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The results I shall describe in this note are joint work with Richard L .  Wheeden. They 
concern the regularity properties of weak solutions of a certain class of degenerate parabolic 
equations , the validity of a Harnack principle for non-negative weak solutions and estimates 
for the fundamental solution. The proofs of the results can be found in references [G-WI] , 
[G- W2] , [G- W3] and [G-W 4] . In order to place the results in proper perspective we recall 
some results in partial differential equations . 

In the late 50's and early 60's a theory for the following class of equations with non­
smooth coefficients was developed. Let n be a domain in Rn , Q = n x (a ,  b) and consider 
the operator in divergence form 

n 
Lu = 11 t - 2.:: (a;j (x , t ) u xJXj 

; ,j=1 

where the coefficient matrix A(x , t ) = (a;j (x , t ) )  is measurable , real , symmetric and there 
are two positive constants /\ , A such that 

for every � E Rn , ( , ) being the Euclidean inner product . A function u E L2 (Q) is a weak 
solution of Eu = 0 if \7 x U  E L2 (Q) and 

I� { -u '-Pt + (A(x ,  t )\7u , \7'-P) } dx dt = 0 

for every '-P E CJ (Q) .  The reason to assume only measurability of the coefficients is be­
cause of the applications to non-linear equations . Nash [Na] proved that weak solutions 
are Holder continuous . De Giorgi [DeG] proved this result in the elliptic case. Moser 
[Mol ] , [Mo2] established a parabolic Harnack principle for non-negative solutions and de­
rived from it the Holder continuity. This Harnack principle has a difference with the elliptic 
one, this is: values of a non-negative solution u at a given time tl  are only comparable to 
values of u at a later time i2 > i1 . From the Harnack principle Aronson [Ar] proved that 
the fundamental solution of L behaves like the heat kernel. 

. 

I '� The study of linear degenerate elliptic equations in divergence form began in the late 60's 
and early 70 's  with the work of Murthy and Stampacchia [M-S ] ,and Trudinger [T IL[T2] . 
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These equations are of the form div(A(x)Vu) = 0 where A(x) is a measurable and sym­
metric matrix satisfying >.w(x) l e I 2 :::; (A(x)e , e ) :::; Aw(x) le I 2and w(x) � o. These authors 
found conditions on W under which weak solutions are Holder continuous and the Harnack 
principle holds . 

The theory of degenerate equations is related to the class of Aoo weights discovered by 
Muckenhoupt [Mu] in connection with the boundedness of the Hardy-Littlewood maximal 
operator in weighted LP spaces . He defined the class Ap .  A non-negative locally integrable 
function w belongs to Ap , 1 < p < 00, if there exists a constant C > 0 such that 

for every ball B e Rn , 1 · 1 is Lebesgue measure. For p = 1 ,  w E Al if there exists ai constant 
c > 0 such that 

1� l l w(x) dx :::; c ilJJf w , 

for all balls B. Then Aoo = U�I Ap . 
The connection between degenerate equations and Aoo weights was predicted in [C-F] . 

Ten years later this prediction was confirmed by Fabes, Kenig and Serapioni in [F-K-S] . 
They proved that if w E A2 then the Harnack principle holds, the solutions are Holder 
continuous and among Aoo weights the class A2 is the best one for which these results 
hold. 

The equations we had studied are degenerate parabolic equations of the form 

n 
( 1- 1 )  vex) U t = L (aij (x , t) U xJX i > 

i ,j=1 

n 
wI (x , t) l e I 2 :::; L aij (X , t) ei ej :::; w2 (x , t) le I 2 ; 

i ,j=1  

where the coefficients are measurable functions, the matrix (aij ) i s  symmetric and v ,  WI 
and W2 are non-negative. 

In the case when WI and W2 are time independent these equations appear in the following 
two instances. First , they arise when one pulls back the heat operator via a quasiconformal 
mapping <p from Rn into Rn . In this case v(x) = Idet <p'(x ) 1  and WI � W2 � V n;;- 2  

. Second, 
the equation ( 1- 1 ) appears as a model of the diffusion of temperature in a non-isotropic 
and non�homogeneous material . The function v represents the product of the density of 
the material at x times the specific heat at x. The coefficients aij represent the thermal 
conductivity. 

. 

The problems we considered for these equations are the following: 

(a) What conditions on v , WI and W2 imply regularity of solutions, such us continuity 
or Holder continuity ? 

