
Revista de Ia 
Union Matematica Argentina 
Volumen 37,  199 1 .  

B O U N D A RY P R O B L E M S  S I X  F R E E  
T H E  H E AT - D I F F U S I O N  

F O R  
E Q U AT I O N  

D o m i n g o  A l b e r t o  T A R Z I A 

INTRODUCTION . 

294 

By using approximate and analytic methods we obtain an answer to six free boundary 

problems for the heat -diffusion equation [Ta4] : 

(a) fu using explicit solutions : 

(I) We give a generalized Lame -Clapeyron solution for a one-phase Stefan problem with a 
particular type of sources. Necessary and sufficient conditions are given in order to characterize the 
source term which provides a unique solution. 

(II) We give formulas for the determination of some unknown thermal coefficients of a semi

infinite material through a phase-change process. We consider that the conductivity is an affine (i.e. 

variable) function of the temperature. 

(III) We give a generalized Neumann solution for a simple mushy zone model with two 

parameters for the two -phase Stefan problem for a semi-infinite material with equal mass densities 

in both solid and liquid phases, and constant thermal coefficients. 

(b) fu using !! theoretical approach : 

(IV) We give a local result in time for the existence and uniquenes� of the solution of the free 

boundary problem in the shrinking core model for noncatalytic gas-solid reactions. Vve impose free 

boundary conditions which generalize Wen and Langmuir conditions. 

(c) fu using approximate methods : 

(V) We give a new proof of the exponentially fast asymptotic behavior of the solutions in heat 

conduction problems with absorption by using a variant of the heat balance integral method. 

(VI) We give a growth absorption model for the root surface through an absorption 

mechanism. For low concentrations the resultant equations have been analytically solved by the 

quasi-stationary method. This solution is used to compute growth of root radius. 

PART 1. We consider the following singular free boundary problem for the heat equation . .  Find the 
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free boundary x = set) > 0, defined for t > 0 and s(O) = 0, and the temperature 9 = 9(x, t) > 0, 

defined O<x< set), t > 0,  such that they satisfy the following conditions [MeTa](For (3 = 0, we have 

the L�e - Clapeyron problem [LaCI] ) :  

p c  IJt - k 9xx = P
t
h (3�:'ft) , 0 < x < set) , t > 0 , 

9(0, t) = B > 0 , t > 0 , 

(1) 9(s(t) , t) = 0 , k 9x(s(t) , t) = - ph set) , t > 0 , 

s(O) = 0 ,  
for a given source function g(x, t) = . p t

h (3(x/2at) , fixed face temperature B > O  and constant 

thermal coefficients k > 0 (thermal conductivity), p > 0 (mass density) , c > O  (specific heat), and 

h >  0 (latent heat of fusion) . We denote by a2 = lc > 0 the diffusion coefficient and Ste = B
h 

c > 0 

the Stefan number. 

THEOREM 1: An explicit solution of (1) ,  as function of (i, is given by 

(2) 

9(x, t )  = B {I - � € exp(e) erf(l) + 

I) € 

+ Ste [ ( [  (3(y) exp(y2) dy ) exp( _r2) dr } , 

s(t) = 2 a € ..Jt , I) = x
r:;: E (O, €) ,  

2 a 'I t  

where the number € > 0 is a solution of the equation 

with 

(3) F(x, (3) = � ,  x > 0 , 

(4) 

x 
F(x, {3) = Fo(x) - 2 J exp(r2) erf(r) (3(r) dr , 

o 
x 

erf(x) = .k J exp( _u2) du , F o(x) = x exp(x2) erf(x) . 
o 

THEOREM 2: Let (3 be a continuous real function on R+ such th'at x{3(x) is locally integrable 

on R+ . Define the function Z by 

Z = Z{3(x) = exp(x2) erf(x) [ 1I>o(x) - (3(x) ] ,  x > 0 ,  

(5) 
1 exp( _x2) 

