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A CHARACTERIZATION OF EXTRINSIC

N
k-SYMMETRIC SUBMANIFOLDS OF R
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SECTION 1.

In [2] D.Ferus introduced the notion of extrinsic symmetric -sub
manifold of RY. This is a submanifold M of RV that is locally
symmetric in the usual sense and such that for each p the local
symmetry T M~>M extends to an isometry of the ambient which
is the identity on the normal space. Ferus proved that such a
submanifold has parallel second fundamental form and obtained

a complete classification by applying his previous results
about submanifolds with this type of second fundamental form.

On the other hand in [9] W.Strlibing completed the remarkable
results of Ferus by giving a direct proof of the fact that
every submanifold of RN, with parallel second fundamental form
is in fact extrinsic symmetric. This was known to be a fact by

Ferus' classification. One has then

(1.1) THEOREM. Let (M,g) be a Riemannian manifold and let

it M® > RN be an isometric immersion.

Then M Zs an extrinsic symmetric submanifold if and only Zf

the second fundamental form of the immersion is parallel.

In 8], the notion of extrinsic k-symmetric submanifold of RN
was introduced by extending Ferus' definition to the case of
k-symmetric manifolds in the sense of [6],[7],[10]. This defi-
nition is global in nature and [8] contains a complete descrip

tion of these submanifolds if they are compact and k is odd.

The methods in [8] are quite different from those in [2] be-



cause extrinsic k-symmetric submanifolds of RY do not have pa-

rallel second fundamental form in the sense of [2] and [9].

However one can define a new type of covariant derivative for
the second fundamental form in terms of the canonical connec-
tion V¢ of the k-symmetric manifold M [6, p.23]. For symmetric
spaces, i.e. k=2, V¢ coincides with the Levi Civita connection
but this is not the case in general k-symmetric spaces. The
Innof‘ghmn by Ferus in [2, p.83] of the above mentioned property
of the second fundamental form does not extend to the new de-
finition but, with a different method, one can prove that ex-
trinsic k-symmetric submanifolds in the sense of [8] have ca-
nontically parallel second fundamental form (see (2.9)). This
is the motivation of the folliowing theorem which is the main
result of this paper (see Sec.2 for definitions).

(1.2) THEOREM. Let (M,g,{6,: x € M}) be a compact connected

Riemannian regular s-manifold of order k and let S denote its

symmetry tensor. Let 1: M* > R™9 be an isometric imbedding
and denote by o its second fundamental form. Then M Zs an ex-

trinsic k-symmetric submanifold of rR2*

i1f and only <f
i) (V;a) = 0 Zn M and

ii) aa(SX,SX) = aa(X,X) for some point a € M and every X € M, .

The paper is organized as follows: In Sec.2 we recall the de-
finition of extrinsic k-symmetric submanifold from [8] and
introduce V¢ proving that, for these submanifolds, one has
Véa = 0 (2.9). The results of this section yield a proof of
the fact that the conditions are necessary. In Sec.3 we study

the nature of the V¢-geodesics as curves 1in R o prove that
the conditions are sufficient.

SECTION 2

Let M" be a compact Riemannian manifold and let i: M" - rH4



be an isometric imbedding with the following properties.

n+q

i) For each p € M, there is an isometry cp: R > R™9 such

k

that op = id , cp(p) = p, cp(Mt) = identity on b

ii) op(i(M)) = i(M).
iii) Let ep = (op|M). The collection {ep: p € M} defines on M
a Riemannian regular s-structure of order k [6,p.4-6].

Notice that condition (iii) implies that p is an isolated
fixed point of ep in M for each p € M.

If these conditions are satisfied we say that M is an extrin-

sic k-symmetric submanifold of R,

We denote by g the Riemannian metric on M and by <,> the inner

n+q

product on R v and vE shall denote the corresponding Levi-

Civita connections on M and R"Y respectively.

Associated to our isometric imbedding we have the second fun-
damental form o, the shape operator and the normal connection
Vl.

