ( 1 .8 ) ,  IQ (;,tH = 

IIJ=2 Fj(x*, t ) ,  and consequently by ( 1 . 10 ) ,  there exists E > 0 such that if t > T then 

Hence, 

['>0 dt ("" t dt ("" h h dt h 
Jch IQ (x , t) 1 

= 
Jch I Q (x , t ) i t :5 Jch I Q (z , h) I

( 't)"T = c
IQ (z , h) l " 

Finally, we note that I E I ;;:: c > 0 ,  with c independent of z , since, by the change of 

variables z = H(2a2r, z , y) , 
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I L: I = r dy � r 1 
dz JE JH(202r.:r;.D IQ(x , 2a2r) 1 

= 
IH(2a2r, x ,  E) I 

= 
IE n H(2a2r, x , Ll�(O') i )  > 

c,B 
IQ"'(x ,  2a2r) 1 > 

c > O. 
IQ (x , 2a2r) 1 IQ (x , 2a2r) 1 - IQ (x , 2a2r) l -

The lemma follows by combining the last two last estimates with (4 .7) . 

Proof of Theorem E.  

Define Tf(x)  = JRn f(y)K( x , y )dy ,  where K(x ,  y) = I Q (��;i��Y) ) i ' Fix S a d-ball. In 

order to show that for a pair of weights i' . li! we have l iTf l lu ( s.ii )  :::; I l f l l £2 ( s.w) ( where 

I l f I I L2 ( s.ii) = Us PV) 1 / 2 )  for all f :2: o .  ,5u,ppf C S .  according to [SW] . we need tci verify 

that the following conditions hold : 

( a) there exists ,5 > 1 such that 

1 j _ .!.. 1 j _ _ .!.. 
cp(I) I I I (  - 1,'dx ) z, ( - tv ' dx ) z. :::; c 

I I I I I I I  I 

for all d-balls I e  2S, where cp(I) is defined to be 

1 
cp(I) = sup{K(x , y ) : x , y E I. d( x , y) :2: 2'r(I) } ;  

(b ) there i s  to > 0 such that 

for all pairs of d-balls J' C I .  

10 < cp(I)  
(
r (I' )  

)' 
I I I  -

c
' cp( I' ) r( l )  

Note that it i s  convenient to  work with d since the results of [SW] hold for pseudo

metrics (a pseudo-metric d is a quasi-metric satisfying d(x ,  y) = d( y, x )  for all x, y E Rn) .  
Define ii = v("s) and iii = w�'S) r(S)2 . Note that if x , y  E I and d(x , Y) :2: �r(I) , then 

by ( 1 . 9 )  
h'(x , y) 2ar( I) r(I) K(x , y) =  

IQ (x , h'(x , y ) ) I
:::; 

IQ (x , t;r(I) ) I  
:::; c

IQ (x , r( I ) ) I ' 

and since x E I, IQ(x , r(I) ) 1 � I I I .  Therefore, 

r(I) 
cp(I) :::; cV!' 

So, the expression in (a) is bounded by 
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which is equivalent to the expression in condition ( 1 . 18) (if we use doubling and ( 1 . 9» . 
This proves (a) . 

To show (b) we note that if x, y E l and d(x ,  y) � tr(I) then 

(2a)-l r(I) r(I) K(x , y) � I Q (x , 2ar(I» 1  � cll!" 
Thus <p(I) � 1ft. Then, if l' c I, :ii\ � ;fPrv;r and we obtain (b) with f = 1 .  

B y  doubling and ( 1 .9) , i t  follows that 

I /Tf l / L2 (Q,ii) � c l / f l/ £2 (Q,w) 
for all f � 0 ,  suppf c Q, where ii = v(Q) and ill = w�lQ) r(Q)2 .  