1I>o(x) = 2 + x2 + fw G(x) ; G(x) = erf(x) 
, 
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which is continuous and locally integrable on R+. If the function Z satisfies the followmg conditions . +00 . 
(6) Z(x) > 0 , V x E (/I, +00) and J Z(t) dt = +00 , 

where /I = /lZ � 0 is defined by 

(7) /I = Inf {x � 0 / 1 Z(t) dt > o} , 

o 

then for any Ste > 0, there exists a unique e = e(Ste) > 0 ·which is the solution of the equation (3) 

for the given function p. Conversely, if for the given fmiction p the equation (3) has a unique root 

e = e(Ste) > 0 for any Ste > 0 then there exists a continuous and locally integrable function Z on R+ 
Satisfying (6) and (7) such that 

(8) f3(x) = "o(x) - Z(x) G(x) ( = PZ(x) ) ,  x > 0 . 

Moreover in any case the root e > /I • 

. Remark 1: We can also study the particular case 

(9) 0 < Ste <: 1 , P(x) I::;j P(O) < 1 
which is related to the corresponding quasi -steady state free �undary problem. 

Part II . We consider the following one-phase solidification problem for a semi-infinite material with 

an overspecified condition on the fixed face : 

(1) 

p c Tt = ( k(T) Tx )x , 

s(O) = 0 , 

T(O, t) = To < Tf , t  > 0 , 

T(s(t), t) = Tf , t  > 0 , 

o < x < s(t) , t  > 0, 

k(Tf) Tx(s(t), t) = p h  set) , t > 0 , 

keTo) Tx(O, t) = {i , t  > 0 , 

where T = T(x, t) is the temperature, p > 0 es the mass deusity, h is latent heat of fusion, c > 0 is 

the specific heat, x = set) is the phase-change front,. Tf is
· 
the phase-change temperature (To is a 

reference temperatur), k = k(T) = ko [1 + P (T-:-To)f(Tf -To)} [ChSu, Lu] is the thermal 

conductivity, 0'0 = ko/ pc is .the diffusion coefficient at reference temperature To , and coefficients 

P > 0 , qo >O . 

In [Ta7, TaB] we obtain one or two thermal coefficients, for the case k = ko (Le. P = 0), and 
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we give formulas for the unknown coefficients. We consider here the general case P =F O. The problem 
consists in finding the : 
1) temperature T == T(x, t) and two thermal coefficients (x = set) is a moving boundary [Ta4], i.e., 
known a priori), 
2) temperature T = T(x, t), the phase-change front x=s(t) and a thermal coefficient (x = set) is a free 
boundary [Ta4], i.e., unknown a priori). 

Among the unknown thermal coefficients we have ko, P, c, p, h. Moreover, the coefficients qo 
and To > 0 must be known from the experimental phase-change process. The solution is given by 
[Ta9] : 

(2) 
set) = 2 ..\ ..j"Oot , 

where the three unknown coefficients must satisfy the following system of equations : 

(3) 

P = 6 �6(..\) , 

�/(..\) _ 2 [1 + 6 �6(..\)1 ..\ �6(..\) - Ste ' 

�/(O) _ 2 qo 
�6(..\) - (Tf -TO) �kopc ' 

where Ste = c(Tf -To}/h > 0 is the Stefan number and �6 = �6(x) is error modified function which 
is the unique solution of the following differential problem : 

[(1 + 6 y(x» y'(x)]' + 2 x y'(x) = 0 

(4) 
y(O+) = 0 , y(+oo) = 1 .  

We obtain formulas for the determination of some thermal coefficients. 

THEOREM 1: For the determination of the coefficients ..\, P, c we obtain that : If 

(5) 

then we have 

(6) 

(7) 

p h ko ( Tf - To ) < 1 2 q02 

P = P(..\) = 6 �6(..\) , 



and A > 0 is the unique solution of the equation 

(8) 
x >  0 ,  

where functions F l and F 2 are defined by 

(9) 

(10) F2(x) = <I1S(x) 
. 
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PART III. We consider a semi -infinite material with mass density equal in both solid and liquid 

phases and the phase-change temperature at O'C. We generalize the mushy zone model given for the 

one-phase Lame -Clapeyron (Stefan) problem in [SoWiAl] (See also [Fa, Ta3]) to the two-phase case 

[Ta6] . Three distinct regions can be distinguished, as follows : 

Hl) The liquid phase, at temperature 112 = 1I2(x, t» O, occupying the region x >r(t) , t > O. 

