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'SIMPLIFIED FIXED AND MOBILE BED HYDRODYNAMIC
MODELS AS SCALAR CONSERVATION LAWS

PABLO M. JACOVKIS

Abstract

In this lecture the shallow water hydrodynamic models with fixed
and mobile bed are analysed. It is shown that, with appropiate simpli-
fying assumptions, they both may be represented by scalar quasilinear
hyperbolic equations, written as conservation laws. They may also he
easily calibrated, provided that enough data are available. Some gen-
eralizations are introduced and further research is suggested.

1 Introduction

The one-dimensional gradually vaned unsteady hydrodynamic flow of shallow
water in rivers with fixed bed and arbitrary cross sections is governed by the
Saint-Venant quasilinear hyperbolic equations

v v oz QlQ|._ |
% tast99, 9 5 -0 (1)
as  8Q .
Ei'-g;—o (2)

Figure 1: Cross section of a river
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Figure 2: Longitudinal section of a river

where i is the space variable through the longitudinal axis of the channel
or river, t is the time. @ = Q(x,t) is the discharge. S = S(Z(x,t).2) is
the wetted cross sectional area, V = V(z,{) is the mean velocity in the
longitudinal direction, Z = Z(z,t) is the surface elevation measured from a
fixed reference level, g is the acceleration of gravity, and D = D(Z(z,t), z) is
the conveyance, related to the frictional resistance to the flow (see figures 1
and 2). Equations 1 and 2 represent conservation of momentum and mass,
respectively. With suitable initial and boundary conditions they form an
initial-boundary value problem for a quasilinear hyperbolic system of partial
differential equations, that can be solved numerically. A careful derivation
of equations 1 and 2 may be found in [17); in [13] several numerical methods
which have been successfully applied to these equations are introduced and
explained.

There is a large number of efficient numerical methods implemented for
solving the Saint-Venant equations in whatever available compater, so that.
from a practical paint of view, the main problem that arises when modelling
a reach of a river is the calibration of the conveyances D{Z(z,t),z), which

usually can not be measured. For rivers with very irregular cross sections it
is difficult to represent conveyances by means of simple functions, so that in
general it is necessary to use tables. In this case a large number of parameters
must be calibrated, which is a time-consuming and complex task. Besides,
many field data are necessary that may not be availahle.

The process of calibration is in general an iterative process, carried on
under the responsibility of an experienced engineer, who begins with some
initial “feasible” conveyances and improves the results at each iteration. For
getting the initial conveyances, some empirical relationships mnst be used.
for instance

D= KSR

with R = S/P the hydraulic radins, P the wetted perimeter, A the Strickler
coefficient. or
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C = KRY® = RV8/y,

with n = 1/K being the Manning coefficient, and C' the Chézy coefficient,
n = 0.0254d%/%, and d - measured in meters - being the mean diameter of the
bed particles. Some engmeenng books have tabulated likely values of these
coefficients for different kinds of bed types and geometries (see for instance
(2] or [7)).

The calibration problem may be treated as an inverse problem, but the
number of parameters has been until now too large for this mathematically-
oriented approach to be feasible.

If instead of a hydrodynamic fixed bed model we have a maobile bed one,
that is, a situation in which the particles may roll and slide down changing
the bed level through time, the situation is slghtly different but not easier.
On one hand, we can not apply equations 1 and 2 to arbitrary cross sections,
unless we go from one to two spatial dimensions: in a mobile bed model,
we decompose the level Z(x,t) in two variables, the wetted height A(x,t)
and the (now varying) bed level e(x,t); in order to have a well determined
bed level e(z,t) we must restrict ourselves to channels with rectangular cross
sections, as in figure 3, where at each point x the width B(x) is constant for
all heigths h(z,t). Then S = Bh and P = B + 2h. In this way we have the
traditional shallow water model of the form
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Figure 3: Prismatic rectangular cross section
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to which we must add the equation of conservation of solid mass
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with G being the solid discharge per unit width. ;

Several empirical equations of state have been proposed for G as a {mono-
tonically increasing) function of V and, sometimes, a (monotonically decreas-
ing) function of A. Formulae for G may be found in [5]. The Meyer-Peter
and Miiller formula, for instance, may be expressed as

