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The first studies of bifurcation go back to Euler and Bernoulli . However, a comprehensive theoretical 
understanding of bifurcation of zeroes of nonlinear 'Fredholm maps from a trivial branch of zeroes was 
achieved only recently. In the past 2 years a new approach to the so-called linearized bifurcation was 
developed by a number of people . It does not use the classical Lyapunov-Schrnidt finite dimensional reduction 
at an isolated potential bifurcation point . Rather , it places emphasis on the computation of those global 
homotopy invariants of the family of linearizations at points of the trivial branch whose non-vanishing forces 
the appearance of new zeroes close to the trivial ones . This relates bifurcation to the topological complexity 
of the parameter space. The invariants iIi question are derived from the index bundle of the family of 
linearizations (the total Steifel - Whitney class of the index bundle is an example) . They necessarily vanish 
for maps between finite dimensional spaces and hence they cannot be computed from the Lyapunov-Schmidt 
reduction. The general discussion of this type of invariants heavily relies on techniques from algebraic 
topology (cf. [Pe) ) .  I will not do this here. Instead I would like to explain how a suitable degree theory 
for nonlinear Fredholm maps of index 0 provides a reasonable complete understanding of bifurcation of one 
parameter families of Fredholm maps and gives some hints about the type of invariants that arise in the 
general case . This degree theory was recently constructed by P. Fitzpatrick, P. Rabier and myself. In 
what follows I will sketch the construction of the degree for maps between Banach spaces and relate it to 
bifurcation from zero and infinity for families of Fredholm maps parametrized by the real line and the circle . 
Then I will extend the construction to maps between Banach manifolds and discuss the relation with the 
Elworthy-Tromba degree . Finally I will relate our degree with an interpretation of Casson's invariant as 
the Euler- Poincare characteristic of a section of a Hilbert bundle obtained recently by C .  Taubes and will 
consider some related open problems. 

D egree and bifurcation of one parameter families of Fredholm maps.  

Our interest in degree theory for Fredholm maps arose from an attempt to extend the well known 
Rabinowitz global bifurcation· theorem to one paraIlleter families of nonlinear elliptic operators subject to 
general boundary conditions of Shapiro-Lopatinskij type. The maps induced by these type of operators in 
function spaces are generally nonlinear Fredholm. Since the proof of the Rabinowitz theorem uses in an 
essential way the homotopy invariance of the Leray -Schauder degree for compact vector fields , this theorem 
cannot be extended to the Fredholm setting in any obvious way. In fact , no integer valued degree theory for 
Fredholm maps can be homotopy invariant .  

To be more specific, let I : R x X � X be  a one- parameter family of differentiable compact vector 
fields (I . e . ,  compact perturbations of the identity operator) , such that l(t , O) = O. Points of the form (t , O) 
are the trivial solutions of the equation I(t , z) = O. Let Lt = Dlt (O) be the linearization of !t (z) == I(t , z )  
at  x == o .  Assume that for a < b the operators La and Lb are isomorphisms. Since they belong to the 
group GLc(X) of ail linear invertible compact vector fields they have a well defined Leray-Schauder degree . 
The Leray-Schauder degree of an operator T in GLc(X) is given by the formula degL .s . (T) = (- lr , where 
m is the sum of the algebraic multiplicities of the negative eigenvalues of L. The Rabinowitz theorem (cf. 
[Raj) states that if the Leray - Schauder degrees of La and Lb differ in sign, then t.he interval la , b] contains 
a global bifurcation point t' for the equation I(z , t) = O. Here global means that the connected component 
of (t> , 0) in the closure of the set of nontrivial solutions of the above equation is either unbounded or else 
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contains trivial solutions (0, t) with t ¢ [a , b] . For families of Fredholm maps the above theorem does not 
hold, as can be easily seen in the following example. 

