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Consider a linear, one dimensional, constant coefficients ,  dispersive system 
in one dependent variable, for example the linear Korteweg de Vries equation 
Ut + Uxxx = ° . Monochromatic (single frequency) elementary solutions of the 
K.d .V. equation are of the form u(x,  t) = aei(kx-wt) , where the constants a, k 

and w = -P are the amplitude, the wave number and the wave frequency re­
spectively. Now consider a modulated version of the monochromatic solution, 
that is a solution of the K .d .V.  equation which is locally monochromatic, but 
which has the property that over long distances or large periods of time the 
amplitude, the wave number and the wave frecuency can vary. Namely, try 
a formal expansion for the solution given by : 

u(x , t)  = ae (x, T ) eili , with 0 = �8(X , T) ,  X = E X ,  T = tt , and E the ratio of 
a typical period to the time scale of the modulations , wh(!l:€ we can define k 

and w as slowly varying parameters by: k = Ox = 8x and w = - Ot = -8r .  

Then substituting this form for the solution in  the K.d .V.  equation one 
obtains at differents order of E the following modulation equations: 

kr + wx = 0 ,  (conservation of waves) ,  w = 0 tk ) ,  ( the dispersion relation ) ,  
and (a2 )r + ( (cg )a2)x = 0 ,  (the transport equation) ,  where cg = �� ( the group 
velocity) is the velocity with which the wave number, k ,  and the amplitude, 
a, propagate. In the non-linear case the solutions are no longer s inusoidal as 
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tially supported by C ONICET and Universidad N acional de Cordoba. Republica 
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in the prior example but the existence of periodic solutions in () = kx - wt 
can be shown explicitly in the simpler cases . The main non linear effect 

is not the difference in the functional form, but rather the appearance of 

amplitude dependence in the dispersion relation . Superposition of solutions 

is not available to generate more general solutions ,  but modulation theory 

can still be applied . Now the equations for the amplitude and the wave 

number are coupled. 

For a very simple example in a nonlinear case, consider the equation for 

the modulation of a solution without oscillations (zero phases) ( i .e . :  j ust 

mean level) of the equation Ut + (f (u) )x + Uxxx = 0 

u = j3(x, r ) + tul (x, r ) + . . . , 

Then the Modulation Equation i s  

j3r + f (j3)x = o .  

( 1 . 1  ) 

( 1. 2 )  

This equation can be solved exactly b y  characteristics ( see [WI] )  and it  i s  

well known that - for general initial data - multiple values develop after a 

finite time if f'((3) =1= constant . 

The question of what happens with the solution of the underlying dis­

persive equation after the Modulation Equations break down is  generally 

open . 

The goal of this work is to study the corresponding phenomena of oscil­

latory b ehavior of solutions of difference approximations , that are dispersive 

and to understand, for the general non- linear case what happens with the 

solution of a dispersive system when the modulated equations break down. 

In Section 2 we give some details about the resolution of the breakdown 

for the linear and non-linear cases . 

In Section 3 we consider dispersive difference systems . 

In Section 4 we show some numerical experiments .  

2 Breakdown 
It is well know that solutions of non-linear hyperbolic equations , in one space 

variable , generally break down after a finite elapse of t ime (even for smooth 
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initial data) and multiple values arise, It is also known that t he solutions of 

these equations can be continued beyond the time of the breakdown as single 

valued weak solutions in the integral sense of a conservation law .  These 

solutions in the integral sense contain discontinuities ( the m athematical 

representation of shock waves ) ; they are uniquely determined by their initial 

data provided that the discontinuities are constrained to satisfy all- entropy 

condition . 

Since in many of the interesting cases the modulation equations are a set 

of non-linear hyperbolic evolution equations in the wave parameters , even for 

smooth initial data the solutions eventually cease to make sense as smooth 
single value functions.  However, the introduction of shocks as described 

above, is not appropriate in this case. 

For some T = Tc a singularity in the derivatives arises at some X = Xc 
and beyond that time attempts at continuing the solution produce multiple 

values near X = Xc 

The linear case can be easily understood. 

A multiple valued solution of the modulation equations simply means 

that where there used to be a single phase, now there are several , in fact the 

multiple valued solution of the modulation equations is a perfectly acceptable 

solution (in the linear case) provided we reinterpret it adecuately. 

Namely, assume we start at time t = 0 with a single phase wave 

(2 . 1 ) 

Then , if the Modulation Equations for a and () (with initial values aq and 00 , 
respectively ) develop the multiple values (aj , () j ) , 1 :::; j :::; n ,  we have 

(2 .2)  

The only difficulties arise along the lines (caustics) in  space-time (X ,  T) where 

n ,  the number of phases , changes . There a local expansion accounting for 

the transition is needed (and possible) . All of this can be j ustified rigorously 

using the Fourier Transform representation of the solutions . 

Physically the situation described above can be understood quite eas­

ily. Although the initial configuration might have a single wave locally in 
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each region of space, places "far apart" will generally have completely differ­

ent wavelengths and amplitudes . As different wavelengths move at different 

speeds (due to the dispersive character of the equations) , eventually waves 

from wide apart regions in the initial conditions may come together. But 

because the system is linear, these different waves do not interact , and to get 

the full solution we need only superpose them. 