H2) The solid phase, at temperature IIl = lIl(x, t) < O, occupying the region O <x<s(t) ,  t > O  . 

H3) The mushy zone, at temperature 0 , occupying the region set) < x < ret) , t > 0 . We make 

two assumptions on its structure following the paraffin case [SoWiAl] (the parameter ( and / are 

characteristics of the phase-change material) : 

a) The material in the mushy zone contains a fixed fraction fh (with constant 0 < f < 1) of 

the total latent heat h . 

b) The width of the mushy zone is inversely proportional (with constant / >0) to the 

temperature gradient at the point (s-(t), t) .  

THEOREM 1: If the phase-change semi -infinite material is initially in liquid phase at the 

constant temperature 110 > 0 and a constant temerature - D < 0 is imposed on the fixed face x = 0 , 

then we obtain the following results : 

(i) We obtain an exact solution of the Neumann type for IIl (x, t) , 112(x, t) , set) and ret) as functions of 

the initial and boundary temperature 110 and D, mushy zone parameters f and /' and thermal 

coefficients of the material. 

(ii) We obtain an analogous property to (i) if we replace in the hypothesis (H3b) the temperature 

gradient at the point (s-(t), t) (i.e. IIlx (s(t) , t) ) by the temperature gradient at the point (s +(t), t) 

(i.e. 112x(r(t) , t) ) . 
1 

Moreover, If we replace the constant temperature - D < 0 by a heat flux of the type qo t-2 

( with qo > 0 ) on the fixed face x = 0 , then we obtain the following results : 
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(iii) There exists an exact solution IJr{x, t) , 1J;(x, t) , s·(t) and r·(t) of the Neumann type of the mushy 

zone model, as functions of 1J0 , qo , £ ,y and the thermal coefficients of the material, if and only if the 

coefficient Clo satisfies the inequality 

( 1) 

where '10 = 'Io(£, 'Y, 1J0, h, k1 , k2 , c2)  = 'Io(lJo C2 / h (1 - £) , 'Y k1 c2 / h k2 ( 1 - £) ) .; 0 is the unique 

positive zero of a given function G. 

Moreover, for the solution given in (i) , the inequality for qo turns into 

(2) f( .!L ) < 2 D '10 ( k2 cl )d2 
a1 'Y 11" k1 C2 

where u > 0 is the coefficient that characterizes the first free boundary s(t) 

two-phase mushy zone model. 

2 u {t of the 

(iv) If qo = 'Y k1 / 2 a2 '10 , then there exists an exact solution for 1J;(x, t) , r· (t) and s·(t) = 0 for the 

corresponding one-phase mushy zone model (the solid phase there does not exist) .  If 

o <qo < 'Y kd 2 a2 '10 , then there does not exist an exact solution of the Neumann type for the 

corresponding mushy zone model. 

Remark 1: For the particular case 'Y = 0 , that is the mushy zone model is identical to the ' 

classical Neumann model [CaJa, Ru, Ta2], we find the inequality qo> k2 lJo / a2 Vi' [Tal] to obtain a 

phase -change problem. 