Suppose u is a Lipschitz function i n  Q and lE I  = I { x  E Q(e, kr) : u(x) = Ol l � .BIQ I , 
1/2 < k < 1 .  If we combine lemma (4. 1)  and the fact that I I Tf l lL2 (Q ,ii) � cl / f l l L2 (Q ,w) we 

obtain 

(4.8 )  ( v(�) k l u(xW<p(x)v(x)dx) ! � cr(Q) ( Wl�Q) k Iv\u(z) 1 2<p(Z)Wl ( Z)dz) ! . 

Given Q and a general Lipschitz function u, there is a number I' = 1'( u, Q) ,  the median 

of u in Q, such that if Q+ == {x E Q : u(x) � p,} and Q- = {x E Q : u(x) � p,} then 

I Q+ I � � and I Q- I � �. Hence, Ul = max{u - p,(u, kQ) , O} and U2 = max{p,(u, kQ) 
u, O} satisfy the hypothesis of Lemma (4. 1 )  for some .B depending on k and so if we apply 

(4 .8) to Ul and U2 and add both inequalities , we get 

(4.9 )  k lu(x )  - p,I 2<p(X)v(x)dx � cr(Q)2 ;l
(�) k 1V'�u(zW<p(Z)Wl (Z)dz. 

Finally, it is easy to see that in (4.9) I' can be replaced by the average AQ of u defined 

in Theorem E. In fact, 

(4 .10) k lu(x )  - AQ I 2<p(X)v(x)dx 

and 

< 2 h lu(x ) - p,I 2<p(X )v(x)dx + 2 h lp, - AQ I 2<p(X )v(x )dx ,  
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where in the last inequality we used Schwarz's . in��ality. Since v E A2 and 0 :5 cp :5 1, it 

follows from (4 .9) and (4. 10) that 
• . • • • • - J J � l u (x)  - AQ I 2cp(X )v (x )dx 

< cr( Q )2 [1 + ( ��l];:�) � I V,,1t( z ) 1 2cp (z )Wl ( Z )dz . 

This finishes the proof of Theorem E if we note that cp( Q )  � I Q I  since 1/2 :5 k :5 1 . 

The next corollary is also helpful. 

Corollary 4.11  Theorem E is also true with Aq = ('PtI�(Q) JQ ucpvdx . 

Just note that 

� IlL -- AQ I 2cpvdx = (cpv) ( Q) IlL  - AQ I 2 

:5 (cpv ) ( Q ) I (cpv�( Q )  k I lL  - u lcpvdx l 2 :5 � I lL  - u l 2cpvdx , 

where the last inequality follows by Schwarz's inequality. 

5 Harnack's inequality 

The proof of Theorem A follows as an application of Bombieri 's lemma which we state 

next . For its proof see section 5 of [GW2] . 
Lemma 5 . 1  Let R(p) be a one parameter family of rectangles in Rn+1 , R(u) c R (p) , 

1/2 :5 u :5 p :5 1 and let v be a doubling measure in Rn+1 .  Let A, IL, M, m , 8 and Ii. be 

positive constants such that M :::: � and suppose that f is a positive measurable function 

defined in a neighborhood of R( I ) satisfying 

(5 .2 )  ess SUPR(CT)fP :5 ( 
A

) r r fPv( x )dxdt p - u m JJR(p) 

/01' all u ,  p, p, 1/2 :5 8 :5 u < p < 1 ,  0 < p < M and 

(5 .3 ) v ({ (x , t )  E R( I ) : log f > s} ) :5 ( �Yv(R( I ) )  S 

for all S > O .  Then there is a constant i = i( A, m , /i,) > 0 such that 

i log(ess S'U'PR(6)U )  :5 ( 1 - 8) 2m IL '  
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Hence, in order to prove Theorem A, we need a mean value inequality ( that we proved 

in section 3) and a logarithm estimate which is given by Theorem F (some steps of its 

proof we will present in this section) . The next lemma shows that the test function 

described on page 537 of [FL1] satisfies the conditions of Theorem E. Then, as we said 

before, the proof of Theorem (F) follows as Lemma (4.9) of [GW2] . 

