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ON THE MEASURE OF SELF-SIMILAR SETS

PABLO A. PANZONE

ABSTRACT. We exhibit a method by which we can.approximate the

Hausdorff measure of self-similar sets of a certain class.

0. INTRODUCTION. In 1. we show a procedure for approximating
the measure of certain self-similar sets. In 2. we use these

methods to show that if K is the Koch curve then
0.26 < H°(K) < 0.5989 < 23_2, s = logd/log3 (example 2). We

also calculate the measure of some 'regular'" self-similar sets

in R (see example 1, Th.5). This application contains as par-

ticular cases some well known results.

Despite the fact that we repeat arguments and use ideas bor-
rowed from the works of Hutchinson [H] and Marion [M 1], on
the whole the method shown seems to be new.

1. THE FUNCTION u. The Hausdorff metric is defined on the col-
lection of all non empty compact subsets of R by
d, (E,F) = inf {t: F C [E]t and E C [F]t}

where [E]t = {x € R": inf llx-yl = d(x,E) <t} and Il.l
yeE

(d(-,.)) is the usual norm (distance). We shall write

F.—— K instead of d_(F.,K) ——— 0.
J H H ] j ro
We state here the well-known selection theorem due to Blaschke:

Let F be an infinite collection of non empty compact sets all
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lying in a bounded portion B of R". Then there exists a sequen-
ce {Fj} of distinct sets of F convergent in the Hausdorff me-
tric to a non-empty compact set K, (cf.[Fl, pg.37).

|A] denotes the diameter of a set A C R" and HS(.) its
s-Hausdorff measure (cf. [F]).

A convex body is a compact convex set with non-empty interior.

The following is a corollary of Blaschke's theorem.

LEMMA 1. Let F; be a sequence of compact convex non-empty sets
of R® such that

a) lim |F | = a >0

-0

b) There exists a compact convex set F sueh that F; CF

for all i
Then there exists exists a subsequence F; such that
]
i) Fij 5 K, K compact and convex
ii) |X| = o

iii) K CF

Proof. By the mentioned Blaschke selection theorem we know
> K where K is a

that there is a subsequence F; such that Fj|
J ]

non-empty compact set. Obviously K C F. As F; . 5 K, we have
J
dH(Fij,K) < gy with £ — 0. But then K C [Pij}ﬁj for all j
(notice that [Fi~]g- are compact convex sets) and
J =3
| IFy 1. | — 0
J J

Thus |[K| <a. Suppose that |K| <a. Since F; C [K]_ we have
J J

|F;. | < |IKI_ |, and letting j — = we arrive at a contradic-
J J
tion. This proves ii) and iii).

We now prove that K is the convex set N [F; J]_ . Observe that
J J
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[F; 1., tendas to K in the Hausdorff metric because
dH(K3 [FlJ]EJ) < dH(K’FlJ) + dH(Fij’ [FlJlej)

Thus given € > 0 there exists Jo such that

[Fij]Ej c Kl if  § = jo
Then n[F; 1 C K. The inclusion K C n[F; ]__ was already
i =3 J %3
established. This finishes the proof of the lemma. .

Let K be a compact set in R" such that H®(K) <o (s > 0). Defi-
ne for § > 0:

u(8) := sup {H®(XNC); C convex compact and |C| = &}

This function is a basic tool in our method.

THEOREM 1. u(8) Zs continuous from the right and non-decreasing.
For any § > 0, u(8§) = H® (X n Cg) where Cg 18 a particular com-
pact convex set of diameter .
Moreover Tf for any compact convex set C we have

HS(K nac) = 0

then u(8) Zs continuous.

Proof. From the definition of p(8) we know that there exists a
sequence C' of compact convex sets of diameter §, all lying in

a bounded portion of R", such that

u(8) = lim H%(X n ch)

1>
By lemma 1 there exists a compact convex set Cg of diameter §

1. .
and a subsequence C 3 of C* such that
. .
cJd —— %
H 8

But u(8) = H®(XK n cg) = 1im H° (K n [cgll/zk) and

k—>co
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i.
cJc [Cg]llzk if ij is large enough and k fixed.
Then u(8) = HS(K N Cg).

From this one easily gets that u(8) is non-decreasing.

Let 60 > 0 and Gi >0; 1i=1,2,3,... , éi — 60. Then
u(s.) = HS(x nc% )y if j = 0,1,2,3,...
J 5j

with ng a compact convex set of diameter Gj lying in a bounded
portion of R".