G = x(V*/h'° = Vo) (6)
where 1} is a threshold, related to the shear tension on the bed, and \ is an
empirical parameter. '

Equations 3, 4 and 5 form a system of quasilinear hyperbolic differential
equations. In [9] and [10] it may be seen that, to be treated as an initial-
boundary value problem. it needs always two boundary conditions upstream
and one boundary condition downstream. We note that the fixed bed rmodel
needs one boundary condition upstream and one boundary condition down-
stream for the subcritical regime, and two boundary conditions upstream for
the supercritical regime, so that unless a very complex numerical model is
used, a transition from supercritical to subcritical regime or from subcritical
to supercritical regime requires a change of the numerical model. which is
obviously rather inconvenient. On the other hand, a transition is possible in
the mobile bed model, as may be seen in [10].

With the mobile bed model given by equations 3, 4, 5, and suitable initial
and boundary conditions, this author has modelled in 1981 the mobile bed
diversion channels for the Pichi Piciin Leufii and Michihuao projected dams.
on the Limay river, in southern Argentina.

In general, calibration of a mobile bed model is as hard a work as calibra-
tion of a fixed bed model. It is therefore important, for practical applications
where not a great deal of accuracy is needed (or where, anyway, it is very
difficult to obtain all the necessary field data), to have simplified models,
both for the fixed bed and for the mobile bed cases, that guarantee, with
a much easier calibration process (that could be treated as an inverse prob-
lem) a satisfactory solution. Simplified models will now be deduced for each
case, which essentially result in the same mathematical problem: a one-
dimensional scalar quasilinear hyperbolic equation, that may be written as a
conservation law and that allows the analysis of several interesting phenom-
ena that. occur in rivers and channels.
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2 The kinematic wave

The kinematic wave model is a simplification of the shallow water or Saint-
Venant model obtained when a one-to-one function @(Z) is assumed. Thie
is a strong assumption, that hydraulic engineers sometimes accept as a con-
venient approximation or for the sake of expediency. As S = S(Z(z,t),2) is
clearly a one-to-one function of Z for each x (for normal cross sectional ge-
ometries). Q may be written, following [14], ae Q(S{z.1),z). lf ¢ =¢(S.z) =
dQ/8S, we have from equation 2

Q , IR , -
Fn +c e (7)
Taking into account that V' = Q/S, we have
aV'S) v
0= W =V + S'é-g;

so that ¢ > V when fluid velocity increases with the “concentration”
(quantity per unit distance) which is the case in fluid dynamics. There are
some interesting kinematic wave models of traffic flow {see the pioneer work
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of [15] or the book {1]), where the opposite assupmtion is made, that is, car
velocity decreases with concentration, and c < V.

The kinematic wave model is particularly simple if we accept the Chézy
law: resistance varies as the square of velocity. A straightforward derivation
(see [14]) allows us to write 1" as V = (giS/f P)}/?, where i is the bed slope
and f a friction coefficient. The Chézy coefficient is C = (g/ 3. For
‘channels with simple geometry (for instance, trapecial and prismatic as in
figure 4) and composed of a unique kind of bed material, this is a sound
assumption, so that we may write equation 7 as a conservation law
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Figure 4: A trapecial channel

=0 (8)
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where now Q(S) = 1"S = MS3/3/PY3 and M = (gi/ f)}/? = CV/i. We have
S = (B+ hcot(9))h and P = B + 2h csc(f), and after some computations we
check that 8Q/3S > 0,82Q/dS? > 0 always. so that equation 8 is genuinely
nonlinear in the sense of Lax [11], and it has then a unique entropy solution
for initial data S(z,%,) = So(z) € L.

Equation 7 -or 8 - is treated, in practical applications, as an initial-
boundary value probiem, for 2o € z < zp. A boundary condition Q(z,) =
g(t), or similar, is given at the upstream extreme point zg. With this analysis,
only the value of f must be calibrated.

