F-QUOTIENTS AND ENVELOPE OF F-HOLOMORPHY

OTILIA W. PAQUES

This note corresponds to results from the article [6]. Let E be a complex Banach space, let F be a closed subspace of E and let $\Pi \colon E \to E/F$ be the canonical quotient mapping. A Riemann domain over E is a pair (X,ϕ) such that X is a Hausdorff topological space and $\phi \colon X \to E/F$ is a local homeomorphism.

DEFINITION 1. Let (X,ϕ) be a Riemann domain over E. We say that (X_F,ϕ_F,ψ) is an F-quotient of X if (X_F,ϕ_F) is a Riemann domain over E/F and ψ is a continuous open mapping from X onto X_F such that $\phi_F \circ \psi = \Pi \circ \phi$.

EXAMPLE 2. Let U be an open subset of E. If i and i_{Π} are respectively, the canonical inclusions i: U \hookrightarrow E and i_{Π} : $\Pi(U) \hookrightarrow E/F$, it is clear that $(\Pi(U), i_{\Pi}, \Pi)$ is an F-quotient of (U, i).

EXAMPLE 3. Let (X,ϕ) be a Riemann domain over E, let R be the equivalence relation defined on X by $\phi(x)-\phi(y)\in F$, for x, $y\in X$ and denote by X/R the quotient set of X by this equivalence with the quotient topology associated to the mapping ψ from X onto X/R defined by $\psi(x):=\overline{x}$ (where \overline{x} denotes the equivalence class of x). We can define $\phi_F\colon X/R\to E/F$ by $\phi_F(\overline{x}):=:=\Pi(\phi(x))$ for every $\overline{x}\in X/R$ and it is easy to see that $(X/R,\phi_F)$ is a Riemann domain over E/F. It is clear that $(X/R,\phi_F,\psi)$ is an F-quotient of (X,ϕ) .

For the next examples U will be a connected open subset of E. Let H(U) be the set of all holomorphic functions $f\colon U \to \mathbf{C}$. As usual, τ_o denotes the compact open topology. Given any subalgebra A of H(U) endowed with a locally convex topology τ , the spectrum of (A,τ) is the set of all nonzero continuous homomorphisms $h\colon A \to \mathbf{C}$ and is denoted by $S(A,\tau)$. For any $u \in U$, we define $\hat{u}\colon A \to \mathbf{C}$ by $\hat{u}(f) = f(u)$ for every $f \in A$. It is clear that $\hat{U} = \{\hat{u}, u \in U\} \subset S(A)$. We will consider the spectra of $(H(U),\tau_o)$ and of $(H(\Pi(U)),\tau_o)$. Alexander in [1] endowed $S(H(U),\tau_o)$ with a topology such that $(S(H(U),\tau_o),p)$ is a Riemann domain over E and the same for $(S(H(\Pi(U)),\tau_o),p)$.

EXAMPLE 4. There exists a mapping $\lambda: S(H(U), \tau_0) \rightarrow S(H(\Pi(U)), \tau_0)$ which is continuous, open and satisfies $p_{\Pi} \circ \lambda = \Pi \circ p$, thus $(\lambda(S(H(U), \tau_0)), p_{\Pi}, \lambda)$ is an F-quotient of $S(H(U), \tau_0)$. (cf. [6]).

Let $\varepsilon_N^-(U)$ denote the connected component of $S(H(U), \tau_o)$ which contains \widehat{U} . Alexander studied $\varepsilon_N^-(U)$ and called it a normal envelope of holomorphy of U (for details we refer to [1],[3] and [7], chap.XIII). Analogously let $\varepsilon_N^-(\Pi(U))$ be the connected component of $S(H(\Pi(U)), \tau_o)$ which contains $\Pi(U)$. From the example 4, we get that $(\lambda(\varepsilon_N^-(U)), p_\Pi^-, \lambda)$ is an F-quotient of $\varepsilon_N^-(U)$.

To every connected Riemann domain (Y,ρ) over E/F there corresponds a connected Riemann domain (Y^*,ρ^*) over E, called pull back of Y, where $Y^* = \{(y,a) \in Y \times E; \rho^*(y) = \Pi(a)\}$ endowed with the topology induced on Y* by the product topology on $Y \times E$, and $\rho^*(y,a) = a$, for all $(y,a) \in Y^*$. (cf. [4] and [9]).