(b) When is a Harnack principle valid for non-negative solutions of (I-I )? 
(c) What is the behavior of the fundamental solution of (I-I )? 
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The tools we used to attack these problems are weighted norm inequalities of Poincare 
type and weighted interpolation inequalities .We say the Poincare inequality holds for the 
weights Wl , w2 , with tt-average and exponent q � 2, if there exists a constant c > 0 such 
that 

( 1-2) 

for every ball B and every F E Lip(B) ,  where 

and Lip(B)  denotes the class of Lipschitz functions on B. Here BR(X) denotes the Euclidean 
ball centered at x with radius R, and w eE) = IE w(x) dx for a measurable set E. 

By the results of [Cha-W] , a sufficient condition for the validity of ( 1-2) for q > 2,  with 
tt = 1 or tt = W2 , when W2 is a doubling weight and Wl E A2 , is the following: 

( 1-3) 

for all balls B, B, B e  2B, with c independent of the balls .  We also know that if ( 1-2) 
holds and Wl , W2 and tt are doubling then ( 1-3) holds (see [G-WI) ) .  

An example of an interpolation inequality i s  the following, 

( 1-4) 

1 [ 2h 
weB) iB l u i w(x) dx 

1 2 1. 1 2 1 2 
( 

) h-l 
( 

) 
:::; C v(B) l u v dx IB l n  Wl (B) l lVu l Wl dx + v(B) l u v dx . 

The study of weighted interpolation inequalities is in [G-WI] . 
We have proved in [G-W2] Harnack's inequality and mean value inequalities for solu­

tions of ( 1 - 1 ) .  
We now recall the Harnack's inequality from [G-W2] . 

THEOREM A .  Harnack's inequality. Suppose that 
(i) Wl , W2 E A2 ; 
(ii) the Poincare inequality holds for Wl , W2 with tt = 1 and exponent q > 2; 
(iii) the Poincare inequality holds for WI , 1 with any tt and exponent q > 2. 

H u  is a non-negative solution of ( 1 -1) in the cylinder Q = Ba(xo ) x (to - (3, to + (3) , 
then 



wbere 

( 1-6) A(B) = 
w2 (B) and 

IB I ' 
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A(B) = 
wl (B) 

IB I ' 
for a ball B.  

Here tbe constants Cl , C2 depend only on tbe constants wbicb arise in and (i)-(iil) . 

The inequality ( 1-5) is sharp . Given the dimension a of the cylinder R , the choice of f3 
leads to different constants in the exponent in ( 1-5) as well as to different cylinders. The 
choice of f3 that minimizes the exponent in ( 1-5) is given by 

In this case ( 1-5) becomes 

( 1-7) 

and this inequality is sharp . This shows how the degeneracies affect the classical homo­
geneity a ,  a2 • By assuming W2 does not grow too much with respect to WI the continuity 
of the solutions follows from ( 1-7) .  The inequality ( 1-7) implies the elliptic estimates in 
[C-W2] . The results of [C-Sl] and [C-S2] are special cases of our results in [G-W2] . 

In [G-W3] we proved Harnack's inequality when WI and W2 depend also on t .  The 
main tool we have developed to establish Harnack's inequality is an appropriate Sobolev 
interpolation inequality on cylinders in Rn+l , which by iteration leads to mean value irt­
equalities for solutions and then to (1-5) .  To establish the interpolation inequalities we first 
use weighted norm inequalities of Poincare type to derive interpolation inequalities in x on 
small balls , which are valid uniformly in t. Next , by using a covering argument , we deduce 
the interpolation inequality in any ball , valid uniformly in t and with a convenient form 
allowing integration in t. This gives us results for cylinders by Holder's inequality. This is 
an extension of the method we developed in [G-WI] to prove interpolation inequalities in 
the time independent case. 

As an example of the results in [G-W3] , we have that in case 

v(x)  = I x l ')' ,  

an analogue of the Harnack inequality ( 1-5) holds if 
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and 

1 _ IX2 - /Xl + 2 < (32 + 1 < 
1 . I - /Xl + 2 (31 + 1 -

We note that in case /Xl = a2 = 2 , (31 = (32 = 0, and I = 0, it is shown in [Chi-Sel ] ,  
p . 142, that equation ( 1 -1 )  has solutions which are unbounded. 

