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MODELS AS SCALAR CONSERVATION LAWS 
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Abstract 
In this lect.ure the shallow water hydrodynamic .mode1s with fixed 

a.nd mobile bed are ana.l.ysed. It is shown tha.t, with appropiate simpli
fying &lSSuInptions , they both may be represented by sca.lM qua.silinear 
hypelOOlic eqU&tion8� written as coDSen&tion la.ws. They ma.y also be 
easily ca.librded, provided that enough data Me available . SoIne gen

era.lizations a.re introduced. and further reaearch is soggested. 

1 Introduction 

27 1  

The one-dimensional gradually varied unsteady hydrodynamic flow of shallow 
wa.ter in rivers with fixed bed and arbitrary cr088 sections is governed by the 
Saint-Venant quasilinear hyperbolic equations 

av 8V2 az . Q I Q I 
8t + 2fJ:r.'J + 9 {h + 9 D'J = 0 

as + 8Q = 0 
8t {)z 

Figure 1: Oroas section of a river 

( 1) 

(2) 
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Figure 2: Longit. udinal section of a river 

where iL is the space variable through the longitudinal axis of the channel 
or river , t is t.he time. Q = Q(z, t) is t.he disc.harge. S = S(Z(z, t) . z) is 
the wetted cross sectional area, V = V(z, t) is the mean velocity in the 
longitudinal direct.ion . Z = Z(;c I t) is the surface elevation measured from a 
fixed reference level, 9 is the accelera.tion of gra"ity, and D = D(Z(z ,  t ) , :r.)  is 
the conveyance ) related to the frictional resistance to the flow (see figures 1 
and 2 ) .  Equations 1 and 2 represent conservation of momentum and ma.s.�, 
respect.ively. With suit.able init.ial and boundary conditions they form an 
initial- boundary value problem for a qua.silinear hyperbolic system of partial 
different.ial equations.  t.hat can be solved numerically. A careful derivat.ion . 
of equations 1 and 2 ma.y be found. in [17]; in [ 13] several numerical method.s 
which have been successfully applied to t hese equations are introduced and 
explained . 

There is a large number of efficient numerical methods implemented for 
solving t.he Saint-Venant equations in whatever available computer, so that . 
from a. practjcal point. of view . t.he main problem t.hat. arises when modelling 
a. reach of a river is  the calibration of the conveya.nces D(Z(:r, t) ,  'Z ) , which 
usually can not be measured. For rivers with very irregular cross sect.ions it. 
is difficult to represent conveyances by means of simple functions, 80 that in 
general it is necessary to use tables. In t his case a large number of parameters 
must be calibrated, w hich is a time-consuming and complex t.ask. Besides, 
many field data are neceasary that may not be available. 

The process of calibrat.ion is in general an iterative process, carried on 
under the responsibility of an experienced engineer, who begins wit.h some 
initial "feasible" conveyances and improves the results at each iteration.  For 
getting the initial conveyances, some empirical relationships must. be used, 
for instance 

D =  KSR2/3 
with R = SI P the hydra.ulic radius, P the wetted perimeter , K the Strickler 
coefficient. or 
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C = KR1/8 = Rl/Bln 
with n = II If being the Manning coefficient , and C the Chhy coeflicient , 
n = O.0254d1/6, and d - measured. in meters - being the mean diameter of the 
bed particles. Some engineeruig books have tabulated likely values of these 
coefficients for different kinds of bed types and geometries (see for instance 

[2] or [7]). 
The calibration problem ma.y be tTeated as an invene problem. but the 

number of parameters has been until now too large for this mathematically
oriented approach to be feasible. 

If instead of a hydrodynamic fixed bed model we have a mobile bed one� 
that is, a situation in which the particle8 may roll and a1ide down changing 
the bed level through time, the situation is sJightly different but not easier. 
On one hand, we can not apply equal.ions 1 and 2 to arbitrary cross sections! 
unle88 we go from one to two spatial dimellsions: in a mobile bed model, 
we decompose the level Z(z, t) in two variables, the wetted height h(z , t) 
a.nd the (now varying) bed level e(or , t)j in order to have a well determined 
bed level e(:r. , t) we must restrict ourselve8 to channels with rectangular cross 
sections, as in figure 3, where at each point z the width B( z) is constant for 
all heigths h(.t , t). Then S = Bh and P = B + 2h. In this way we have the 
t.raditional shallow water model of the form 

B 

h 

Z e 

Figure 3: Prismatic rectangular ct088 section 

B lJh + IJhBV = 0 
lit 8.t 

to which we must add the equation of conservation of solid maas 

B lJe + IJBG = 0 
lit lJz 

(3) 

(4) 

(5) 
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with G being · the solid diaeharge per unit width. 
Several empirical equations of state have been proposed for G as a (mono

tonically increasing) function of V and, 8ometimes, a (monotonically decreas
ing) function of h. Formulae for G may be found in [5] . The Meyer- Peter 
and Miiller formula., for instance, may be expressed as 

( 6  ) 
where Vo is a threshold, related to the shear tension on the bed, and \ is an 
empirical parameter. 