Lemma 5.4 Given Q = Q(e, r) and 0 < k < 1 , there exists cp E C1 such that cp == 1 in 
kQ, 0 :5 cp :5 1, suppcp C Q, IV,W) I :5 r(1=-k) and cp(x)cp(H(to , x , Y) ) :5 cp(H(t , x , y) )  for all 

x, y, t" to with 0 :5 t :5 to . 

Proof: Consider the function cp given by [FL1 ] , page 537: 

n I Xi - ei l 
cp(x) = rr t/J( y(e* r) ) ' 3=1 3 '  

where t/J E COO(R) ,  0 :5 t/J :5 1 ,  t/J(t) = t/J( -t) , t/J == 1 on [-k, kJ , t/J = 0 outside ] - 1 , 1 [ ' 

It/J ' ( t )  I :5 2 ( 1  - k )-1 , for all t E R. Here, we show that cp satisfies the last condition since 

all the others are proved in [FLl ] ,  page 537. 

Fix t , 0 < t < to , x and y.  Define Z = H(t, x, y) . Then, Zi = Xj + Yj J� >'j (H( s ,  x ,  y ) ) ds ,  

Suppose Zi - ej � O .  If Yj � 0 then 

On the other hand, if Yi < 0 , 

I Zj - �i l :5 I Xj - ej l · 

Thus , if Zj - ej � 0 then I Zj - ei l  :5 IHj ( to , x , y ) - ej l or I Zj - ej l :5 I Xj  - ej l ·  The same 

holds if Zj - ej < O .  Since t/J( t) can b¢ chosen to be non-increasing for positive t, then 

cp(z) � a1 . . . an, where aj = t/J( �ie*��I» ) or aj = t/J( IHi�;i;��l)ejl ) .  Since 0 :5 t/J :5  1 , 

for 1 :5 j :5 n. Therefore, 

a ' > t/J( IHi( to , x , y) - ei l )t/J( I Xj - ej l ) 3 - �j(e* , r) �j(e* , r) 

cp(Z)  � cp(x)cp(H(to ; x , y) ) .  

The next 3 lemmas are needed in order to show that the hypothesis i n  Theorem A 

imply those in Theorems D and E. 
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Lemma 5 . 5  Assume that Poincare 's inequal'ity holds for WI , W2 w-ith q = 2 and f.L = 1 .  

Then 

( r(I ) ) 2 W2 ( I )  < c Wl (� 
r(B) W2 (B ) - 1Ol (B ) 

for any pair of 8-balls I , B ,  'with I C 2B. 

Proof: Suppose 1 = Q(uo , r(I ) ) and B = Q(x , r (B) ) and define 
n l Ui - (uo) i l F(u) = j; Fj(u� , r (I ){(I)If'(u) 

where If' is the function described in lemma (5 .4) associated with  I ( as opposed to B) 
and k = 1/2. If u E I , by ( 1 .8)  

of r(I) Olf' 1�(u) 1 ::; F ( * ( I ) )  + �(u)nr(I) , UUk - k uo , r uU. 
for k E { I ,  . . . n} ,  and using the fact that A. (U) = A. (U*) ::; A. (H(u* , r( I) ) )  if u E I we get 

of I Fk(U* , r( I) ) Olf' I Adu ) �(7tl :  ::; F ( ( I ) )  + nr(I)A. (u)�(U) U7tk k u� , r uU. . 
and by lemma ( 2 . 4 ) and the fact that I v\1f' I ::; e/r(I) we have I v\F(u) 1 ::; eXI . 