Let $(\epsilon_N^*(U), \phi^*)$ be the pull-back of $(\epsilon_N^*(\Pi(U)), p_\Pi^*)$. EXAMPLE 5. There exists a mapping $\psi \colon \epsilon_N^*(U) \to \epsilon_N^*(\Pi(U))$ which is continuous, open, onto and satisfies $p_\Pi^* \circ \psi = \Pi \circ \phi^*$, thus $(\epsilon_N^*(\Pi(U)), p_\Pi^*, \psi)$ is an F-quotient of $\epsilon_N^*(U)$. (cf. [6]). For other non trivial examples of F-quotients we refer to [6].

We denote by $H_{F\psi}^{}(X)$ the space of all g $\circ\,\psi^{}$ as g ranges over $H(X_F^{})$.

THEOREM 6. Let (X,ϕ) be a Riemann domain over E and let (X_F,ϕ_F,ψ) be an F-quotient of X. The mapping $g\mapsto g\circ\psi$ is a topological isomorphism between $(H(X_F),\tau_o)$ and $(H_{F\psi}(X),\tau_o)$. (cf. [6]).

We recall that a morphism $j: U \to X$ is an extension of U if for each $f \in H(U)$, there is a unique $\hat{f} \in H(X)$ such that $\hat{f} \circ j = f$. Finally a morphism $j: U \to X$ is said do be an envelope of holomorphy of U if: a) j is an extension of U; b) if $\gamma: U \to Y$ is an extension of U then there is a morphism $\beta: Y \to X$ such that $\beta \circ \gamma = j$, i.e., j is maximal.

In 1972, Hirchowitz published a paper (cf. [5]) where he showed, using germs of holomorphic functions, that every Riemann domain over a Banach space E has an envelope of holomorphy. Independently and at the same time, Schottenloher considered in his thesis a more general situation by defining regular classes and admissible coverings for Riemann domains over a Banach space E. He showed that the envelope of holomorphy of a connected open set U, usually denoted by $\varepsilon(U)$, could be identified with a connected component of the τ_{δ} spectrum. (cf. [8]).

Hirchowitz remarked in [5] that his construction was also good to obtain the envelope of U relative to special classes of holomorphic functions on U instead of the envelope of U relative to H(U) (the envelope of holomorphy of U). This more general approach, due to Hirchowitz, is presented in a very clear way by Mujica in [7] chapter XIII. He defines an A-envelope of holomorphy, where A is a subclass of the set of all holomorphic functions of a Riemann domain over a Banach space E and proved that it always exists. A natural problem arises when we want to know if each element of A shares with its

extension to the A-envelope of holomorphy some special properties. Hirchowitz considered this problem in remark 1.8 of [5].

If F is a closed subspace of E, we denote by $H_F(U)$ the space of all $f \in H(U)$ such that $f = g \circ \Pi$ for some $g \in H(\Pi(U))$. It seems that no relation can be established between the $H_F(U)$ -envelope of holomorphy of U and the envelope of holomorphy of $\Pi(U)$ constructed by Hirchowitz. So we have the following definition.

DEFINITION 7. A morphism j: U \rightarrow X is said to be an F-extension of U if there exist an F-quotient (X_F, ϕ_F, ψ) of X and a morphism j_{Π} : $\Pi(U) \rightarrow X_F$ such that:

- a) j_{π} is an extension of $\Pi(U)$,
- b) $\psi \circ j = j_{\pi} \circ \Pi$.

REMARK. In this case, given $g \in H(\Pi(U))$ there exists an extension $\tilde{f} \in H_{F\psi}(X)$ of $f = g \circ \Pi$ which is defined by $\tilde{f} = \tilde{g} \circ \psi$ where $\tilde{g} \in H(X_F)$ is an extension of g.

PROPOSITION 8. The mapping $j: U \to \varepsilon_N^*(U)$ defined by $j(u) = (\widehat{\Pi(u)}, u)$ for all $u \in U$ is an F-extension of U.

We recall that j: U \rightarrow (ϵ (U),q) defined by j(u) = \hat{u} is the envelope of holomorphy of U. By using the equality H(Π (U)) U_W A_W, (cf. [6]) we can show that j_{Π}: Π (U) \rightarrow ϵ (Π (U)) defined by j_{Π}(Π (U)) := $\widehat{\Pi}$ (u) is an extension of Π (U). Since the induced topology τ_{δ} in H(Π (U)), defined in [8],p.238, is weaker than our induced topology τ_{Π} , we have S(H(Π (U)), τ_{δ}) \subseteq \subseteq S(H(Π (U)), τ_{Π}) and so the envelope of holomorphy due to Schottenloher is a topological subspace of ϵ (Π (U)). Now since the Schottenloher's envelope of holomorphy of Π (U) is a maximal extension it coincides with (ϵ (Π (U)), q_{Π}).