Equations 3, 4 and 5 form a system of quasilinear hyperbolic differential 
equations. In [9] and [10) it may be seen that, to be treated M an initial
boundary value problem. it needs always two boundary condit.ions upst.ream 
altd one boundary condition downstream. We note t hat tile fixed bed lnodel 
needs one boundary condition up6tream and one boundary condition down
stream for the 8ubcritical regime, and two boundary conditions upst.rea.m for 
t.he supercrit.ical regime, so that. unless a very complex numerical model is  
used, a transition from 8upercritical to 8ubcritical regime o r  from �;ubc ritical 
to supercritical regime requires a change of the numerical mode l . w hich is 
obviously ra.ther inconvenie-..nt .. On the other hand, a. transition is possible i n  
the mobile bed model , as may b e  seen in [1 0].  

With the mobile bed model given by equations 3, 4, 5, and suitable initial 
and boundary conditions, this author has modelled in 1981 t he mobile bed 
diversion channels for the Pichi Pic-un Leufu and Michihuao projected da.�. 
on the Limay river, in southern Argentina. 

I� general, calibration of a mobile bed model L'J as hard a work as calibrar
tion of a fixed bed model. It is therefore important, {or practical a.pplica.tions 
where not a great de-al of accuracy is needed (or where, anyway, it is very 
difficult to obt.ain all the necessary field data) . t.o have simplified models : 
botlt for the fixed bed and for the mobile bed cases , that guarantee, w ith 
a much easier calibration process (t.hat could be treat.ed as an inverse prob
lem) a satisfactory solution. Simplified models will n ow  be deduced for each 
case,  which essentially result in the same mathematical problem: · ' a. one
dimensional scalar quasilinear hyperbolic equation , that may be writt.en as a 
conservation law and that allows the analysis of several int.erest.ing phenom
ena. t.hat. occur in rivers and channels.  
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2 The kinematic wave 

The kinematic wave model is a simplification of the shallow water or Saint
Venan* model ob*ained whf'Jl a. one-*o-one funct.ion Q(Z) is 8S8umed. This 
is a strong MSumption, that hydraulic engineers sometimes accept M a con-

, venieni approximation or for the sa.lre of expediellcy. As S 
== 8( Z( :r., t ) , :r.) is 

clearly a one-to-one function of Z for each it (for normal CI'068 sectional ge
ometries) .  Q may be \\-"litten , following [14], as Q(S(x . t) ,  x) .  If c = c(S. :l) = 
{)QI8S! we have from equa.tion 2 

aq oQ 
- + c -8t &:r 

Taking illto account that V = Q I S, we have 

{� == &(V8� == V S 8V 
. as + .  as 

(7) 

so t.hat c > II when fluid velocity increases wit.h the "concentra.tion') 
(quantity per uwt distance) which is the case in fluid dynamics. There are 
some interesting kinematic wa.ve models of traffic flow (see the pioneer work 

u 
Figure 4: A tra.peciaJ. channel 

of [ 15] or tb.e book [ I] ) , where the opposite assupmtioll is made, that is, car 
velocity decreases with concentra.tion. and c < V. 

Th� kinematic wave model is particularly simple if we �cept the Chezy 
law :  resistance varies as the square of velocity. A straightforward derivation 
(see [1 4] )  allows us t.o writ.e 1 - at! V = (g iSj f P)l/'lj where i is the bed slope 
and f a. friction coefficient. The Clu�zy coefficient is C = (g/ f)1/2, For 

. cllannels with simple geometry (for instan.ce, trapecial and prismatic as in 
figure 4) and composed of a. unique kind of bed material, this is a sound 
assumption, so tha.t we may write equa.tion 7 as a. conservation la.w 

8S + aq( S)  = 0 
at az (8) 
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wht'.re now q(S) = 1 "8 = ltlS3/'J I pl/'J and .iV = (gil/)1/2 = cv1. We have 
S = ( B  + h cot ( 9) }h and P = B + 2h cse( 6) ,  and after BODle computations we 
check that aql8S > o. fPqlllS2 > 0 alwa}'S. 80 that equation 8 is genuinely 
nonlinear in the sense of Lax [1 1] ,  and it has then a unique entropy solution 
{or initial data. 8(2:, to) = 50(2:) e L� . 