On our Riemmanian regular s-manifold we may consider the cano-

nical connection V¢ [6,p.24] and two important tensors namely

= Cc . . . _
D(X,Y) = VXY - VXY and S which is defined by SX = ex*lx

YV X € M. These two tensors and the metric are parallel with
respect to V¢ i.e.

(z.1) v’g=0 , v’D=0 , Vés =0 [6, p.25]

For the second fundamental form of an isometric imbedding one
defines its '"covariant derivative" as

(2.2) (V,0) (Y,2) = vi(a(Y,Z))-a(va,Z)-a(Y,vXZ).

This derivative is used by Ferus and Strubing in the charac-
terization of extrinsic Z-symmetric submanifolds of RY. It is



obtained from the connections V in TM and Vl in TMl.

Here we propose to use a different combination which, as we
shall see, will be more convenient for our purposes. Namely we

define

(2.3)  (V3a) (Y,2) = Vy(a(Y,2))-a(V5Y,2)-a(Y,V52)

an call it the canonical covariant derivative of a.

If our submanifold M c R™*4 hapens to be a symmetric space
one knows that V¢ = V and then both derivatives coincide.

As usual we have

v§(fa) = (Xf) + f(v§a)

(v = £(Vzo) + g(Vgo)

c )
fX+gY

In a coherent way, we can define the canonical covariant deri-

vative for the shape operator

c _ oC c
(2.4) (Vg A Y = 95 (A, Y) - Avig Y - A, (3 Y)

and they are obviously related by

(2.5) LEMMA. g((v}C(A)g Y,Z) = <(v§u)(y,2),g> X,Y,Z tangent

fields on M, & a normal field.

Let a be a point in M which we shall keep fixed. Let N, be a
normal neighborhood of a in M and such that oa(Na) = Na. Let

X e Ma and £ € Mi; we shall denote by X* the "adapted" vector

field on N, constructed from X i.e. X* is constructed by v°-
parallel traslation along the Vc-geodesiCS through a. It is
easy to see that it is a well defined C” vector field on N,
and that VpX*| =0 v UE€ M, .

Now it is easy to see that we can extend ¢ to a normal field
g* defined on N, with the following properties,



(2.6) g* is Vl-parallel along each v¢-geodesic through a

(2.7) £%'is o -invariant on N_ i.e.
* = *
Oa*lx(gx) gca(X) v X € Na'

Associated to X* we can consider other two vector fields on N,
namely SX* and 6,«X*. These fields are also parallel along
each V¢-geodesic starting at a because V¢S = 0 and 6, is V°-
affine. Clearly we have SX* = ea*x* cn N because they coinci-

de at a and are parallel along each V®-geodesic through a

(2.8) PROPOSITION. At each point a of the extrinsic K-symmetric

submanifold we have AE(SX) = SAEX v X € Ma g €

a’

Proof. Let y(t) be a Vc—geodesic starting at a and put B(t) =

= oa(v(t)).
VWe have
Aewcp(ey) LOanly ()X GreN1 =
Ao em (r(e) [Canly () X*(renl =
B Ga*ly(t)[Ag*(y(t))x*(Y(t))].
Making t = 0 now we have AESX = Sa(AEX)' o

(2.9) LEMMA, For each U,X € Ma’ g € Mi we have at the point a

c _ c
[VgyAl ¢SX = ST(VA) X1

Proof. Let y(t) be a V°-geodesic starting at a with y(0) = U.

e e c _ gyt % . L . - -
By definition (VSUA)gSX VSU(Ag*SX ) since VSUE 0

= y¢ y=x c %y = y©
VyX*. Now VSU(AE*SX ) V(oa*u)[A

*
0, (Ex(y)) %ast (Y]]

C

= V(Ga*U)[oa*(Ag*(y)X*(Y))] = Oa*[VE(Ag*X*)] = S[(V;A)EX] ,



. 1 % _ - o€ v& o
since VU E* = 0 VU X*,

With the aid of these lemmas we can prove

n

(2.10) THEOREM. If i: M~ - R™™Y ;s g extrinsic k-symmetric sub

manifold then AE is parallel with respect to the canonical con

nection. <.e. (V; A) =0 v UE Mp Vv p €M,

Proof. Let us take our point a € M and its normal neighborhood
Na as above. By (2.8) we have
1