The results in [G-W3] extend those obtained in publication [G-W2] . 
The Harnack inequality and mean value inequalities proved in [G-W2] are used in 

[G-W4] to establish bounds for the fundamental solution of (1- 1). By using a different 
method from the one used in [G-W4] , the author and G.  Nelson in [G-N] have proved 
bounds in the case W1 ;:::;; W2 . However, the bounds in [G-W4] are in general better than 
the ones in [G-N] . 

The lower bound for the fundamental solution follows directly from the Harnack inequal­
ity in [C -W2] . To establish the upper bound we need a certain differential inequality to 
hold for the test functions used, and this can be achieved for example by assuming that 

w:;n/2 is in the class strong Aoo recently introduced by G .  David and S .  Semmes in [D-S] . 
However, for some classes of weights ,  the differential inequality can be proved directly 
without assuming the strong Aoo condition , and this leads to an upper bound for the fun­
damental solution. It is not clear how these classes of weights are related to strong Aoo . 
See the remark 1 for more details . 

We say that a non-negative and locally integrable function w in Rn is a doubling weight 
of order f-l (i .e . , w E Dp, ) if there exists a constant c >  0 such that 

for every t � I , R > 0, and x E Rn . 
Let x , y E Rn and define 

and 
r > O . 

Let r(x, t ; y , s ) = rA(x , t ; y , s) denote the fundamental solution of ( 1 -1 )  with pole at 
(y , s ) . We shall assume that r is a continuous non-negative solution of ( 1 - 1 )  in (x , t) for 
(x ,  t) #- (y, .5 ) which is zero for t < s , and satisfies the usual properties (see [G-W4] ) ,  
as  well a s  the fact that if f E L2 (Rn) ,  then IRn r(x , t i y , s)f(y) dy , t > s, is a continuous 
solution of ( 1 - 1 )  with continuous boundary values f as t ----+ S at the points where f is 
continuous .  

The lower bound is as  follows. 
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. THEOREM B. Lower bound. Let Wl , W2 be weights satisfying conditions (i)-(iii) of 
Theorem A, and let Wi E Ddn i = 1 , 2, with d1td2 < 1 + � .  Then if t > s , 

r(x, t ; y, s) � ( exp ( -c (::��:�::!-:n) 1 /2) exp ( -c (::��:��:!-:H) 1 /2) ) 
C max , x . Inp(y , t - s ) 1 Inp(x , t - s) 1 

( p(x , y)2 (W2 (B! x_y ! (y) ) ) 1/
2
) exp -c . t - s . wl (B! x_y ! (y)) 

In order to state the next theorem we recall several definitfons ,  including the definition 
of the class of strongly Aoo weights introduced by G. David and S. Semmes in [D-S] . 

A weight W is in Aoo if there are positive constants c, f such that 

weE) ( lE I ) '  
weB) 

:::; c TBT ' 
for every ball B and every measurable subset E of B. 

A weight w satisfies a reverse Holder condition if there are constants c > 0 ,  'Y > 1 such 
that 

C�I L w(zP dZ) 
1 /1 :::; c l� 1 L·W(Z) dz , 

for all balls B. It is well known that the Aoo and reverse Holder conditions are equivalent : 
see , e .g . ,  [Co-Fl . 

Given x ,  y E Rn we denote by Bx ,y the ball with diameter I x - y l that contains x and 
y , and we let 

S(x , y) = (L . . . W(Z) dZ) ' I"  

Given an arc 'Y : [0, 1] --+ Rn , the w-Iength of I is defined by 

lw("() = lim in(�= 6 ('Y(ti+I ) , 'Y(ti ) ) , 
where {t ; } is any partition of [0 , 1] and the lim sup is taken as the norm of the partition 
tends to o. The metric or geodesic distance associated with the weight w is defined by 

d(x , y) = inf{ lw("() : 'Y is an arc joining x and y} . 
If w is an Aoo weight then by using the reverse Holder condition it can be shown that there 
exis·ts  a constant c such that 

d(x , y) :::; c 6(x , y) , 
for all x ,  y E Rn . 