Let us recall that a Kuiper space is a Banach space X such that the space GL(X) of all invertible 
operators in L(X) is contractible. Hilbert spaces and most of the familiar function spaces , such

. 
as the 

Sobolev and Holder spaces , are Kuiper spaces . Let Lo and L1 be two linear invertible compact vector fields 
defined on a Kuiper space X having Leray-Schauder degrees of opposite sign . Since GL(X) is connected, 
these two operators can be joined by a smooth path L: [0 , 1] ..... GL(X) . If we now define I(t, z )  = Lt (z) , 
then the only solutions of the equation I(t , z) = 0 are the trivial ones. Thus no bifurcation arises although 
there has been a change in sign of the Leray-Schauder degree of the linearizations Lt as t goes from 0 to 
1. Incidentally, this also shows that there cannot be a homotopy invariant degree theory that extends the 
Leray- Schauder degree to any class of maps which includes all linear isomorphisms. 

The classical Caccioppoli degree for Fredholm maps [Cal take values in 7Z2 , and hence is inadequate for 
the study of bifurcation. The integer valued degree of Elworthy and Tromba [E.T.] gives no clue as to what 
should be the right s11bstitute for the homotopy invariance property of the Leray-Schauder degree. For this 
reason much work has been done in investigating restricted cla.;ses of nonlinear Fredholm maps for which a 
homotopy invariant degree can be constructed. In [F .P.R. I ]  and [F .P.R. II ] ,  we took a different direction 
by constructing a degree theory for orientable C2-Fredholm maps in which the possible change in sign of 
the degree along an admissible homotopy H was perfectly described in terms of a homotopy invariant of the 
lineariza�ions of Ht at a given point . In what follows I want to briefly discuss this invariant and motivate 
our notion of orient able map . 

Let U be an open subset of a Banach space X and let I: U ..... Y be a proper C2-Fredholm map. In 
order to define the degree of I by means of the regUlar value approximation (using generalizations of Sard's 
Theorem) it is necessary to assign to each regular point of the map I a multiplicity ±1. This must be done 
in a coherent manner which will make the sum of the multiplicities of points in the preimage of a regular 
value independent of the choice of regular value. 

If X and Y are of the same finite dimension, this is usually done by assigning multiplicities ±1 to 
each of the two connected components of the space GL(X, Y).  Fixing baslils in X and Y respectively, 
one can distinguish the two connected components by assigning to each linear isomorphism the sign of the 
determinant of its associated matrix in the given bases. 

If z is a regular point of I, its multiplicity t(z) is, by definition, sgndet DI(z) .  
With such a definition , the sum of the multiplicities of points in the inverse image of  a regular value of 

I extends to the well known Brouwer degree. In infinite dimensions, GL(X, Y) does not , in general , split 
into two components and hence a different approach is needed .  

Plainly, the simplest strategy for overcoming this obstacle is  to consider only maps whose derivatives 
take values in a proper subset 1" of the set of all Fredholm operators of index O. A prominent example of one 
such choice is when X=Y and 1" is the set of all linear compact vector fields . The set GLc (X) of invertible 
linear compact vector fields has two components which are distinguished by the function t which is defined 
for T E GLc(X) by f(T) = degL.s. (T) .This induces an assignment of multiplicities to the regular points of 
a nonlinear compact vector field which extends to the Leray-Schauder degree . 

To understand, in general , what should be required of a choice of 1" in order to obtain a coherent 
assignment of multiplicities at regular points for maps whose derivatives take values in 1", we revisit the 
finite dimensional case and examine a geometric property of the "sgndet" function which is independent 
of the choice of bases (i . e . ,  of the orientation) . The property which I hav� in mind is that the sign of 
the determinant of a path of matrices switches by -1  each time the path crosses transversally the orie 
co dimensional analytic subset of singular matrices. While the notion of oriented basis cannot be extended 
to infinite dimensions the above described fact has an appropriate correspondent for paths in the space 
<lio (X, Y) of all bounded Fredholm operators of index O .  