Ag*X* =S Ag* SX*
-1
and then vgu(Ag* X*) = vgu(s | Ay SX*).
(& % = [
Now VSU(AQ* X*) (VSUA)E X,
-1
and since VEUS = 0 we have

c

vgu(s“lAg*sx*) = s“l[ng(Ag*sx*)} = s'l[(vguA)Esx] = (T, X

by (2.9). _

Then we have proved (VEUA)QX = (VEA)EX

and since £ and X are arbitrary we get V?I—S)U A=20
which, since I-S is non singular, implies VEA = 0. o

n n+q

(2.11) COROLLARY. If i: M

submanifold then its second fundamental form is canonically

+ R 18 a extrinsic k-symmetric

parallel Z.e. (VE a) =0 Vv UE€ Mp , YV p €M. o



SECTION 3

In this section we prove that the conditions of theorem (1.2)

are sufficient

(3.1) LEMMA. Let (Mn,g,{exz X € M}) be a Riemannian regular

n

s-manifold and let i: M -~ R™™ Y be an isometric immersion with

the following properties
i) (VE a) =0 <Zn M.
ii) For some point a € M, aa(SX,SX) = ua(X,X) v X € Ma'

Then at each point p € M and for every X,Y € Mp , ap(SX,SY) =
= ap(X,Y). .

Proof. This is straightforward and left to the reader. o

Let C: I » R®9 pe a regular c” curve. We say that C is a

Frenet curve in R%TY of osculating rank r =2 1 if C is parame-
trized with respect to arc lengh, defined in an open non empty
interval I and for each t € I the derivatives

C(t),...,C(r)(t) are linearly independent and

C(t),...,C(r+l)(t) are linearly dependent.

n n+q

(3.2) PROPOSITION. Let (M,g,{0,: x € M}) and i: M* » R

isometric imbedding with the same hypothesis of (3.1) and let

an

Y be a Vc—geodesic in M.
Then, except by a linear change of parameter, C(t) = i(y(t))

. . n+ s
is a Frenet curve in R" 9 of osculating rank T for some

1 <r < n+q and <ts Frenet curvatures are constant .

Let Y(0) = a and consider, in the interval where it is defined,
the krenet curve Cy(t) = i(ea(Y(t))). Then Cy has the same
osculating rank as C(t) and the corresponding Frenet curvatu-

res are equal.



Proof. Let y(t) be a Vc—geodesic in N, starting at a € M. It
is clear that g(y,y) is constant and then, by a linear change
of parameter, (which does not change the fact that y is geo-
desic) we can assume that g(y,y) = 1. This means that C is
parametrized by arc lengh. Since i is an imbedding we can
identify M and i(M) and then C(t) = y(t).

Consider the first two derivatives of C,
y(t)

E . . . . .
Vo ¥ = D0v) +aly,y).

C(t)
C(t)

Then, we have C = T, + N, (tangent and normal components) and

by (2.1) and (i)

<
I}
—
il
o
[}
<
2

Assume now that we have proved that, for each j < 1i,

) - Tj + N. (tangent and normal) with

=2+ u

i
We shall see that this is also the case for i+1.

E E

(i+1) ' _ -
(3.3) ¢ O
e : : ) CooL
= V? Ti + D(Y,Ti) + d(Y,Ti) ANi Y + V_.Y Ni
= [D(Y’Tl) - ANi Y] + a(Y’Tl) = Ti+l * Ni+l

now by (2.1), (i) and the inductive hypothesis we get

C

V? Ti+1 = 0. Similarly, by (i) and the inductive hypothesis,
1 -
V& Ny = 0.