For nonlinear systems the arguments in the prior paragraph almost also 

apply, except for the last sentence. Now the waves interact as they approach 

each other, and it is generally not clear what this interaction may produce 

---: except in the case of completely integrable systems . 

From the considerations above it seems safe to conclude that the break­

down in the solutions of the Modulation Equations is related to the appear­

ance of new oscillation frequencies in the solution of the p . d .e .  

For completely integrable systems the situation is much b etter under­

stood and it i s  somewhat similar to that described above for linear systems . 

Basically, in this case, through the multiple phase Modulation Equations , we 

know and can describe accurately and precisely how different phases interact . 

For example: in the case of the KdV equation for f = 3u2 , using the work 

in [FFMcL] one can describe what happens as ( 1 .2 )  breaks : 

( i ) First a new phase appears and a region in space-time arises where the 

solution u must be described in terms of the one phase modulation equations . 

This is true for
' all reasonable functions f - not j ust  for f = 3u2 , as we can 

always do one phase modulation using the results in [WI] ,  [K] , [GP) . 
( ii ) When the one phase modulation equations break down , then an ad­

ditional phase appears . The solution u must now be described in terms of 

the two phase modulation equations.  

The process continues . Each time a break in the n-phase modulation 
equations occurs , a new phase is  added to solve the problem. We recall 
that the n-phase modulation equations for ( 1 . 2 ) ,  derived in lFFMcL] , are a 
system of first order hyperbolic equations in (2n + 1 )  parameters! which in 
fact can alwayo be  reduced to a Riemann Invariant form. These results are 
confirmed by the work of Lax, Levermore, and Venakides in small dispersion 

� problems . [VI] , [V2] , [V3] , [V 4] , [LeI] ,  [LLeI] 
l i .e . :  one mean level,  n wavenumbers and n amplitudes . 
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Even in this case there are strong differences in behavior with the linear 

case. To begin with: in the linear case the sequence in the number of phases 

at any given point is generally n= l ,  3, 5, . . .  and not n=O , 1 , 2 ,  . . . as here . Fur­

thermore, in the linear case no new oscillations are created : they are simply 

redistributed in space.  If at any� given time several phases are encountered 

someplace, it is because in the initial conditions those same frequencies were 

somewhere - even if not together - and have moved into the same region 

of space. On the other hand, nonlinear interactions can and do generate new 

phases . In fact , when we start with ( 1 . 2 ) , no oscillations are present initially 

(n = 0) . Nevertheless ,  after some time oscillations appear (n > 0 ) .  

3 D ispersive D ifference Systems 
A similar problem to the one described in the prior section app ears when 
one looks at the b ehavior of semi-discrete dispersive systems . For example ,  
consider the finite difference approximation to the Burgers equation 

given by the semi-discrete dispersive scheme 

. 1 ( 2 2 )  0 
Un + 

2 h Un+1 - Un_ 1 = . 

This leads to the interpretation of the oscillations appeari n g  i ll  l l l l l l W l ' i  
cally dispersive algorithms (approximating non- l inear hyperbol ic  p . d .e . ' s ) a s  

modulated waves,  where the wave frequencies and wave numbers a I'C large 
and the modulations occur over 0( 1 )  distan ces and t i mes . 

The oscillatory nature of the solutions of d ispersive d i fferclI ce SChC l l l<'S 
was discovered , accidentaly, by von Neumann [Nv] in 1 9cH in t h e  co u r se of  
a calculation o f  compressible flows w i t h  shocks in one space d i men sion , e m ­
ploying centered difference schemes.  The solutions contai ned , as expected , 
a shock but they also contained post-shock oscillat ions on the mesh sca l e . 
Von Neumann conj ectured that these mesh-scale osci llat ions  were to be i n ­

terpreted a s  the heat energy produced by the irreversi ble action of  the  shock 

wave and that as £::'x ,  £::,t --+ 0 ,  the solutions of the d ifference equat ions woul d  
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converge weakly to exact discontinuous solutions of the equations governing 
the flow of compressible fluids . IT the equation Ut + ( �U2)x = 0 is a guide 
to the equations of compressible flow, then there is reason to doubt the va­
lidity of von Neumann's conjeture. For more on this see [GL] , [La2] and 
[La3] . 2 To see how (3 .2) approximates (3 . 1 )  in the limit h -+ 0 interpret 
un(t) = u(nh, t ) .  Using Taylor expansions then one obtains 

(3 . 3) 
an eq'tla.tion very much like aa non-linear K .  d .V. equation . From this the 

dispersive nature of the approximation becomes clear . Note however, that 

the dispersive terms are nonlinear in (3 . 3 ) .  

4 Numerical experiments 
We describe here some numerical experiments for the difference scheme ( 3 . 2 ) .  
We solve the equation using an Adams Bashforth metho d ,  that adj usts the 

step size and order so as to control the local error per unit step . 