3 Generalizations of the kinematic wave

It is very easy to model a river basin with an arborescent structure, as shown
in figure 5.
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Figuare 5: Arborescent structure of a river basin

Using conservation of mass, we have

Qi+Qi=

at junction points formed by the downstream extreme points of tributaries
and the upstream extreme point of the reach to which the tributaries flow.
Here Q; and Q; are discharges at the downstream extreme poinis of reaches
i and j; and Q; is the discharge at the upstream point of reach k. For
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each reach with a “non open” upstream point (that is, a point belonging
to a junction of three reaches), we have then a boundary condition; only at
open extreme points of the basin it is necessary to give boundary conditiona
as data. This generalization holds for all conservation laws that maintain
a positive flux, not necessarily for models of rivers and channels only. But
the approach is not. applicable if we have a deltaic structure. instead of an
arborescent one: in that case, the complete Saint-Venant system must be in-
troduced. This problem, and an efficient algorithm for treating it, is analysed
in [8].

Lateral inflows ¢;() may also be introduced at points z;,i = 1,... ,n, as

Figure 6: Cross section with flood plain

internal boundary conditions by means of Dirac deltas as, for instance

%?_ + 699- = }5«1.6(2.)

i=]

Another interesting problem is to consider a poligonal cross section, as
may be seen for instance in figure 1. In this case d>Q/dS? has a finite number
of discontinuities, where limits from the left and from the right exist. In a
joint research project with E. Tabak, object of a forthcoming publication, we
are analysing this case, and the more complex case of a “normal” bed and a-
flood plain, as seen in figure 6.

Now dQ/dS is discontinous. The theorem of existence and uniqueness of
an entropy solution, that may be consulted in [16] may be generalized to the
case of the flux function having piecewise continuous second derivative. The
case of piecewise continuocus first derivative is more involved.

4 The mobile bed scalar equation and some
generalizations

The complete mobile bed model 3, 4, 5 may also be conveniently simplified,
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following an idea of [3) described in English in [12]. if we assume discharge
Q constant and surface elevation Z horizontal, that is, 8Z/8z = 0. This
assumption is justified (in this simplification) by taking into account that
O0Z/8z is generally of a lesser order of magnitude than de/dx.

Exner supposes that there exists a relationship

de ov
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with € > 0. For a prismatic rectangular channel, we have BAV = Q, so that

b, @ de_
gt B(Z-—ePdr

and we have a conservation equation if we write this as

Be. + dGle)

st o =" (9)

with G(e) = ¢Q/B(Z — e). _
Clearly G'(¢) > 0, G"(e) = €Q/(2B(Z — €)*) > 0, so that equation 9 is
genuinely nonlinear. We may note that the velocity of propagation of the

sediment. wave increases from the base of a bank to its crest, as experiments
confirm.

If the dependence of ¢ on V is nonlinear, say

with m > 1 (this case is the case of equation 6, provided that V;, =0, m = 3,
and A is not taken into account), we have

Oe V™

o~ oz
from which we obtain equation 9 with G(e) = ¢eBQ™/S™. In particular
dG - meQ™
de B™(Z —¢)mH
G Q™

71—6-2- :m(m+l)—-————Bm(Z_e)m+2 >0

and the conservation law is genuinely nonlinear.

>0
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Furthermore, we may generalize to the following form of solid discharge:
G = V-V if V>%
= 0 if V<V
In this case we may have again a flux function that is continuously differ-
entiable but has a second derivative with a discontinuity where both limits,
from left and right, exist.

It is also possible to assure existence and uniqueness of an entropy solution
for equation 9, and we have again only one parameter to calibrate, namely,
¢. In fact, experimental work has been performed and published in [4).

As in the case of kinematic wave, a “basin” model is possible, that is. an
arborescent structure as indicated in Figure 5, the conserved solid discharge
being

BG; + B;G; = B;Gx
We may also introduce lateral inflow of solid discharge.

5 Further approaches

Several numerical finite-difference methods exist for solving the kinematic
wave problem. But it has not been solved with modern shock-capturing

Godunov-like methods, as described in [6). Two lines of research are possible
here:

1. The numerical solution of both equations by means of Godunov-like
methods, and a further analysis of them with a flux function with
some loss of continuity in the first or second derivative. This approach
is taken, with respect to the kinematic wave, in the already mentioned
joint research (in progress) with E. Tabak.

o

. With respect to the mobile bed model, a shock means a “collapse” of
a dune. This is a subject worth a detailed study.

Acknowledgement: The author wants to acknowledge Dr. Mario Grad-
owczyk, who called his attention to the work of F. Exner.
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