PART IV. We shall analyze a mathematical model of an isothermal noncatalytic diffusion-reaction 

process of a gas A with a solid slab S. The solid has a very low permeability and semi -thickness R 

along the gas diffusion direction[TaVi] . Since 1960, various devices and models, either 

phenomenological or structural, have been proposed and analyzed with the purpose of interpreting 

gas-solid reaction process [BeLeWa, Bi, Do, FrBi, Le, SzEvSo, We] . We assume the solid is chemiC<llly 

attacked from the surface y = . R with a quick and irreversible reaction of order v >  0 with respect to 

the gas A and zero order with respect to the solid S. We also assume that the solid has uniform a:ld 

constant composition. As a result of the chemical reaction an inert layer is formed which is permeable 

to the gas and the process will exhibit a free boundm:y (the reaction front) as described in [We] . The 

corresponding mathematical scheme (Wen's model) is formulated as follows (in a dimensionless form) : 

i)  Uxx - Ut · = O in DT ' 

ii) u(O, t) = Vo , 0 < t :$; T , 

( 1) iii) ux (s(t) ,  t) = - uV(s(t), t) , iv) ux(s(t), t) = - s(t) , O <t:$;T , 

v) s(O) = b > 0 ,  vi) u(x, 0) = w(x) , O :$;  x :$; b , 
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where 

(2) DT = { (x, t) / 0 < x < s(t) , 0 < t � T } . 
We can consider the following generalizell: free boundary conditions : 

(3) i) ux(s(t), t) = g(u(s(t), t» , ii) Ii(t) = f(u(s(t) , t» O < t � T , 

where f and g are real functions which satisfy 

(4a) i) f> O, f ' >0 in R+ and f(O) = O, il) g<O, g ' <0 in R+ and g(O) = 0 . 

Functions f and g may be defined in R but we are only interested in positive arguments of 

them as it will be seen below. Moreover, we shall assume that f and g are Lipschitz functions in [�, vol 

with constants fo and go respectively, i.e. 

(4b) i) 3 fo > 0 / I f(v2) - f(VI) I � fo I V2 - VI I ,  \lvI ' V2 E [� , vo] , 

ii) 3 go > 0 /  I g(v2) - g(vI) I $ go I V2 - VI I , \lvI ' V2 E [� , vo] .  

We remark here that functions f and g , defined by 

(W) g(x) = - XV (= - f(x» (x � 0 , v > 0) 

satisfy conditions (4ai, ii) . A different choice of g in (3i) is considered in [Do] ; It is a Langmuir type 

condition : the chemical reaction rate is given by 
n 

(L) g(x) = - a x ( =  - f(x» , a, b, c = const. > 0 , n > 0 . 
b + c xn 

which also verifies conditions (4aii) for all constants a, b, c, n > 0 . We remark here that the (L) 

condition reduces to a (W) condition when c = 0 . 

Firstly, we study an auxiliary moving boundary problem. We generalize the results obtained in 

[FaPrl , FaPr2] changing the nonlinear condition on the fixed face x = 0 by other one on the moving 

boundary x = s(t) , given by (3i). Secondly, we study the Wen -Langmuir free boundary model for 

noncatalytic gas-solid reactions that consists in finding T > 0 , x = s(t) and u = u(x, t) such that 

they satisfy conditions (3). We prove that there exists a unique solution for a sufficiently small T > 0 . 

Moreover, the solution is given through the unique fixed point, in an adequate Banach space, of the 

following contraction operator F2 : For s = 8(t) E CO( [O,T]) we define 

(5) 
t 

F2(s) (t) = J f(v(s(T), T» dT 
o 

where v is the solution of problem (l i-ii-iv) and (3i). 

Here we exploit some techniques recently used in [CoRi, FaMePr] for sorption of swelling 
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solvent.s in polymers. 

PART V.  We give a new and explicit estimate for the asymptotic behavior of the solutions of the 

problem: 

(1  ) 
i) L(u) = Ut - Uxx + ).2 u+P = 0 , x > 0 , t > 0 , 
ii) u(O, t) = 1 , t > 0 , iii) u(x, O) = Uo(x) � 0 , x > 0 , 

for a class of functions Uo = Uo(x) corresponding to the initial condition (l iii) , and parameters p > 0 

and A > O. We denote with x + the positive part of x, that is x + =Max (O, x). If 0 < p < 1 , it is 

well known [Di, St] that equation ( Ii) has a stationary solution corresponding to datum (Iii) ,  which has 

compact support in [0,+00) and is given by 

(2) uoo(x) = (1 - f x)+ 

2 
I -p � 2(1+p) 

, I = I(p) = -1-- . - p  

In the case 0 < p < 1 and Uo :-:; Uoo , the solution u = u(x, t) of (1)  satisfies 