Equation 7 -or 8 - is treated, in practical a.pplieations, as an initial
boundary \-alue problem, for Zo S Z S Z I' .  A boundary condition q(:r.o) = 

g(t } , or similar, is given at the upstream extreme point :loo- With this analysis, 
only the value of l' must be calibrated. 

3 Generalizations of the kinematic wave 
It is very easy to model a river basin with an arborescent structure, as shown 
in figure 5. 

Figure 5: Arborescent structure of a river basin 

Using conservation of mass, we have 

at junction points formed. by the downstream. extreme points of tributaries 
and the upstream extreme point of the reach to which the tributaries flow. 
Here Q. and Qi aI'e discharges a.t the downstream extreme points of reaches 
i and i, and qk is the discharge at the upstream point of reach k. For 
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each reach with a "non open" upstream point (that is, a point belonging 
to a junction of three reaches),  we have then a boundary condition; only at 
open extreme points of the basin it is necessary to give boundary conditions 
as da.ta. This generalization holds for all conservation laws that maintain 
a positive flux, not necessarily for models of rivers and channels only. But 
t.he approach is not. applicable if we have a delt.aic st.ructure. instead of an 
arborescent one: in that case, the complete Saint-Venant system 1IlU8t be in
t.roduced. This problem, and an efficient algorithm for treating it, is analysed 
in [8] . ' 

Lateral inflows qi(t ) may also be introduced at points :t;) i = 1 ,  . . •  , n, as 

J 

Figure 6: Cross section with flood plain 

internal boundary conditions by means of Dirac deltas as, for instance 

Another interesting problem is to consider a poligonaJ. cross section, as 
may b€ seen for iustance in figure 1 .  In tws ca.se cPQ/dSJ has a finite number 
of discontinuities, where limits from the left and from the right exist. In a 
joint research project with E. Tabak, object of a forthcoming publication, we 
are analysing this case) and the more complex case of a "normal)) bed and a 
flood plain, as seen in figure 6. 

Now dQ / dS is discontinous. The theorem of existence and uuiquelle8S of 
an entropy solut.ion . that. ma.y be consulted in [16] may be generalized to the 
C Me of the flux function ha"illg piecewise continuous second deriva.tive. The 
CMe of piecewise conti.nuous first derivative is more involved. 

4 'I'he mobile bed scalar equation and some 
generalizations 

The complete mobile bed model 3, 4, 5 may also be conveluently simplified, 
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foDowing aD idea of (3] dt'SCrlbed in English in [12] .  if we assume discharge 
q constant and surface elevation Z horizontal, that is, IJZ/IJ% = O. This 
&88um.ption is justified (in this simplification) by taking into account that 
8Z/8% is generally of a lesser order of magnitude than 8e/8:r. 

Exner supposes that there exists a relationship 
8e 8u 
- = -€-8t ()� 

with € > O. For a prismat.ic rectangular channel, we have BhV = Ql 80 that 

8e EQ Be 0 - + . = 8t B( Z - e)2 &� 

and we have a conservation equation if we write this as 

witb G(e) = €Q/ B( Z - e ) ,  

Be. 8G(e )  - + -- = 0 fJt o:r (9) 

Clearly G/{e }  > 0 ,  G"(e ) = f.Q/( 2B(Z - e)30 )  > 0, 80 that equation 9 is 
genuinely nonlinear, We may note that the velocity of propagation of tbe 
sediment. wave increases from the base of a bank to it.s crest, as experiments 
confirm. 

If the dependence of e on V is nonlinear, say 

&e &Vm 
fit = -E &:r 

with m � 1 (this case is the case of equation 6, provided that \.-0 = 0 , m = 3, 
and h is not. t.aken int.o account) ,  we have 

oe &Vm 
- == - � --8t 8x 

from which we obtaiu equation 9 with G(e ) = f.BQ'mj.,"" In particular 

cPG f.cr 
del = m(m + 1 )  IJm(Z _ e)tn+2 > 0 

and the conservation law is genuinely nonlinear. 
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Furthermore, we may gent"J'alize to the following fonn of aolid discharge: 
G = e( V - Vo)1'II if V > 1'0 

= 0 if V � Vo  
In this case we may have again a flux function that is continuously differ

entiable but has a second derh'ative . with a discontbluity where both limits! 
from left and right, exist. 

It is also poesible to assute existence and uniqueneu of an entropy solution 
for equation 9, and we have again only one parameter to calibrate, namely, 
E.  In fact, experimental work has been pedormed and published in [4]. 

