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The purpose of  this Note i s  to obtai:q., �. n-di,n!�ionaJ, ip,versio,n Laplace transform of , 
retarded, Lorentz - invariant iu:ilCtions by m��s o{the p�s�!3-ge t� the limit of the r:th-order 
derivative of the one dimensioIlal Laplac� tr;msform:: 

. '  

This formula (IV,2) can be u'nd�rsto�d as a -generap.zatio� of the one dimensional. formula 
due to Widder ( [7) ) .  ' 

This topic is intimately related with the generalized difFerenti..ation, the symbolic treatment 
of the differential equations with cOJ;lst;mts coeffide,nts ,and its application .to important physical 
problems ( cf. Leibnitz ,  Pinchede, Liouville ; Riemann, Boole, Heaviside and others ) .  ' 

Our main theorem (Theorem 15 ,  formula (IV,�H C!ill. be related with a result due to E. Post 
( [6 ) )  and we also obtain an equivalent Leray's formula, ( cf. (VI,I) and (VI,2 ) )  which expresses 
the Laplace transform of retarded, Lorentz - invariant fu,nctions by means of the mth-order 
derivative of a Ko -transform. 

. . J . • . , . , 0 

Our method consists ,  essentially, in the following two steps ,  First : the obtainment of an 
analog of Bochner 's formula for Laplace transform of the fqrm' (II,J ) ,  where IP ' is oil. function 
of the Lorentz distance, whose. suppO:rt is co,nt�ed, ill �h,� closure of th� domain , ito > 0 ,  
t� - tf - . . .  - t;_l > O .  

The formula (11,2) permits evaluate n �dimensional i�tegr1!lsby means of a one dimensional 
K -transform. 

. .  

This last result was alreaclY employed to solve l?artial diffEJre:r;J,tial �quations of the hyperbolic 
type ( cf. (9) ) .  

' ' 0 0 • , 
Second: The passage to the limit of the rth-OJ;der ,derivl,litiv:e .of, the one dimensiona,l Laplace 

transform (via the K -transfonll): . 
, .  

The previous conclusions are relate.d, witlt the dassical F')n:l,etjQ-�al Analy'Sis and Pr.obabi1ity 
(i .e.  the theory of moments ,  �h� cl�s�i�aJ, Weierstr,M.s, ,thf!qr�w, 9CWliforrn .approximation; on 
compact sets ,  of continuous rwictions by pqlynqJll.ials cm� , tb.e inters,�on of Laplace i - '  Stieltjes 
integrals) .  0 • • 

Finally, by appealing to tl,te !illalyticlll cQntinu/ltiRIJ.', W;�, j�a�l"e�tep.d <DUX re&ults, to ,  the dis-, , .  " .. . ' .  ' .. !... I ' " <.' '. , � . 1 tributional n -dimensional Laplace ii).t��r&s. _ , , ' 0  
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I .  Introduction 

In a famous Note ( [1 ] , Vol. I, p. 105) ,  Serge Bernstein has shown that the classical Weier­
strass theorem (about the uniform approximation, on compact sets ,  of continuous functions by 
p olynomials ) is an immediate consequence of the Tchebicheff inequality. 

The fundamental idea of Bernstein was ingeniously employed by W. Feller ( [2] , Vol. 2 ,  p . 
219) to prove a simple Lemma which has several applications . 

One of the most imp ort ant application of the Feller's Lemma consists in the obtainment of 
an inversion formula for a sequence of moments .  

First , w e  enunciate 

THE MAIN FELLER'S LEMMA (CF .  [2] ) 
Hypothesis 

a) The random variables Xn(B) ,  n = 1 , 2 , . . .  , have the identical mean value E(Xn ) = 0, r; = 
1 , 2 , . . . ; 

b ) {O'n ( B)P n-=-'-oo' 0 ; 
c) u(:r )  is a continuous and bounded function 

l u( :r ) 1  ::; M < 00 , - 00  < :r < 00 . 

Thesi§.. The following formula is valid 

(1 ,1 ) 

and the convergence is uniform in every subinterval where u(:r )  is an uniform continuous function 
and {O',, ( O )P tends , uniformly, to zero . 