We say that w is strongly Aoo (or that w belongs to strong Aoo ) if there exists a constant 
c such that 

6(x , y) :::; c d(x , y) , . 
for all x , y E Rn . By [D-S] , every doubling weight which is strongly Aoo is also an Aoo 
weight . Also, every weight in Al is strongly Aoo , and if w is the absolute value of the 
Jacobian of a quasi conformal mapping on Rn then w is strongly Aoo . 
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THEOREM C. Upper bound. Let Wl , W2 be weights satisfying conditions (i)-(iii) of 
Theorem A and suppose that w:;.n/2 is strongly Aoo. Then for x, y E Rn and t > s ,  

exp C (� (f2d (x , t - s) )  + � (f2d (y, t _ 8 ) ) )  exp (-c d(x , y)2 ) , 
t - s 

where d(x , y) is the geodesic distance associated with w:;.n/2 , t > s ,  

and 
1 (W2(E)) 1 /2 �(E) = -------::-;----- + -( I f -n/2 ) 2/n I J wI (E) 

TEl E W2 dx TEl E WI dx 
It is easy to see from Holder's inequality that 

Note that P � cli if WI >:::! W2 >:::! w and Ii is defined with w-n/2 . Also P >:::! Ii if WI >:::! 
W2 >:::! W E A1+2. . In the case that WI >:::! W2 >:::! w, Theorem B gives a better lower bound 
than the one i� [G-NJ , and the hypotheses needed for Theorem B are weaker than the 
ones needed to establish the lower bound in [G-NJ . Under the hypothesis of Theorem C ,  
the upper bound obtained in Theorem C i s  better than the one i n  [G-NJ . For example, 
if w(x) = J x J <>  then w-n/2 is strongly Aoo for a < 2. Also the weight w-n/2 = Jx J -<>n/2 
belongs to DI - '} for a < 0, and belongs to DI == Al if ° � a < 2. Therefore, when a < 0 ,  
the index J.l defined in  [G-NJ satisfies 2/-Ll = I�<> < 1 ,  and consequently the estimate 
given there for the upper bound is not as good as the one in Theorem C.  

Remarks. 
1 .  There are other conditions on the weights under whiSh is possible to show the upper 

bound for r. These conditions are related to the test functions chosen in the proof of the 
upper bound. If we assume that 

" 
holds for v = �:;.n/2 , and every x , y, then the upper bound of Theorem C can be obtained 
with d replaced by PI , where 
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Here aB denotes the boundary of the ball B. 
If v i s  strongly Aoo then by the results of [D-S] the isoperimetric inequality 

L v(z) dz � C (la
B 

v (Z) n� l dO'(z)) n� l 

holds . Therefore if v satisfies ( 1-8) and is strongly Aoo then it follows by Holder's inequality 
that 

I .e . , 

for every y; that is , v E AI . Also note that if v satisfies ( 1-8) and v E  AI , then v belongs 
to " surface" AI ' In fact , by ( 1-8) ,  

I .e. , 

� c v(xt-I v(x ) = c v(xt 

( laB 
1 

( ) I  [ V(Z) dO'(Z)) � c v(x ) . I x-y l  y 18BI"_ , 1 (y) 
If we assume that W2 satisfies 

� c ( [ W2 (Z) dZ) 3 . , lBI" _ , I ( y) 
then it can be shown that an upper bound for r is 
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where 

and 

( IX - y l n+2 ) 1 /2 
P2 (X , y) = ( ( ) W2 B1x-y l  Y 

Condition ( 1-9) holds if for example W2 is a doubling weight which satisfies 

if x E B, for every ball B.  

In  particular, this holds i f  W2 (Xl , . . .  , xn ) = I Xl l <> for a > 0 ,  or i f  W2 (X) = I x l <>  for a > O. 
By Holder's inequality we have P2 ::; PI > and if w;n/2 E Aoo then d ::; CPl . If W2 E AH:' 
then PI � P2 . In case w;n/2 is strongly Aoo we have d � Pl . By doubling it can be 
shown that PI and P2 are quasi-metrics, i .e . , there exist constants J{i � 1 such that 
Pi (X , y) ::; J{i (Pi (X , Z) + Pi (Z , y))  for i = 1 , 2 . 

2. The problems (a) , (b) and ( c) mentioned at the beginning of this note are intimately 
connected. In fact in the non-degenerate case (i .e .  v � WI � W2 � 1 )  (b) � (a) by [Mol], 
[Mo2] ; (c) � (a) by [Na] ; (b) � (c) by [Ar] and (c) � (b) by [F-S] . In establishing the 
last implication Fabes and Stroock used some ideas in [Na] . 

It would be an interesting problem to establish first the bounds for r and then deduce 
from them Harnack's inequality in the degenerate case. 
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