Indeed ,  the highest stratum 8' of the set 8 of non- invertible linear Fredholm operators is  the one 
co dimensional submanifold of <lio(X, Y) consisting of the operators having a one -dimensional kernel . . All the 
other strata are of higher co dimension. It follows then, by using standard methods in transversality theory, 
that any continuous path in <lio (X, Y) with invertible end-points may, by means of a small perturbation, be 
made to be both smooth and transverse to 8' . 
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By definition, the parity of a path L: I -+ 'l>o(X, Y) with invertible. end-points is given by O'(L , 1) == 
(_1)m , where m is the number ' of intersection points with 81 of any smooth approximation of L which is 
transverse to 81 • In other words, the parity of a path is the mod··2 intersection index of the path with the 
stratified set 8 (cf. [ F. P.I] for a more direct definition) . The parity depends only on the homotopy class 
of the path (relative to 8I) and is multiplicative under union of intervals, pointwise composition and direct 
sum of operators . Clearly, the parity of a path of matrices with invertible end-points is nothing but the 
product of the sign of the determinant at the end-points. 

Motivated by this observation, given a subset :F of '1>0 (X, Y) we shall say that :F is orientab.le provided 
that the parity of any path in :F with invertible end�points depends only on its end-points. On the set of 
isomorphisms belonging to an orientable set, a function having the above described property of the sign of the 
determinant can be defined. Such a function will induce a cohefent assignment of multiplicities to regular 
points of maps with DI(x) E :F and hence a degree. It can be shown that many of the degree theories 
for restricted classes of Fredholm maps that appear in the literature correspond to particular choices of 
orient able subsets :F. 

In infinite dimensions, the whole set '1>0 (X, Y) of all linear Fredholm operators cannot be orientable. 
Hence , in order to construct a degree theory for C2-Fredholm maps without imposing further restrictions on 
the values taken by the derivatives one has to consider a more refined notion of oriented map. The idea is 
the following: we shall think of D I as a family of linear Fredholm operators parametrized by the domain of 
the map and then we shall assign multiplicities not to the linear operator DI(x) but rather to the parameter 
x directly. 

The map I is defined to be orieniable provided that given any two regular points of I, the parity of 
the family D I of derivatives of I along any path in the domain of I joining these two points is independent 
of the choice of the path. Such a notion of orientation is more sensitive to the topology of the domain of 
I.  For instance, irrespective of the image of the family D I,  any map having a simply connected domain is 
orientable (*) .  If the map I is orient able, we can assign multiplicities ( x) to all regular points of I such 
that the following rule holds: if x and Xl are regular points of the map I, then 

( x) . ( Xl) = the parity of Df along any pat.h between x and Xl . 

A function ( as above will be called an orientation of the map f. Once the multiplicity ( xo) = ±1 of some 
fixed regular point Xo of f (the base point) is chosen, the orientation ( is completely determined by the above 
rule. 

Let U be an open subset of a Banach space X. Let f: U -+ Y be an orientable C2-Fredholm map that 
is proper on closed, bounded subsets of U and let f be an orientation of I. Suppose that n is open and 
bounded, with n c U. If y rt. 1(8n) and y is a regular value of f: n -+ Y, we define the degree of f in n 
with respect to y and the orientation ( by 

deg, (f, n , y) = 

If y is a singular value of the map, the degree with respect to y is defined by approximating y with 
regular values on t.he grounds of the generalized Sard-Smale theorem for Fredholm maps of index 0 and 1 
(this very last part is the only point at which the C2 assumption is needed). 

In this way one obtains a degree theory verifying all of the usual properties of t.he degree except the ho
motopy invariance. However, the most interesting aspect of this degree is that its behaviour under admissible 
homotopies can be perfectly described. This can be done better by introducing base-points. 

(*) Actually, the vanishing of Hl(Uj  Z2 ) suffices in order to make orient able all maps with domain U.  
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Let u s  assume that I is orient able, and let p b e  any regular point of I.  Let !p b e  the unique orientation 
of I such that !, (p) = 1. Define deg, (/, n , y) = deg •• (f, n , y) .  With the above definition the homotopy 
property of the degree can be formulated (in a special case) as follows: . 

Suppose that H: [0 , 1] x X -+ Y is a C2 orientable homotopy 01 nonlinear Fredholm mappings, which is 
proper on closed bounded subsets. Assume also that Po is a regular point both of Ho and HI . II n is an 
open bounded subset 01 X and H does not vanish on [0 , 1] x Bn, and il Lt = D",H(t , po ) ,  then 

deg,. (Ho , n , O) = o-(L,  [0 , 1] )  . deg,. (Hl , n , O) .  