One of the most imp ort ant applications of the Feller 's  Lemma consists in the obt ainment of 
an inversion formula for a sequence of moment s .  This formula,  due also to Feller , is intimately 
related to Bernstein p olynomials . 

A sequence of Inoments /Lr , T' = 0 , 1 ,  . . . , is a sequence of nUlllb er /Lr , T' = 0 ,  . . .  , which are 
defined by the formula 

(1 ,2) 

where F ( :r ) is a distribution functio!l whose supp ort is contained in [0 ,1 ] . 

More generally, F(:r )  can be a b ounded variation function defined in [0 ,1] . 

The hyp othesis that F (:r ) is a distribution function simplifies the evaluations and the enun­
ciates and does not restrain, essentially, the generality. 
An application of the Feller's  Lemma is the 

THEOREM 1 
Hypothesis. The function u(:r )  is continuous and b ounded in [0, 00) . .  

Thesis. The following formula is valid 

. 1 
1= _ n o ( n:r ) n-l  ( n )  

lim --- u{:r)e '" -- - d:r = u(O)  . 
n � oo  r(n) 0 (j 0 (1,3) 

The convergence is uniform for 0 varying in a compact interval [a, b] , 0 ::;  a ::; a ::; b < 00 .  

The next i s  a famous inversion formula of the Laplace transform. 



THEOREM 2 
Hypothesis. Let 
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g(,\) = 100 e->'Zu(z)dz 
be the Laplace transform of the continuous and bounded function u( z) in [0 , 00) . 

Thesis. The following inversion formula is valid 

for every 8, 0 < 8 < 00 .  

u(8) = lim ( _ l )n-l (�) n g(n-l) (�) , 
n-+oo (n - 1 ) !  8 8 (1,4) 

The formula (1,4) (called the Widder's formula) is due to Stieltjes (cf. [5] , p .  382), and it 
appears in a letter to Hermite ,  from August 23rd, 1893) .  Later, E. L.  Post ( cf. [6] , vol . 32, pp . 
773-781) rediscoveres the formula (1,15) .  

In 1934 ( [7] , vol. 36, pp . 107-200) ,  Widder also proves the formula (1 ,4) ,  independently 
of the other previous demonstrations, and he shows that the hypothesis of boundedness and 
continuity of u(z) are not essentials . Further, he obtains an inversion formula for Laplace -
Stieltjes integrals in the general case. 

We remark that the Widder's formula (1,4) was extended by Hille and Phillips to the one 
variable functions which take values on a Banach space ( [8] , p. 224) .  

Our purpose is  to extend the pr�vious inversion formulas to the n -dimensional integral 
Laplace transforms and, more specifically, to the Laplace transforms of retarded, Lorentz -
invariant functions . 

II. The Laplace transforms of retarded, Lorentz - invariant functions 

In this paragraph, we shall recall an analog Bochner's formula for Laplace transforms (cf. 
[9] ) .  

Let t = (to , tl " ' " tn-I ) be a point of Rn . We shall write t 5  - t� - . . . - t�_l = u .  By 
r + we designate the interior of the forward cone: r + {t E Rn / to > 0 ,  u > \l} , and by r\ we 
designate its closure. Similarly, r _ designates the domain r _ = {t E Rn X to < 0 ,  u > O} ,  
and r_ designates its closure. We put z = (ZO , Zl " " , Zn-l ) E en , where Zv = Zv + iyv , v = 
0 , 1 ,  . . .  , n - 1 ;  (t ,  z) = to zo + tl Zl + . . .  + tn-1 Zn-l ; and dt = dtodt1 • . •  dtn- 1 • The tube T _ is 
defined by T_ = {z E en / y E V_ } ,  where V_ = {y E Rn / Yo < 0 ,  Y5 - yr - . . .  - y�- l  > O} . 
Similarly, we put T+ = {z E en / y  E V+ } ,  where V+ = {y E Rn / Yo > 0 ,  y� - yi " , y�-l 
> o} . 

The Laplace transform of t/>( t) is 

f(z) = L{t/>} = f e-i(t ,z )t/>(t)dt . 
JRn . 