By lemma 1 there exists a subsequence of Cg., which we denote
in the same way, such that ng T c®, where C° is a compact
convex set of diameter S, -

But HS(XK n C°) = 1im H3(X N [c°]1/21) and HS(K n [c°]l/21)>
1>

> H> (K nCy ) = u(s;) if i is fixed and j > j(i). Thus
J

Tim u(aj) <H’(K nC°) < u(s,).

j oo

This proves that p(8) is continuous from the right.

We show now that if for any compact convex set C

HE(K N 3C) = 0

then p(8) must be continuous.

Recall u(éo) = HS (K n Cgo), C%O a compact convex set of diame-

ter 60.

If Cgo is not a convex body then Cgo = acgo and by hypothesis
u(é) = 0 if & <§

Therefore u(8) is continuous from the left at 60.

Assume Cgo is a convex body.

Let ]Cgo[E = {x: d(x,Rp\Cgo) > ¢}. Thus from the hypothesis we

get
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u(s ) = HS(K N C2 ) = H3(X n 3CY ) + H®(K n int(Cc )) =
o 60 60 Sy

o]

= H%(K n int(cgo)) = lim H°(X n ]C60[1/zi).

i >

This implies the continuity of u(8) at 60. L

A mapping Y: R" » R" is called a contraction if [IY(x)-Y(y)Il <

< k.llx-yll for all x,y € R", where 0 < k < 1. Clearly a contrac-

tion is a continuous function. A contraction that transforms

every subset of R" to a geometrically similar set is called a
similitude. Thus a similitude is a composition of a dilatation,

a rotation and a translation.

Let Yi i=1,...,m be a set of similitudes with contraction
ratios ki' We know that there exists a unique non-void compact
set K such that K = i§1 Yi(K) (see [F]). We assume also the

following (s is the Hausdorff dimension of K):
I) 0<H®%(K) <= (s > 0)
I1) H°(Y, (K) n Y.(K) =0 if Q]

Such a K will be cailed a self-similar set.

Notice that if K is a self-similar set then the following

equality holds:

By C(A) we denote the convex hull of a set A.

Let K be a self-similar set. It is clear that Yi(C(K)) C C(K)
for all i. We rename the sets Yilo ee. o Yiq(C(K)) in the fol-
lowing way: C(K) is called T, Yi(C(K)) is called Ti’

Y, o Yj (¢()) = Yi(Yj(C(K))) = Tij’ etc.

Fix r =2 1. Set Gr 1= {Ti .oy i, = 1,...,m}. G_ has mfele-

1...1r ]

(K) C T, . CT.
1 1

ments. Notice Y. o...0Y. oY.
1 1 1 1"'1r1r+1 1

1 r r+ 1"'ir
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PROPERTY Z. Let K be self-similar. We say that K has property

L if there exists an index i1 ces ir such that
)

Ti i C int C(K).
1700 ro

THEOREM 1'. Let K be a self-similar set having the property L.

Then for any compact convex set C we have
HZ(K N 3C) = 0
and u(8) ©<s continuous.

For the proof we need two auxiliary propositions:

PROPOSITION 1. Let Cl,C2 be two compact convex sets such that
c, [CI]E for some € > 0. If p € C,, p & int C, then

d(p,BCZ) <e.
Proof. Left to the reader.

PROPOSITION 2. If the hypotheses of the theorem 1' hold for K
then C(K) Zs a convex body and the following statement is true:
there exist €, > 0 and an integer number v, (= 71,, T, 0of pro-
perty 1) such that for all convex compact sets C and all
t <e, the set

[3cl, = {p: d(p,3C) <t}

does not intersect all elements of Grl

Proof. Let r., be such that r

1 1 = T and

1

r
(1) Max diameter of elements of Grl = (max k,) K| <

< d(aC(K),Tilmi )/2.

Io

r
Let e = (max k;) 1.|Ki/2. Take all elements T of Grl such

that T N 3C(K) # {@}. Call this set G! . Observe that
1
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(2) c(ur) = C(K).
T'eG,
1
Let C be a compact convex set and assume that [BC]E inter-

(o]
sects all elements of Grl' For each set T € G'rl take a point

. E aC] .
as Irnl ]80

Thus C(U q.) € [Cl. and C(Y q.) C C(K). But
j ] o j J
by (1) and (2) C(K) C [C(V qj)]2€ . Using prop.1 we have that
3j o

if p € C(K), p € int C(u qj) then
J

(3) d(p,d2C(K)) < Ze,.
Therefore T. C int C(U q.). By (1) and (3)
11... r j ]
o
! . . U qg. .
4" d(Tll-"lr , BC(j qJ)) > 2¢g,

o

For p € 3C n C(yU qj) we have by proposition 1:
J
d(p,3C(V q5)) < <

) - d(p,q) holds for any

Since d(p’Til...i ) = d(q’Til.. .

