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F-QUOTIENTS AND ENVELOPE OF F-HOLOMORPHY

OTILIA W. PAQUES

This note corresponds to results from the article [6]. Let E be
a complex Banach space, let F be a closed subspace of E and let
I: E ~ E/F be the canonical quotient mapping. A Riemann domain
over E is a pair (X,¢) such that X is a Hausdorff topological
space and ¢: X - E/F is a local homeomorphism.

DEFINITION 1. Let (X,¢) be a Riemann domain over E. We say that
(XF,¢F,w) is an F-quotient of X if (XF,¢F) is a Riemann domain

over E/F and ¢ is a continuous open mapping from X onto XF such
that ¢Fow=no¢.

EXAMPLE 2. Let U be an open subset of E. If i and i, are respe-

I

ctively, the canonical inclusions i: U<>E and i n(U) < E/F,

I
it is clear that (H(U),iH,H) is an F-quotient of (U,i).

EXAMPLE 3. Let (X,¢) be a Riemann domain over E, let R be the
equivalence relation defined on X by ¢(x)-¢(y) € F, for x,

y € X and denote by X/R the quotient set of X‘by this equi-
valence with the quotient topology associated to the mapping

v from X onto X/R defined by y(x) := X (where X denotes the
equivalence class of x). We can define bp: X/R - E/F by ¢F(§):=

:= I(¢(x)) for every X € X/R and it is easy to see that
(X/R,¢F) is a Riemann domain over E/F. It is clear that

(X/R,¢F,w) is an F-quotient of (X,¢).
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For the next examples U will be a connected open subset of E.
Let H(U) be the set of all holomorphic functions f: U - C. As
usuai, T, denotes the compact open topoldgy. Given any sub-
algebra A of H(U) endowed with a locally convex topology T,
the spectrum of (A,7t) is the set of all nonzero continuous
homomorphisms h: A - C and is denoted by S(A,t). For any

u € U, we define {i: A » C by u(f) = f(u) for every f € A. It
is clear that U = {i, u € U} C S(A). We will consider the
spectra of (H(U),t,) and of (H(I(U)),t,). Alexander in [1] en-
dowed S(H(U),t,) with a topology such that (S(H(U),t,),p) is
a Riemann domain over E and the same for (S(H(H(U))Jo),pn).

EXAMPLE 4. There exists a mapping A: S(H(U),t,) - SH{TU)),t,)

which is continuous, open and satisfies Pq oA =1 ,p, thus

(A(S(H(U),TO)),pH,A) is-an F-quotient of S(H(U),t,). (cf.I[6]).

Let eN(U) denote the connected component of S(H(U),To) which

contains G.‘Alexander studied ey(U) and called it a normal’
envelope of holomorphy of U (for details we refer to [1], [3]
and [7], chép.XIII). Analogously let ey (I(U)) be the connected
component of S(H(HUD),TO) which contains T(U). From the exam-
ple 4, we get that (A(ENUD),pH,A) is an F-quotient of eN(U).

To every connected Riemann domain (Y,p) over E/F there corres-
ponds a connected Riemann domain {Y*.p*) over E, called pull
back of Y, where Y* = {(y,a) € YxE; p*(y) = NI(a)} cndowed
with the topology induced on Y* by the product topology on

Y xE, and p*(y,a) = a, for all (y,a) € Y*. (cf.[4] and [9]).

Let (EN*(U),¢*) be the pull-back of (SN(H(U)),pH).
EXAMPLE 5. There exists a mapping y: EN*(U) > EN(H(U)J which
is continuous, open,onto and satisfies Pp oW = I, 0%, thus

(EN(H(U)),pH,w) is an F-quotient of eN*(U). (cf. [6]).
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For other non trivial examples of F-quotients we refer to [6].

We denote by HFw(X) the space of all goyp as g ranges over
H(XF).

THEOREM 6. Let (X,9) be a Riemann domain over E and let
(XF,¢F,w) be an F-quotient of X. The mapping gr>gey <8 a to-

pological isomorphism between (H(XF),TO) and (pr(x)’To)'
(cf. [6]).

We recall that a morphism j: U - X is an extension of U if for
each f € H(U), there is a unique % E‘H(X) such that % oj = f.
Finally a morphism j: U - X is said do be an envelope of holo-
morphy of U if: a) j is an extension of U; b) if y: U > Y is
an extension of U then there is a morphism 8: Y » X such that

Bey =3j, i.e., j is maximal.

"In 1972, Hirchowitz published a paper (cf.[5]) where he showed,
using germs of holomorphic functions, that every Riemann do-
main over a Banach space E has an envelope of holomdrphy. In- -
dependently and at the same time, Schottenloher considered in
his thesis a more general situation by defining regular clas-
ses and admissible coverings for Riemann domains over a Banach

- space E. He showed that the envelope of holomorphy of a con-
nected open set U, usually denoted by e(U), could be identi-

"fied with a connected component of the Tg Spectrum. (cf. [8]).