Then, for each k = 1,
(k) - : c -0 = vt
(3.4) C (t) = Tk(t) + Nk(t) , V? Tk 0 V? Nk‘

Let I be the open interval where y is defined. For each t € I



let r(t) be the natural number (1 < r(t) < n+q) such that

C(t),...,C(r)(t) are linearly independent and Cﬁj,.“,C(PH)(t)
are linearly dependent. Let t, € I be a point such that
r(t,) sr(t) v tel.

There are some real numbers al,...,ar(to)+1, not all zero,
such that Zaj C(J)(to) = 0 (sum from j=1 to r(t )+1).

With these real numbers we define a couple of real c” functions

on I.

2
h(t) iy a Tj(t)ll

9 sums from j=1 to r(to)+1
Iy a Nj(t)H

f(t)

They satisfy h(to) = f(to) = 0 and by (2.1) and (3.4)
h'(t) =0 Vv tel
and therefore h(t) = 0 v t € I,
.Similarly by (3.4) f£'(t) = 0 and again, f(t) = 0 Vv t € I.

We have then, r(t) = r(t,) Vv t € I and therefore, C(t) is a
Frenet curve on I. Let r = r(t,).

We have to prove now that the Frenet curvatures of C(t) are
constant on I.

In fact, we shall prove that for each j, 1 <j <r, we can

write
Vj(t) = Pj(t) + Qj(t) (tangent and normal)
(3.5)
veép, =0 = V% Q. , k. ,(t) = constant
y vy 3 j-1

1}
—_

Let us proceed by induction on j. For j

Vi(t) = C(t) = P (t) +Q(t) , Q =0
VSR, =VSy =0 , k() =ICOI =1
Y Y . °

Assume that (3.5) is true for each j <i < r. We have to show
this for i+1. Now we have
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(3.6)  Vi(t) = WS Py + 70 Q= (1, - Ay §] + a(i,P)).

1

We shail show first that k; = constant and then complete the
other parts of (3.5). We know [9, p.39, (10)] that

(3.7) ki(t) = HV;(t) + ki—lvi-l(t)” (>0 for 1 < i< T)
Then, replacing the values of Vi—l and the derivative, one
gets _
(3.8) [k, ()% = ID(Y,P,) - A ¥ k(P 17+

+ o (¥,P,) + k. Q1% = u(t) + v(t)

and, by induction, it is easy to see that u and v are constant.
Once that we know this we can compute Vi (recall kiy > 0 for
1<i<r).

(3.9) Vo () = g V() + ko (0)V,_ (8)] =

1

i i-17i-

o (OGP A Yvky Py )+ (@(7,P) %k, Q)] =
P

i+1 (8 * Q4 (V)

and, since ki = constant, we have V$ Pi+1 = 0. Similarly one

can easily get Vé Qi+1 = 0. In this way we have proved (3.5).
Let us prove now the second part of (3.2). Let‘yl(t) = ea(Y(t))
and let T, be the rank of Cl(t) = i(yl(t)). We have its Frenet frame

~V11,V12,...,Vlrl and we can write (3.5) for the curve C1

V,.(t) = P_.(t) + Q,.(t)
1 1 1
(3.10) J J L J
Cc _ = =
Vﬁlplj =0 V% Qlj , kl(j—l) constant.

Our next objective is to prove the following identities.

For each j 1<j<r
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(511 P5(0) = 8P;(0) 5 Q(0) = Qg0 Ky = Ky

Clearly, they are true for j=1 so we assume that they hold
for each j < i < r and prove them for i+1.

Let us write (3.8) for Y-

[k, .1

RN D TGS SO EY S-SR AR N

Q; a* 1i-1"1i-1

. 2
(O s Py )+ kg Qg kT

At t=0, we have by induction and the remarked properties of

D, Ag and o that
k. .1°

. . 2 0 ' 2 _
17 = IS DGR A Tk (P T (§,P ) v Q

2

(k]

and therefore, since they are positive,

k.. = k..

11 i

In order to complete the proof of (3.11), we write, for Yq»
the formula (3.9).

_ ‘] . .
Vi (8) = F;[D(ea*Y’Pli) " AqyBar ki Py Y

+a(8,4Y,Py )%k 1Qp; ]
and aggin, by taking t=0, we get
V, ;. (0) = f%[S(D(Q,pi)-AQi§+ki_lpi_1) +al(y,P;) +
* kg Q!

from which (3.11) follows.