I t  i s  easy to  see from this formula how the bifurcation arises. Suppose that I: R x X ...... Y i s  a C2. 
Fredholm family with a trivial branch of zeroes and assume that L is invertible at 0 and 1. If the interval 
[0, 1] contains no bifurcation points of ( 1 . 1 ) ,  then for small enough r the map I itself will be an orientable 
homotopy between the restrictions of 10 and h to n = B(O , r); Taking 0 E X as the base point , by the 
construction of our degree, we will have that dego (fo ,  n ,  0 )  = 1 = dego (h , n ,  0) .  But if u(L , [0 , 1]) = - 1, 
this is inconsistent with the homotopy formula. Therefore we get : 

Proposition 1 II o-(L, [0 , 1] )  = -1 ,  then the interval [0 , 1] contains a bilurcation point. 

In fact , it can be proved if u(L , [0 , 1] )  = -1 ,  then the bifurcating branch is globaL 

Based on the description of parity as the mod-2 intersection index of a path with the set S of singular 
operators we obtain the following simple explanation of bifurcation of one parameter families: bifurc.ation 
arises whenever the path 01 linearizations crosses non-trivially the set S. 

The above homotopy formula has wider impli�ations in the case in which the parameter space is topolog
ically nontrivial. As an example, let us consider t.he simplest topologically nontrivial space; the circle 8\ and 
a family of C2 -Fredholm maps I : 81 x X -+ Y. Such a family can be also seen as a map f : [0 , 1] x X -+ Y 
with 10 = h . It follows from the homotopy formula that if u(L, [0 , 1] ) = - 1  and one has a priori bounds for 
the zeroes of I, then the degree of I>. must vanish for all values of A E 81 . From this it is easy to conclude: 

Proposition 2 II />, has nontrivial degree lor some A and il o-(L, 81) = -1 ,  then there must be a 
bilurcation point from infinity (*) . 

Since the parity of a path of compact vector fields depends only on the values of the path at the end 
points, it follows that closed curves of compact vector fields always have parity 1 .  However, closed paths 
of Fredholm operators may have parity -1 , so that the above described phenomenon appears to be typical 
of the Fredholm· maps. It can be shown that the parity of a closed path "is 1 if and only if the path can 
be deformed out of the set S of singular Fredholm operators . For families of bounded Fredholm operators 
parametrized by general compact spaces the above property characterizes the index bundle . This explains 
why this bundle is relevant to bifurcation problems (cf. [Pel , [F .P.lI] ) .  

Further extensions an d  open problems. 
Let M and N be smooth, paracompa:ct Banach manifolds with N connected and let g: M -+ N be a 

C2-Fredholm map which is proper. The family of derivatives of 9 is now a Fredholm vector bundle morphism 
Dg: TM -+ gO (TN) between the iangent bundle TM of M and the pullback by 9 of the tangent bundle TN of 
N. The definition of panty of the morphism Dg a,long paths in M is clear. Indeed, given a path 1': I -+ M ,  
the pull-back of  TM under l' i s  a bundle over I which, by the contractibility of  I, i s  trivial. Composing the 
pullback of the morphism Dg with the trivializations, one gets a path of linear Fredholm operators with 
fixed domain and range. The parity of this path will not depend on the choice of trivialization. A map 
g; M -+ N will be called orientable if the parity of Dg along paths joining regular points of 9 is independent 
of the choice of the path. The orientation is defined as before and the degree of the map 9 is defined as the 
sum of the orientations of all points in the inverse image of a regular value. This sum is independent of the 
choice of regular value and the resulting degree will have the same homotopy property as before. 

(*) A point A in A is called a bifurcation point from infinity for I provided that there is no neighbourhood 
of A over which there are bounds for the solutions of the equation I(A, z) = 0 
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It is not difficult to prove that for maps between completely orient able (*) Banach manifolds our degree 
coincides with the Elworthy Tromba degree (cf. [E.T.)) . In this sett ing our homotopy formula fills a mayor 
gap in that theory. Moreover, in infinite dimensions it seems to be more natural to orient maps rather than 
manifolds .  Orientation of infinite dimensional manifolds has the unpleasant feature that the same manifold 
can have both orient able and nonorientable Fredholm structure. In our construction , Fredholm structures are 
not used at all and the resulting degree is defined for all oriented maps between any two Banach manifolds. 
In finite dimensions our degree coincides with Olum's degree for orientable maps between not necessarily 
orientable manifolds. 