(11,1 ) 

Let F('\) be a function of the scalar variable '\ ,  and let t/>(t) be a function endowed with 
the following properties : 

a) t/>(t) = F(u) ,  
b) supp t/>(t) c r + , 
c) e (t ,y)t/>(t) E Ll if y E V_ . 
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We call n the family of functions t/J(t) which satisfies conditions a) , b) and c) . Similarly, 
we call A the family of functions which satisfy conditions 
a') t/J(t) = F(u) , 
b') supp t/J(t) E r _ , 
c ' ) e(t ,y}t/J(t) E Ll , if Y E V+ . 

The next theorem is an analog of Bochner's formula for Laplace transforms of the form 
(Il,I ) ,  where t/J is a function of the Lorentz distance, whose support is contained in the closure 
of the domain to > 0 ,  t� - tf - . . .  - t�_1 > 0 (cf. [9] , p. 53, Theorem 1 ,  formula (1,2 ; 1 ) ) .  

THEOREM 3 
Hypothesis 

a) t/J(t) E n , 
b ) Z E L .  

(27r)(n-2) /2 
f(z) = L{t/J} = ( zf + . . .  + Z�_1 _ z� )(n-2) /4 

. 

1000 F(�)�(n-2 ) /4 K(n-2)/2 { [�(zf + . . . + Z!_1 - z� )1 /2 ] }d� . (Il ,2) 

Here Kv (z )  designates the modified Bessel function of the third kind ( [10] , Vol. II, p .  427) .  

We remark that the formulas we have obtained for the Laplace transforms of  functions of 
the family n are also valid for functions of the class A ;  the only difference is that , for functions 
of the class A ,  the formulas are valid on the assumption 1m Zo > o .  

III. The K transformation 

Let f( t) be a function defined in R + = {t E R / t > o} . By the K -transform of order p. 
of the function f( t) we mean the function F( s) of the complex variable .9 = 0" + iw , defined by 

F(s)  � 100 f(t)v'StK,.{st)dt , (III,l ) 

where K,.(s) designates the modified Bessel function of the third kind ( [10] , vol.Il, p . 427) ,  
defined by the formula 

here 

K ( ) _ � Lv(z) - Iv(z) v z - . , 2 sm V7r v ::f.  integer . (III,2) 

(III,3) 

Now, we shall enunciate the following inversion formula due to Zemanian (cf. [14] , pp. 
194-195) .  

./ 
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THEOREM 4 
Hypothesis. Let F(s) be the K -transform of f(t) f�r s E Of , where OJ = {s / Re s > (J'j ,  s i= 
0 ,  -11" < args < 11"} and (J f = the abscissa of definition. . 

Thesis .  Then, in the sense of convergence in 1)'(1) , I i s  a nonvoid open set in Rn , 

1 r+if" 
f(t) = n� ;:  JeT-if" F(s)Vst1,,(st)ds ,  

where (J is any fixed real positive number in Of and 1v(z) is given by (111,3 ) .  

(III,4) 

Moreover, Zemanian textually affirms, "There is another inversion formula for our K ­
transformation. It is a generalization of a result due t o  Boas" (cf. [15] ) and can b e  stated as 
follows :  

THEOREM 5 
HV1>othesis. Let F(s) be the K -transform of f(t) for s E Of , and assume that f is concen­
trated on an interval of the form T ::; t < 00 ,  T > o .  

Thesis. Then, in the sense of convergence on 1)'(1) , 

See [16] for a proof! 

� 1 ( 2k ) 2k+1 f(t) = lim - (2k) 1 - [S� .F(s) I ._ li ] . 
k-oo 11" • t I - - 1 

Here, S;,. de�ignates the following differentiation operator: 

S
k "'( ) -2k", -2k:;1 D'" D2k",  ",t'l' t = a2k,ot 'I' + a2k,

1 
t 'I' + . . .  + a2k ,2k 'I' , 

where the a2k ,Q are constants depending on the value of 1' ,  and a2k,2k = 1 .  

(III,5) 

(III,6) 

IV. The n -dimensional inversion Laplace transform of retarded, Lorentz-invariant 
functions 

In virtue of the formula (11,2) , we can recuperate the function f(t) by means of the formula 
(III,5) .  

That i s ,  we  can obtain the n -dimensional inversion Laplace formula of retarded, Lorentz­
invariant functions , as the Zemanian manner : 

{2 1 ( 2k ) 2k+1 f(t) = 
k� V ;: (2k ) ! t Sr..-2)/2 , .F(s) I .:; ¥- . 