It is clear from all the previous sections that one of the basic p oints of our 

program relates to the analysis of functions ( the solutions of t he nonlinear 

dispersive systems) which are locally oscillatory ( say quasiperiodic)  in terms 

of some phases and amplitudes . The question is, given the functions (say, as 

output of a numerical algorithm for solvi.ng the nonlinear dispersive system ) , 

how can we recover these phases and amplitudes ? 

Basically we have a function U = u (x ,  t; t) for which we postulate a rep­

resentation of the form 

u = L a,,(x , t )e �<p,,(x,t) , 0 < t «  1 ,  (4 . 1 ) " 
with3 t.p" = -t.p_" and a" = ( L "  for real u .  The presumption is that 1 a" 1-+  0 

2 "Unfortunately" the scheme considered in this reference is very special , i .e . : it is 
integrable , so that results like those in [FFMcL] , [LL1] , [Vl] , etc .  presumably apply to 

",_ it , but this is far from b eing the general case . 

3For example, for a single phase wave: 1/ = n ,  tp" = I/tp and (J = �tp ; for a two phase 

wave : 1/ = (n ,  m) with tp" = ntpl + mtp2 ; etc .  
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sufficiently fast as 1 v 1-+ 00. Now, given u, how do we recover the amplitudes 
av and phases <()v? One way to do it is the following: 

After we compute u (x ,  to ) for some to we divide the x interval in small 
windows (we are interested in the local wave number) , and use a discrete 
Fast Fourier transform (FFT) in that portion of u. From that we can see 

which k is  most important in that region and then we can associate that k to 

the mean point of that interval . In this fashion we obtain information about 

the wave number k as a function of x and t .  

Firs t  we applied this algorithm to the linear case, where the results are 

known . 

To this end , we solved the wave equation Ut + Ux = 0 with the following 

scheme Un + 2\ (un+! - Un-l ) = 0 ,  and initial data U{X)  = sin{300cos (27rx ) ) ,  

s o  that t = �o . 
For this problem the equation for the wave number is k'T + Wx = 0 ,  where 

W = sin ( k ) ,  and the shock first forms at time t = 0. 1 ,  at x = 0 . 1 1 and 

x = 0 .6 1 .  In figure # 1 ,  # 2 and # 3 we can see the evolution of the 

breakdown , coincedent with t he one expected. 

We are still working with the non- linear case. Lots of subtleties and 

interest ing fenomena seem to take place. 

Still we were able to study some phenomena of oscillatory behavior of the 

solutions of difference approximations like (3 .2 )  and 

( 4 .2 ) , 

which has the advantage over (3 . 2 )  of preserving the total energy 1:u� (so 

that unbounded solutions do not arise) . 

These equations are semi-discrete, ie. continuous in time ,  discrete in x .  

We observed that the equations (3 .2)  and (4 .2)  have solutions that oscillate 

with a wave length O(h ) ,  ie. on the mesh scale . 

For example for (3 .2) with u(x , O)  = sin(27rx) we propose the following 

form of the solution after the time of breakdown : 

(4 .3 )  

where f3n = f3(nh , t )  and In = I(nh ,  t) . If we use Taylor's  series for I and 



325 

f3 'and replace them in (3.2) we obtain the following system for 'Y' and f3{ at 
leading order) : 

'Yt - (2f3'Y):c = o.  
We took f3 = 1 for x � 0 ,  f3 = -1 for x � 0 and 'Y = 0 everywhere 

as an approximation for initial data that model the behavior inmmediatelly 
after a discontinuity starts forming in the solution of (3 . 1 )  -shock-, leading 
to "breakdown" in the solution of (3 .2) (as an approximation to (3 . 1 ) )  and 
appearance of oscillations. We solved the system using characteristics and 
Riemman invariants .  A rarefaction wave arises and there are no breakdowns . 

The solution is (for x � 0 only, for x � 0 use the symmetry x -+ -x, 
/3 -+ -/3, , -+ -'Y) 

f3(x,  t )  = 1 ,  x � -2t 

-2t � x � 0 

,(x,  t )  = 0 ,  x � -2t 

-2t � x � 0 

See figure # 4 and compare the solution above with the actual numerical 
data. The description seems qualitatively correct . The differences can be 
attributed to the fact that away from the breakdown point we took constant 
data while in figure # 4 this is not true . 

\_ In the case described above the point where the shock in (3 . 1 ) would 
appear is produced is a mesh point . The case in which the shock does not lie 
on a mesh point presents a totally different behavior: there are no oscillations . 
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This can easily be understood, and in this case (3.2) allows for discontinuous 
solutions (a jump from Un � a to Un � -a caus� no " large time derivatives 

, in (3.2) . )  . 

If we change the initial data to u(x, O) = sin(211"x) + c, then the location 
of the shock is not fixed, the velocity of that point is 2c. Now when the 
shock passes through a mesh, point it will produce the maximun number of 
oscillations . See figure # 5 . 

. For the scheme (4 .2) we proposed solutions of period 3 .  We modulated 
those solutions and we observed two differents kinds of behavior depending 
on whether the shock laid on the grid or not . In the former case the solution 
presented a shock and in the latter a rarefaction . See figures # 6 and # 7.  
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