In a recent paper [Tal , C .  Taubes gave an interpretation of the Casson invariant as an Euler- Poincare 
characteristic of a section of a Hilbert bundle. It appears that an appropriate extension of our degree theory 
may provide an abstract setting for his arguments and simplify considerable some of the proofs. In [Ta) , 
by identifying representations of the first homotopy group of a three dimensional manifold M (having the 
homology of a 3-sphere) with flat bundles over the manifold, Taubes gives the following interpretation of 
the Casson invariant: this invariant is half of the "intersection number with the zero section" of a section I/J 
of a Hilbert bundle over the space B of all gauge equivalence classes of connections on the principal bundle 
M x SU(2). This section is induced by the map which associates to each connection its curvature. It is 
a Fredholm section in the sense that its covariant derivative (with respect to a natural connection) \l1/J is 
Fredholm. Moreover since I/J, at least locally, is a differential of a functional , the covariant derivatives \l1/J are 
self-adjoint operators . Taubes uses perturbations of I/J having only regular intersection points with the zero 
section (by compactness ,  they are finite in number) .  Then , using the equivalence class of the trivial connection 
as a base point , he assigns multiplicities to these points by taking the reduction mod-2 of the spectral flow of 
\l1/J along paths joining them to the base point . He then proves that the sum of the multiplicities does not 
depend on the perturbation and that indeed it is twice the Casson invariant .  Here is a rough idea of how 
this can be interpreted using our degree . Hilbert bundles are trivial and hence after tri vialization the section 
becomes a map f from B into a Hilbert space whose zeroes are precisely the intersection points of I/J with the 
zero section . The Uhlenbeck compactness theorem will give the properness of the map (at least close to the 
value 0). There are minor difficulties in comparing \l1/J with D f but at the zeroes of f they agree . Since the 
mod-2 reduction of the spectral flow of a path of self-adjoint Fredholm operators is prec isely the parity one 
should conclude that the algebraic number of intersection points coincides with the degree of f, with respect 
to the chosen base point . However , things are not quite so simple because B is not a manifold . It contains 
a closed singular set given by the equivalence classes of reducible connections . Moreover, the base point is 
sitting inside of the singular set and because of this Taubes needs an ad hoc argument .  Nevertheless, since 
this singular set is of infinite co dimension in B, it seems that our degree theory can be conveniently extended 
to cover this case. 

Amann and Weiss established a simple set of axioms characterizing the Leray-Schauder degree . That 
such a uniqueness result should also hold for Fredholm maps is strongly suggested by the fact that for maps 
having D f transversal to S, the distribution of multiplicities is quite rigidly described by the following 
picture : The set Sf of singular points of f, being the inverse image by D f of S, is a stratified subset of the 
domain whose highest stratum is a sub manifold of co dimension one. The multipl icity is constant on each 
connected component of the complement RJ of Sf . Once the multiplicity is assigned to a fixed connected 
component , the multiplicity of any other connected component will �e the same or the opposite depending 
on whether a generic curve joining the two components crosses Sf transversally an even or an odd number 
of times. Hence the uniqueness should follow from a suitable density of transversal ity theorem. However 
I don 't know any appropriate result of this type. As I already mentioned , everything in our construction 
works in the case of C1-Fredholm maps except for the argument involving the density of regular values for 
the homotopies , i .e . , Fredholm maps of index 1 .  This is an insurmountable obstacle to the extension of 
the above construction. (.)  A method that could possible work in the C1 case is the original reduction used 
by Caccioppoli for the mod-2 degree [Cal together with our definition of orientability. However , such an 
approach is far from b eing straightforward . 

(*) This means that all Fredholm structures on the manifold are orientable . 
(.) Whitney gave an example of a C1 function h: R2 -> R such that the set of critical values of h contains 
an open interval . 
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