Therefore, we can state our main theorem. 

THEOREM 6 
Hypothesis 

a) f(t) E n , 
b) z E T_ . 

(IV,l)  

Thesis. The following n -dimensional inversion Laplace formula of retarded, Lorentz - in­
variant functions is valid: 
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{2 1 ( 2k) 2k+ l ( 2k ) 
f(t) = ,!-i�� V -; (2k ) ! t Srn-2)/2 , .F t ' (IV,2) 

where 
2n/27r(n-2 )/2 roo 

F(s)  = s(n-l )/2 Jo 
f(t2 )ln:-l )/2 VSiK(n_2)/2 (st)dt , (IV,3) 

s = (zi + . . .  + Z!_l - z5 )1 /2 , (IV,4) 
KJ.'(z) is defined by (III,2) and 

S;' , t</>(t) =: a2k ,oC2k</>ta2k,lC
2k+l D</> + . . .  + a2k,2kD2k</> , (IV,5) 

d . here D = dt ' and the a2k ,q are constants depending on the value of J.L ,  and a2k ,2 k  = 1 . 

The formula (IV ,2) is the n -dimensional version of the due to Widder ( 1934) . 
We note that the Widder 's formula (1,4) had been extended by Hille and Phillips to the 

one dimensional variable functions which take values in a Banach space ( [8] , p .  224) and so, 
our formula (IV,2) permits generalize the results of Functional Analysis and Semigroups to 
n -dimensional spaces .  

V The equivalence b etween the Post 's inversion Laplace transform and our formula 
(IV,2)  

Emil L.  Post , in his work intittled "Generalized Differentiation" (cf. [17] , 1930 ) ,  defines the 
following operator : 

( It fer) ( 1 ) A[f(t)] = lim 
-

+lA.", = lim A[fl(r , �;c) ; A.",�+o r ! �� A.",�o 
r6z�t rAz�t 

(V,l ) 

and, he explains that it possesses the remarkable property of invert the Laplace transform. 
In fact , he shows ( [17] ,  p .  772, Theorem XXI) , the following result : 

THEOREM 7 
Hypothesis. Let 'Ij;(t) be an continuous function for t > 0 and let 1000 'Ij;(t)e- €tdt , consider 

improper in both limits ,  and convergent for some values of € . 

Thesis. Then, if 

in the semiplane of convergence, we have, for t > 0 ,  

( l )r f(r) ( 1 ) 'Ij;(t)  = A[f(t)] = lim 
- a; 

� .,�+O r ! ��+ l 
rL\.z-+t 

The last result (V,3 ) ,  can be  related with our formulae . (cf. [21] , pp . 17-18 ) .  

(V,2) 

(V,3) 
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VI. Remarks 

i) From formula (6) ,p. 729 of [17] , we have 

(VI,l ) 

The last formula (VI,l ) was written by Post , in 1923, without comments .  

Now, we can express this result by  a distributional manner. In fact ,  we have the well-known 
formula 

so, 

__ - 5(n) ta-1 
I r(a) a=-n 

- , (VI,2) 

(VI,3) 
therefore, every one of the previous conclusions can be extended, by a natural way, to the 
generalized functions or distributions. 

ii) We shall refer briefly to a last application of the formula (IV,2) , namely, the evaluation 
of inverse Fourier transforms as limit of Laplace transforms. 

Schwartz ( [18] , p. 264) has evaluated some Fourier transforms by evaluating their Laplace 
transform (first step) , and then passing to the limit (in 8' ) for y ...... 0 ,  where y E V_ (second 
step) . The method was later employed by Lavoine ( [19] )  and Vladimirov ( [20] , pp . 299-302) .  It 
works generally for any <f>(t) E R which is , besides , a continuous function of slow growth. 

In fact , let F[f(t)] be the Fourier transform of f(z) :  

f(y) = F[t] = { e-i(:JJ 'Y} f(z )dz . 
JRn 

(VI,4) 

Therefore, we can obtain f( z ) by passing to the limit , for y ...... 0 ,  where y E V_ in our inversion 
Laplace transform (IV,2) .  

Remark. 

The complete version of this work appears in [21] . 
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