We have Poincare's inequality for F, i .e. , 

( 5 .6) (�(B r I F (u) - aVn4'+ l BF I 2w2 (U)du) I/2 W2 ) in4o+ 1 B  
< er(B) ( _

(
1 ) r I v\F(u) 1 2Wl (U)du) I/2 , WI B ina24.+ 1 B 

where 1] = maXj=I , .. n{Gj } . The right side of ( 5 . 6 ) is bounded by er(B) ( ::;:l�)) ) 1 /2 by 

doubling and the fact that IVAF I ::; eXI . Now, if u E V there exists k E {I , o o . , n} such 

that I Uk - (uo ) ' 1 � Fk(U�, tr(I ) ) and then if u E tI/ V (note that If'(u) = 1 )  

(5 .7 )  F(u) > Fk(U� , tr(I) ) r(I) > ( .� )Gl r( I) > �r(I) . - Fk(U� , r(I ) )  - 4 - 411 
Also, if U E I, F( u) ::; nr(I) and therefore 

I I I aVn4.+ 1 BF ::; In411+1 B I  nr(I ) . 

B�t ,  by  ( 1 . 10 ) ,  Fj{xs , n411+1 r (B ) )  � 2n411Fj(xB , 2r(B ) ) , and by  ( 1 . 1 1 ) ,  I n411+1B I  � 
(2n411 )n I 2B I � 2n411 1 2B I .  Hence, since I C 2B, aVn4.+ 1 BF ::; � and then if 1.£ E �I /V  
( using also ( 5 . 7 ) ) ,  

Therefore, the left hand side of  ( 5 .6) i s  larger than a constant times 
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where in the last inequality we used the fact that W2(V\V) � w2(I) , which i� shown in 

the next lemma. 

Lemma 5.8 Ifw is a doubling weight then w(Q(u, 2s)\Q(u, s» is equivalent to w(Q(u, s» .  

Proof: Choose "I E Q(�, 2s) such that 5('11., "1) = �. By Lemma 2.5, 

for any 0 < f < 1 .  

3fS 3s 
Q("I, 

2(2a2 )' ) C Q(u, (1 + f) 2") 

Choose j such that 5(u, "I) = I('j(u*., l"Ij - Uj l ) .  Then, if y E Q("I, 2(�:�)( ) ' 

F;(u*, 
3; ) = l "Ij - uj l  � l"Ij - Yj l + IYj - uj l �

'
Fj("I*' 2(�::)' ) + I Yj - uj l . . 

By ( 1 . 10) and Lemma 2.4, 

Thus, 

If we choose f = 1/3 we have proved that 

s 
Q("I, 2(2a2)' ) C Q(u, 2s)\Q(u, s) .  

The lemma follows by doubling. 

Lemma 5.9 If WI E A2, V E A"" and Poincare 's inequality holds for WI , v with q = 2 

and JL = 1 ,  then condition (1 .21) holds. 

Proof: If v E A"" there exists s > 1 such that 

So, since Poincare's inequality holds for WI , v with q = 2, by Lemma 5 . 5  
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and the above condition is equivalent to condition ( 1 . 18) since WI E A2 • 

Now we are ready to prove Theorem A. 

Proof of Theorem A 

Let U be a non-negative solution of ( 1 . 1)  in the cylinder Ra,fJ = Ra,fJ (zo , to ) = 
'Q(zo ,  a) x ( to - [3, to "': (3) . If we define T(z, t) = (z , [3t + to )  and ii(z, t) = u(T(z,  t» 
then u is a solution in Ra,l (Zo ,  0) of the equation 

v(z )iit = div(A(z, t)Vii) , 

where the coefficients matrix A = (ai.1) is defined by ai.1(Z ,  t) ;:=: [3ai.1(z ,  [3t+ to ) and satisfies 

the degeneracy condition 

n n  n 
Wl (Z) L A� (Z ){: � L ai.1(z , t){i{.1 � W2 (Z) L A� (Z ){� , 

.1=1 :i=1 ;=1 

if we put Wi = [3wi' for i = 1 , 2 . 