As in the case of kinematic wave, a "basin" model is possible. that is. an 
arborescent strudure as indicated in Figure 5, the consetved solid discharge 
being 

B,G, + BiG; = BIIG1c 
\Ve may also introduce lateral inflow of solid discharge. 

I) Further approaches 
Several numerical finite-difference methods exist for sol"ing the kinematic 
wave probleJD. But. it haa not been solved wit.h modern shock-capturing 
Godunov-like methods, as descriJ>ed. in [6]. Two lines of research are possible 
here: 

1. The numerical solution of both equations by means of Godunov-like 
met.hods, and a furl.ber analysis of them wit.h a :flux function wit.h 
some 1088 of continuity in the first or second derivative. This approach 
is taken, with respect to the kinematic wave, in the already mentioned 
joint research (in progress) with E. Tabak. 

2. \Vith resped to the mobile bed model, a shock means a. "collapse" of 
a dune. This is a subject worth a detailed st.udy. 

Acknowledgement: .The author wanta to acknowledge Dr. Mario Grad
owczyk, who called his attention to the work of F; Exot"J'. 



280 

References · 
[1] W. D.  Ashton, The theot'1/ oj road t,affic flout, Methuen, London, 1966. 

[2] V.-T. Chow, Open channel hydroulics, McGraw-Hill, New York, 1959. 

[3] F .  Exner, "fiber die Wechselwiy� zwi��en Wassel: un� Geschie.�e 
in Fliissen, Sitzungsberichte der Oste rre.chf.8chen A kademse der W..,-
senschajten, Abteilung II, 134, 165-203, 1925. 

[4] M. H .  Gradowczyk, O. J .  Maggiolo and R .  Ra.ggi, A  bed wave moving 

downstream from obstacles, Proceedings oj the · tu.·e{hh (Jo ngre8S 0/ the 
lnte'flational Associa tion jOt' Hydraulics Research, Fort Conins, CO, 

314-321 ,  1967. 

[5] W. H. Graff, Hydraulic., oj udiment transport, McGra.w-Hill , New York, 
1 97 1 .  

[6] A .  Harten, Recent developments in shock-ca.pturing schemes, leA SE 
Report 91 -8. NASA Langley Research Center, Hampt.on, VA. 199 1 .  

[7] F .  M. Henderson, Open channel flotl', McMilIa.n, New York, 1 966. 

[8] P. M. Ja.covkis, Modelos numericos hidtodill.amicos en r.edes flu"iales 
complejas. Revista Intern a cion a l  de Metodos iVumericos para Calculo y 
Diseiio en lugenier{a,6 .  543-572.  1 990 . 

[9] P. M. Ja.covkis , O ne-dimensional hydrodyna.mic flow ill complex net
works a.nd some generalizations. SIA M J. A 1'1'I .  Math. , 5 1 ,  948-966. 
1 991 .  

[10] P. M.  Jacovkis, An81isis de condiciones de contorno y c ambio dE' regimen 
en model08 hidrodinamic06 con fondo m6vil, in: S. N .  Idelsohn ( ed. ) .  

Mecanica computacional. Vol. 12 ,  A80ciaci6n Argentina. de Meca.l1ica 
Computacional, AMCA, 325-334, 1991 .  , 

[1 1] P. D. Lax, Hyperbolic l:Iystems of con8en-ation law� and the mathemati-
cal theory of shock wa.,\·es. Society /or In dustrial an d Applied Mathemat-
ics, Philadelphia. 1973. 

[12] S.  Lelia,,'sky, An in troduction to fluvial hydraulics, Dover, New York, 
1966. 



281 

[13] J .  A. Liggett and J.-A. CURge, Numerical methods of solution of the 
unsteady flow equation, in: IC Mahmood and V .  Yevjevich (eds.), Un
steady flo-U' in open channel$, Water Research Publications, Fort Collins. 
CO, 89-182, 1975. 

[14] M. J. Lighthlll and G. B. Whitham, On kinematic wa""es I ( Flood move
ments in long rivers), Prot. Roy. Soc. A 229! 281-316! 1955. 

[15] M. J. Lighthill and G. B. Whitham, On kinematic waves II (A theory 
of traffic flow on long crowded roads). Proc. Roy. Soc. A .  229.  3 1 7-345, 
1955. 

[16] J .  Smoller, Shock wave$ and reac tion- diJJu$ion e.qt,a tiotu, Springer Ver
lag! Heidelberg, 1983. 

[17] J .  J .  Stoker, Water wat'es, Interscience, New York, 1957. 

Departamento de Computadon e 
Instituto de Calculo 

Fac:ultad de Ciencias Exactas y N aturales 
Universidad de Buenos Aires 