(3) 0 < u(x, t) < uoo(x, t) , 0 < x < ! ' t > 0 , 

because of the comparison principle for equation (Ii)  [Be] . This means that u(t) = n(. ;t) has compact 
support in variable x for any t > 0 and 

(4) set) = Sup { x > 0 / u(x, t) > O }  , t > 0 , 
is a free boundary which is moving with finite speed for t > O.  

We shall give an estimate of how fast the free boundary set) tends to its limit ! as t � +oo 

[Ta5] . The estimatc we get implies that this convergence is exponentially fast in time , in a similar form 
to the one given in [RiTa] . The purpose of the present part is to show how this result can be obtaincd 
in a different way to [RiTa] by using the Goodman heat balance integral method [Go] . To prove that 

we use an approximate solution given and motivated by the heat balance integral me thod with the 

innovation property (7) which fixes appropiately the asymptotic limit of tll'e corresponding 

approximate free boundary. This approximate solution to (1 ) ,  approaches exponcntially fast the 

stationary solution uoo = uoo(x) when Uo :-:; Uoo and 0 < p < 1 for all A > 0 . 
We consider a related problem to (1)  which consists in finding thc function C =C(x, t) and the 

free boundary s=s(t) such that they satisfy the following conditions : 

i) Ct - Cxx + A2 C +
P 

= 0 , o < x < set) , t > 0 , 
(5) ii) C(O, t) = 1 , t > 0 , iii) s(O) = O  , 

iv) C(s(t) , t) =:0 0 , ' t  > 0 , v) Cx (s(t) ,  t) = 0 , t > 0 
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Taking into account the heat balance integral method we replace equation (5i) by its integral 

in the variable x from 0 to set) , we propose for the corresponding approximate problem the following 
expression for C, namely : 

(6) C(x, t) = (1 - s{t/+ 
where s=s(t) is a function to be determined and a > 1 is a parameter to be chosen so that 

(7) lim set) = 
I(p) 

t -+ oo T ·  

THEOREM 1. Let p E (0, 1) and A > 0 be. If we apply Goodman heat balance integral 

method with the innovation property (7) , we obtain the solutions CB = CB(x, t) and BB = BB(t) 
which are given respectively by (6) with 

I 2A2(3-p)t ) ] 1/2 2 (8) sB(t) = X [ 1 - exp( - l+p , t � 0 ,  a = a(p) = 1 _ p > 2. 

We can define the following fl,lnctions: 

(9) 

If we consider the heat conduction problem with absorption (1), we obtain: 

THEOREM �. Let 0 < p < 1 , A > 0 and 0 $: Uo $: Uoo in R+ be. If u=u(x, t) is a solution 
of ( 1) and s=s(t) is defined by (4) , we have the following comparison properties : 

(10) Ul(x, t) $: u(x, t) $: uoo(x) , 0 $: x $: ! ' t > 0 , 
( 1 1) Sl (t) $: set) $: ! ' t � 0 , 

and the following estimates 

(12) 0 < ! - set) $: ! - Sl(t) $: ! exp( - 2;t) , t � 0 

(13) 
I - P  I -P I - P  I - P  exp(_2;t) 

o $: uoo
-2- (x) - u

-2- (x, t) $: uoo
-2- (x) - Ul

-2- (X, t) $: 
A 1 - exp(-2I
t)' 

x E [0, !] , t > 0 

From now on, without loss of generality, we consider the case A 

o $: Uo $: Uoo in R+ in problem (1) . The results obtained in [RiTa] are given by : 

1 , O<p<l and 
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so(t) :$ s(t) :$ I , t � 0 , ( I = I(p) = �21(1+P) ) -p 

uo (x, t) :$ u(x, t) :$ uoo(x) , 0 :$ x :$ I t � 0 , 

where functions So and Uo are defined by (take Lo = 0 and m= 1  in [RiTa]) 

( 16) 

THEOREM iJ.. For any 0 < p < 1 , we obtain the following estimates: 

(17) s1(t) < so(t) :$ set) :$ I ,  S1(t) < so(t) < sB(t) < I , t > 0 , 

and therefore 

( 18) I set) - sB(t) I :$ I - so (t) :$ I - S1(t) :$ I exp( - 2It ) , t > O . 