It is easy to see now, that (3.11) implies r; > r, because
S is non singular.

il

2,...,k, new geodesics in M by

0, (v; ()

Now we can define, for j

Yj(t)



‘12

and if we call rj the rank of Cj then

= > >
T rk = rk—l Z ... 2 r1 2T

which shows r, =T, This finishes the proof of (3.2). o

Let us complete now the proof of (1.2).

The conditions are sufficient:

Given the tensor S on M we can define, for each p €M, an

Rn+q N Rn+q

isometry % by

{Sp(v) if veM,
GP(V) =

v if veMt.

n+q

As we mentioned before we identify M and i(M) C R We have

to prove that op(M) C M and that 0p|M = ep for each p € M.

At this point we need to make the following observation due to
0. Kowalski (private communication).

Let M = G/K be a compact k-symmetric space where G is the con-
nected component of the identity of the group of symmetries.
Let g and k be the Lie algebras of G and K respectively. Let 6
be the automorphism of G induced by the symmetry at the origin
0 = [K] of M. Then (G,K,0) is a "regular homogeneous s-mani-
fold" ([6] p.53). Let g = ke m be the decomposition of g given
by ([6] II. 24) which makes G/K reductive with respect to that
decomposition. Let <X,Y> = -B(X,Y), where B is the Killing
form on g. This is a scalar product invariant by every auto-
morphism of g. Let m'" be the orthogonal complement'of k in g
with respect to this scalar product. This gives a new decompo-
sition g = kem'.

(3.12) LEMMA. The two decompositions g = hem and g = kem'

coineide.

Proof. Let 04 be the automorphism of g induced by 6. Then, by
definition, if A = Idg-e*, one has



k = ker(A) and m = Im(A)

(These are the Fitting O-component and Fitting 1-component of

g, relative to A, respectively).

Now 64 leaves m' invariant and then Al(g) Dm' VY i > 1. But

since the dimensions of m and m' coincide we have m = m'. O

(3.13) COROLLARY. The canonical connection ve of the regular
homogeneous s-manifold (G,K,6) and the canonical connection V

of G/K with respect to the decomposition g = kR®m' coincide.

Proof. This follows from the fact that the canonical connec-
tion of a homogeneous space G/K, reductive with respect to the
decomposition g = ke m , is uniquely determined by the choice
of m ([6] p.29, I. 6). o

(3.14) COROLLARY. Let (M,g,{Gx: X € M}) be a compact connected

Riemannian regular s-manifold of order k. Let V¢ be its cano-

nical connection and p be a point in M. Then given any point

X €EM there exists a Vc-geodesic in M joining p to X.

Proof. Let g = Rem be the orthogonal decomposition with res-
pect to the Killing form B on g. The restriction of (-B) to m
induces on M a new Riemannian metric h(X,Y) which makes M-a
naturally reductive homogeneous space [5, II,p.203]. One

knows ([1, p.55]) that the canonical connection v on M, with
respect to the decomposition g = kem , has the same geodesics
that the Riemannian connection corresponding to the metric h.
Then the corollary follows from (3.13) and the theorem of
Hopf-Rinow [4, p.56]. o

Let y be this v®-geodesic joining p to Xx; we may assume
vy(0) = p. Put Y, = ep(y). By (3.2) y and y; are Frenet curves

in R®9 of the same osculating rank r (1 <1 < n+q) and their
corresponding curvatures are equal and constant.
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By keeping the same notation as in the proof of (3.2) we call

Vj and Vlj the Frenet frames of y and Y, respectively. By the

nature of the curvatures in this case it is enough to show
that

cp(Vi(O)) = Vli(O) i=1,...,r

To that end we have plenty of information in the proof of
(3.2). Clearly this identity follows from (3.5), (3.10) and

(3.11) and then OP(M) € M. It is now clear that ole =0

P

and the proof of (1.2) is complete. o
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