PROPOSITION 9. There is a mapping $\varphi\colon\thinspace\epsilon(U)\to\epsilon(\Pi(U))$ which is continuous, open and satisfies $q_\Pi\circ\varphi=\Pi\circ q$, thus $(\varphi(\epsilon(U)),q_\Pi,\varphi)\ is\ an\ F-quotient\ of\ \epsilon(U).\ (cf.\ 6\).$

PROPOSITION 10. The morphism $j: U \to \varepsilon(U)$ defined by $j(u) = \hat{u}$ is an F-extension of U. (cf. [6]).

DEFINITION 11. Let (X,ϕ) be a Riemann domain over E. A morphism $j: U \to X$ is said to be an envelope of F-holomorphy of U if:

- a) j is an F-extension of U.
- b) if k: U \rightarrow Z is an F-extension of U, then there is a morphism $\gamma\colon Z \rightarrow X$ such that $\gamma \circ k$ = j.

Let $(\epsilon^*(U), \phi^*)$ be the pull-back of $(\epsilon(\Pi(U)), q_{\Pi})$, where $\phi^*(h, a) = a$, for all $(h, a) \in \epsilon^*(U)$.

THFOREM 12. The mapping $\alpha: U \to \epsilon^*(U)$ defined by $\alpha(u) := := (\Pi(u), u)$ for all $u \in U$ is an envelope of F-holomorphy of U. (cf. [6]).

FINAL REMARKS. As a consequence of the maximality of $\epsilon^*(U)$ proved in Theorem 12, we know that there are morphisms $\gamma\colon \epsilon(U)\to \epsilon^*(U)$ and $\gamma^*\colon \epsilon_N^*(U)\to \epsilon^*(U)$ such that $\gamma\circ j=\alpha$ and $\gamma^*\circ j=\alpha$ (cf.Prop.10 and 9 for the definition of j in each case).

If F is a closed subspace of a Banach space E such that E/F is separable and has the bounded approximation property, (b.a.p.) $S(H(\Pi(U)),\tau_o) = \varepsilon(\Pi(U)) = \varepsilon_N(\Pi(U))$ (cf. [7],cor.58.10). Consequently we get $\varepsilon^*(U) = \varepsilon_N^*(U)$.

We recall that given any separable Banach space G there exists $F \subset \iota_1$ such that G is isomorphic to ι_1/F . If in addition G has the b.a.p. it is clear that ι_1/F has the b.a.p. (e.g. $G = \iota_p$, $1). Now, given <math>U \subset \iota_1$ and $F \subset \iota_1$ such that ι_1/F has the b.a.p. we have that $\epsilon*(U)$ is the pull-back of

 $S(H(\Pi(U)),\tau_o).$

Finally we want to remark that the morphism j: U $\rightarrow \epsilon_N^*(U)$ defined in Proposition 8 is also open and injective. We didn't succeed in our attempt to give reasonable definition of "normal F-envelope of holomorphy of U".

REFERENCES

- [1] H.ALEXANDER, Analytic Functions on Banach Spaces, Doctoral dissertation, Univ. of California, Berkleley (1968).
- [2] R.ARON, L.MORAES and R.RYAN, Factorization of Holomorphic Mappings in Infinite Dimensions, Math.Ann.277, (1987), 617-628.
- [3] J.M.EXBRAYAT, Functions Analytiques dans un Espace de Banach (d'apres Alexander), Seminaire Pierre Lelong, 1969. Springer Verlag Lectures Notes in Math.116 (1970), 30-38.
- [4] P.HILTON, Tópicos de Algebra Homológica, 8°Colóquio Brasil. de Matemática, 1971, IME-USP.
- [5] A.HIRCHOWITZ, Prolongement Analytique en Dimension Infinie, Ann. Inst. Fourier, Grenoble 22, (2), (1972), 255-292.
- [6] L.MORAES, O.PAQUES and M.C.ZAINE, F-quotients and Envelope of F-holomorphy, J.Math.Anal. and Applications, to appear in 1991.
- [7] J.MUJICA, Complex Analysis in Banach Spaces, North Holland Math. Studies 120, North Holland, Amsterdan (1986).
- [8] M.SCHOTTENLOHER, Analytic Continuation and Regular Classes in Locally Convex Hausdorff Spaces, Porth. Math. 33(4), (1974), 219-250.
- [9] M.SCHOTTENLOHER, The Levi problem for Domains Spread over Locally Convex Spaces with a Finite Dimensional Schauder Decomposition, Ann. Inst. Fourier, Grenoble 26, (4) (1976), 207-237.

UNICAMP/CP 6065 13081 Campinas - BRASIL.