Remark 1.:. The expression So was obtained in [RiTa) by constructing a sub-solution of the 

problem (1)  (A = 1) .  Instead sB was obtained by calculating the solution of an approximate problem 

to (1 )  through the heat balance integral method with the innovation property (7). Both expressions, So 

and sB ' give us a fast asymptotic behavior in heat conduction problems with absorption (1) ,  but at 

present we cannot say which is the better. For t large both expressions are equivalent because 

(19) 

COROLLARY 1.:. We also obtain 

(20) u1(x, t) :$uo (x, t) :$u(x, t) :$ uoo(x) , U1(X, t) :$uo(x, t) :$CB(x, t) :$ uoo(x), O :$x:$ I, t > O, 

and therefore : 

1-P  1 -P  1 -P 1-P 1-P  1 - P  
I u

-2-(x, t) - CB 
2 

(x, t) I :$ uoo
-2-(x, t) - U12""" (x, t) :$ uoo

-2-(x, t) -u1-2-(X, t) :$ 

(21) 

:$ exp( -V) , 0 < x < S1 (t) , t > 0 . 

PART VI. Many methods exist for studying the mechanism involved in nutrient uptake. One of the 

most promising methods is the mathematical model, which can be a satisfactory method of modelling 

the plant -root system by use of the partial differential equation for convective and diffusive flow to a 

root [CaBa, CuI , Cu2) . In general, these models have not considered computing root growth, but rather 

they have assumed young roots to be growing at exponential rates . 
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We compute the free boundary (the root-soil interface) a priori unknown through the 
quasi-stationary method. We obtain an analytical solution for the nutrient interrace concentration 
and the interface position (the free boundary). Taking into account the idea of the model used for the 
shrinking core problem for noncatalytic gas-solid reactions [TaVi], we propose the following free 
boundary problem for root growth [ReTaCal, ReTaCa2] : 

(1) 

i) D Crr + D 0'0 �r = 0 s(t) <r<R, t > 0, 

ii) 
iii) 
iv) 
v) 

C(r, O) = cI>(r) 
C(R, t) = Coo > 0 , t > 0, 

D b  Cr(s(t) , t) + Vo C(s(t) , t) = k C(s(t) , t)/[1 + k C�s�) , t)] -E = a C(s(t) , t) s(t) , 
s(O) = so , O <so <R , 

where: (Ii) is the Cushman equation [CuI,Cu2] ,  (Iii) and (Iiii) are the initial and boundary conditions 
respectively, and (Iiv) are the interface conditions representing the mass nutrient balance. C is the ion 
concentration in soil solution, r is the position coordinate (in cylindrical coordinates) , t is the time, D is 
the effective diffusion coefficient; v 0 is the velocity of flux solution at the root surface, b is the buffer 
power, and So the initial radius. Function set) is the interface position (root rar:lius) , set) = d��t) is the 
interfase velocity, a is a stoichiometric coefficient, E is the constant eflux, k is the absorption power of 
root, R is the rhizosphere radius, and 0'0 = 1 + €, € = Vo SolD b > O. cI>(r) is the initial 
concentration profile given by the equation (8). 

Assuming low concentrations, the uptake nutrient given by Michaelis-Menten expression reduces 
to [ReTaCal] : 

(2) k C(s(t) , t) 
1 k C(s(t) , t) � k C(s(t) , t) . 