Hirchowitz remarked in [5] that his construction was also

good to obtain the envelope of U relative to special classes
of holomorphic functions on U instead of the envelope of U
relative to H(U) (the envelope of holomorphy of U). This more
general approach, due to Hirchowitz, is presented in a very
clear way by Mujica in [7] chapter XIII. He defines an A-enve-
lope of holomorphy, where A is a subclass of the set of all
-holomorphic functions of a Riemann domain over a Banach space
E and proved that it always exists. A natural problem arises

when we want to know if each element of A shares with its .
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extension to the A-envelope of holomorphy some special proper-
ties. Hirchowitz considered this problem in remark 1.8 of [5].

If F is a closed subspace of E, we denote by HF(U) the space
of all £ € H(U) such that £ = goll for some g € H(II(U)). It
seems that no relation can be established between the Hg(U)-
envelope of holomorphy of U and the envelope of holomorphy of
I(U) constructed by Hirchowitz. So we have the following defi-
nition.

DEFINITION 7. A morphism j: U - X is said to be an F-extension

of U if there exist an F-quotient (XF,¢F,w) of X and a morphism
jH: ) - XF such that:
a) jH is an extension of m(U),

b) o = jpeol.
REMARK. In this case, given g € H(II(U)) there exists an exten-
sion f € Hy (X) of £ = g which is defined by f = go ¥

where g € H(XF) is an extension of g.

PROPOSITION 8. The mapping j: U - EN*(U) defined by j(u) =

P
= (I(u),u) for all u € U is an F-extension of U.

We recall that j: U » (e(U),q) defined by j(u) = 4 is the
envelope of holomorphy of U. By using the equality H(II(U))
U A (cf.[6]) we can show that jH: n(U) » €(I(U)) defined

W WwW?
P
by jH(H(U)) := II(u) is an extension of N(U). .Since the indu-

ced topology Tg in H(M(VU)), defined in [8],p.238, is weaker
than our induced topology Ty, we have S(H(I(U)),tg) S
€ S(H((U)),t) and so the envelope of holomorphy due to

Schottenloher is a topological subspace of €(II(U)). Now since
the Schottenloher's envelope of holomorphy of I(U) is a maxi-
mal extension it coincides with (E(H(U)),qn).
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PROPOSITION 9. There <s a mapping ¢: €(U) +'€(H(U)) which is
continuous, open and satisfies qpe°¢ = Meoq, thus
(¢(E(U)),qn,¢) is an F-quotient of e(U). (cf. 6 ).

PROPOSITION 10. The morphism j: U » €(U) defined by j(u) = a
is an F-extension of U. (cf. [6]).

DEFINITION 11. Let (X,¢) be a Riemann domain over E. Admnphisn
j: U > X is said to be an envelope of F-holomorphy of U if:

a) j is an F-extension of U.

b) if k: U > Z is an F-extension of ‘U, then there is a morphism
Y: Z » X such that yok = j.

Let (e*(U),¢*) be the pull-back of (e(H(U)),qH), where ¢*(h,a)=
= a, for all (h,a) € e*(U).

THEOREM 12. The mapping o: U - €*(U) defined by o(u) :=

7\
:= (I(uw),u) for all u € U Zs an envelope of F-holomorphy of U. :
(cf. [6]).

FINAL REMARKS. As a consequence of the maximality of e*(U)
proved in Theorem 12, we know that there are morphisms.
-y: €(U) » €*¥(U) and v*: EN*(U) + g*(U) such that yeoj = a

and Yy¥*°j = o (cf.Prop.10 and 9 for the definition‘of j in
each case).

If F is a closed subspace of a Banach space E such that E/F

is separable and has the bounded approximation property,
(b.a.p.) S(H(H(U)),To) = ¢(m(U)) = eN(H(U)) (cf. [7],cor.58.10).
Consequently we get e*(U) = eN*(U).

We recall that given anyvseparable Banach space G there exists
F C 1, such that G is isomorphic to 1,/F. If in addition G

has the b.a.p. it is clear that 1;/F has the b.a.p. (e.g.G=
=‘1p,>1 <p <«). Now, given U C 1; and F C 1; such that 1,/F
has the b.a.p. we have that €*(U) is the pull-back of
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S(H(M(U)),14) -

Finally we want to remark that the morphism j: U - eN*(U) defi

ned in Proposition 8 is also open and injective. We didn't

succeed in our attempt to give reasonable definition of 'mormal

F-envelope of holomorphy of U".
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