Suppose Ip i < [a-2A(Q(zo , a» + a2/X (Q(zo, a))]-1 , where A(Q)  .. = W2 (Q)/V(Q) ,  
X(Q) = W1 (Q)/V(Q) .  Write 

_ (p + l)a 1 p I p  R (p) = Q (zo ,  
3 ) x (-'2 - '2' - '2 + '2) 

R+ (p) = Q(zo, (p � l )a ) x ( � - � , 1 ) 

If we take 1/2 � p < r < 1 then the mean value inequalities in Theorem (3 . 15) applied 

to u give 

(5 .10)  - p  1 11, -p( W2 V )d d e s s  SUPR- (p) U � c ( )  U _ 
(Q ) + -(Q ) z t ,  

r - p m R- (r) W2 a V a 
for some m > 0, if P > 0, where Qa = Q(zo ,  a) ,  and 

(5 . 1 1 )  - p  1 11, -p( W2 V )d d e s s  SUPR+ (p) U � c ( )  U _ 
(Q ) + -(Q ) z t ,  

r - p m R+ (r) W2 a V a 

if P < o. Moreover, by Theorem B, ii is locally bounded and by adding f > 0, we may 

assume by letting f --+ 0 at the end of the proofthat ii is bounded below in Ra,l (zo , 0) 

by a positive constant . 
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Now, by Theorem F, we have 

(5 .12)  

and the same inequality holds for E- , where E+ , E- are defined in Theorem F with 

u = it, R = �a, a = -1 ,  b = 1 ,  to = 0 , M2 � A(Qa)/a2 • 
By (5 . 10) and (5 . 12 ) ,  we can apply Bombieri's lemma to the family of rectangles R- (p) 

with IL ';;" a-2 A(Qa(xo) )  + a2 /X(Qa(xo ) ) ,  M = 1 / IL and f = e-M2+V(O)u, obtaining 

and this implies that 

(5 . 13 )  

Also, by (5 . 11 )  and (5 . 12 ) ,  we can apply Bombieri 's  lemma to the family of rectangles 

R+ ( p) , f = e-M2-V(O)u-1 ,  with IL, M, M2 and V(O) as before, and we obtain 

which implies that 

( 5 . 14) 

CO,mbining (5 . 13) and (5 . 14) it follows that 

Since, T ( R- ( 1 /2 ) ) = R- .  T( R+ ( 1 /2 ) )  = R+ and a-2A (Qa )  + a2 /).. ( Qo. )  = a-2/3A ( Qa )  + 
a2 {3-1 / ). ( Q a ) ,  Theorem A follows . 

Remark: Using the equivalence between d and 8 we can prove the following analogues of 

Theorem A and B for the metric d. 

THEOREM A' : Assume (i) ,  (ii ) ,  (iii) of Theorem A. If u is a non-�egative solution of 

( 1 . 1 ) in the cylinder R = S(xo, aa2) x ( to - {3, to + {3) ,  then 
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where R- = S(xo, a/2) x (to - 3{3/4, to - {3/4) ,  R+ = S(xo, a/2) x (to + {3/4, to + {3) , 
A(S) = W2 (S)/V(S) and -\(S) = Wl (S)/V(S) for a d-ball S. Here the constants Cl ,C2 

depend only on the constants which arise in (i) , (ii) , (iii ) .  

THEOREM B' :  Assume hypothesis (i) , (ii ) ,  (iii) of  Theorem A hold. Let 0 < p < 00 , 

a, {3 > 0 ,  a/2 < a' < a, /3/2 < {3' < {3 and let S(xo ,  a) = S, S(xo, a' ) = S' and 

R(a, {3) = S x (to - {3, to + {3), R� (a, {3) = S' x ( to - {3' , to + {3).  If u is a solution of ( 1 . 1 )  

i n  R(a2a , {3) ,  then u i s  bounded in  R� (a, {3) and 

h · D '  . Th B d C 
a2H@ H h 1 0 d b 0 w ere IS as In eorem , an = c(a�<li)2H(i3-i3') ' ere > , C  > an > are 

constants which are independent of u, p, a, a' ,  {3, {3'. 
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