+ Jm 
The two free boundary conditions can be written by: 
(3) Cr(s(t) , t) = g(C(s(t) , t» , set) = f(C(s(t) , t» , t > 0 , 

where functions g and f are given by: 
(4) 1 � 

g(C) = D b  [(k - Yo) C - EJ ' 
which satisfy the following properties: 

(5) f(C) > 0 {:} C > Cp = � g(C) > 0 {:} C > Cm = (k �vo) ' (Cm > Cp) . 

The solution of the problem , by the quasi -stationnary method, is given by : 
aCt) (6) C(r, t) = ,B(t) - -€ , s(t) <r<R , t > 0 , 

where: 
(7) 

r 

aCt) = [ _1 ] [(k - vo)Coo - EJ 
D b € (k - Yo) r I l l ' 

s(t) 1+€ + D b  Ls(tt - R€J 

aCt) ,B(t) = Coo + R! ' 
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(8) 

and set) is the unique solution of the following Cauchy problem : 

with: 

(9) set) = F(s(t» , t > 0, s(O) = So E (O, R) , 

k [1 + 0'2 G(s)] 
[ ] (10) F(s) = Ii [1 - 0'3 H(s)] , H(s) = [1 + 0'1 

G(s)] , G(s) = s 1 - (�l 
( 1 1 ) 
Therefore, we  obtain, after some elementary manipulations, that the interface concentration is 

given by the following expression: 

(12) C(s(t) , t) = H�sft» ( =  C(s(t) ) t > 0 ,  
t.hat is, the interface concentration does not depend explicitely on variable t. 

The solution of the problem (9) is computed numerically and the results are plotted for the 

interface concentration C(s(t) , t) vs. s and the interface position set) vs. t respectively as a function of 

the dimensionless parameter k/vo [ReTaCal] . We deduce that if the parameter k/vo is small (e.g. : 1.5 
or 2) accumulation of nutrient is produced in the interface root -soil, then there is counterdiffusion and 

the root growth is low. On the other hand, for large values of k/vo (e.g.: 10) the root growth is fast 

and the counterdiffusion is null . The limit value of k/vo which produces the counterdiffusion effect 

depends on the remaining parameters. It follows that if the nutrient concentration Coo increases or 

k/vo is large then the counterdiffusion is null and the growth is faster. On the other hand, if E 

decreases or k/vo is large, then the counterdiffusion is null and the root growth is faster. Some of the 

above theoretical results have been observed from an experimental point of view [Ba, Wr]. 

Let 'Y be the parameter defined by: 

(13) 'Y = E ( = �21 ) . (k - vol Coo 

We can prove that : 

i) 'Y < 1 implies that C(s(t) , t) has a minim un value because the absorption power k is large with 

respect to Vo and there is no counterdiffusion. 

ii) 'Y = 1 implies that C(s(t), t) is constant. 

iii) 'Y > 1 implies that C(s(t), t) has a maximun value because k is small and the root can not 

absorb all the arriving nutrient and there is a counterdiffusion effect. 

These results agree with Cushmann's conclusions [Cu3] . 
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Conclusions: We conclude from the model presented above that: 

* s = set) increases when parameter k or Coo increases. 

* s = set) decreases when parameter E increases. 

* B = set) increases when parameter (k/vo) increases and, k and Vo are large. 

* s = set) does not vary in function of the parameters vo, b and D because we did not have variations 

in the corresponding diagrams in a wide range of order of magnitude (1 to 105 for each). 

* s = set) decreases when parameter 1 increases, because from (9) - (11 )  we have for set) the following 

representation in function of the parameter 1: 

. - k [ (k - vo) G(s(t» + d2 J set) - a: 1 - k 1 ' 
G(s(t» + 1 £r2 

This conclusion agrees with the first three conclusions. 

t > O. 

Finally, we can remark that the model presented here gives us a qualitative approach (through a 

mathematical model) to root growth under the action of only one nutrient, with natural limitations in 

the real situation. Moreover, these conclusions are useful for calibrating numerical models of the more 

complex nutrient transport and growth problems or they may be used to isolate the effects of the 

various parameters in the present modeL 
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