.1
o r

q, taking q € 3C(uU q.) we get d(p,T. . ) >2e - e =c¢
P i7...1 o

3 ro o o’
This, together with (4') yields

i )-eo > e .

el
. o

. > ),T.
a(3C, T, ) d(aC(g qJ),T11

Yo

Thus one obtains d(T i ,0C) > ¢, and therefore [’c)C]E
ll-.. r fe)
(o)

cannot intersect Ti

ce o1l
1°° ro

The proof is completed if we notice that there are elements of

G, contained in T. .. L
1 11...1ro

Proof of Theorem 1'. Let C be a convex compact set and t > 0.
We define
W(t,C) := H%(K n [aC] ).

/N s
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Suppose t <'e,. Then

(5) W(t,C) <= H(Y, (...(Y; (X))...) n [acl))
11 lrl
where X' means the sum over all indexes il"'ir such that
T, . n [3cl, # {@}.
llon.lrl t
But
(6) HE (Y. (...(Y. (X))...) n[sCl.) =
i 1rl t
ijeeeip
= k5. ... k% H%K n [aC 1
11 lrl ( t/kil...kirl
i,
where ¢ ! try is a convex compact set. More precisely
i i
SRS RS SN SR (DD PO I
1y 1
1
Using (5), (6), the identity X ki ...ki = 1 and prop.2
1 ry
we have

W(t,C) < (2" k§ ...k§ ).H%(K N [5C']

<
i r

t/(min ki)rl)
rls . rl
< (1 - (min k;) ) .W(t/ (min ki) ,C")

iq1...1
where C' is one of the convex sets C L 1,
Thus we have proved that there exists € > 0, an integer T,
and a fixed a, 0 < a < 1, such that for any compact convex
set C and any t < eo'there is a compact convex set C' such
that

(7) W(t,C) <a.W(t/(min k) '

,C').
Using (7) and the fact that W(t,C) < H(K) < » for any C and
t >0, we get

lim W(t,C) = 0. [

t=+o0
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COROLLARY 1. The Lebesgue measure of the boundary of a compact

. n .
convex set in R <s equal to zero.

To prove this well know fact take K as an hypercube and apply
Theorem 1'.

REMARK 1. Let K be a self-similar set. Suppose that property Z
does not hold, then it is easy to see that

(int C(K)) Nn X = {@#} ie. K C 3C(K).

1.1. THE FUNCTIONS u, U, U.

Now we define functions u, U and U which approximate in some

sense the function p. For defining these functions we need

other auxiliary functions.

Recall that Gr'is the set of all possible Ti i with
l-n-r

r (= 1) fixed.

Let P(Gr) be the family of nonvoid subsets of Gr. Define

Jr: P(Gr) — R in the following way:

if {T. R | } is an element of P(G_) then
11...1 T

. Jpee-dy
Jr({Til..uir""’le...jr}) =
= (kS . L. kS )+ s+ xS L Ll kS ).
( i 1r) ( i Jr)

It is not difficult to check that Jr (P(Gr)) is a finite set
of points of R such that if a € Jr (P(Gr)) then 0 <o <1,
and 1 € Jr(P(Gr))' Also Jr(P(Gr)) C Jr+1(P(Gr+1)) for all

r =2 1. Besides, for each € > 0 there exists r, > 1 such that
for all r > L if x € [0,1] then there exists a € Jr(P(Gr))
such that |x-a| < €.

We shall define functions Hr, hr on the set Jr(P(Gr)), ie.
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H_,h_: J_(P(G)) — R.
Let o € Jr(P(Gr)), we define

¢% := J_l(a)

r r
and
H (¢) :=min (max |T uyT'|) =
r BeGY  T,I"eB
r
= min (diameter of B) ;
a
BeGr
hr(a) = min ( max d(T,T'))
BeGY  T,I'eB

where d(-,.) is the distance between sets. Remember that T,T'

are elements of the form T. .
11--.1r

From the definitions of Hr and hr it is clear that hr(a) <
<H_(a) < |K| and H_(1) = |K|. It is not difficult to see that
Hr(a) - hr(a) < e for all o € Jr(P(Gr)) if r is big enough.
Also Hr+1(a) < Hr(a).

Let 0 < € < €, We define functions Ur, Ur and u_ which
approximate u(8) on [e ,e,].

Let

b

U, (8)

u_(8)

max {a: hr(a) < $

}
max {o: Hr(a) < §}.

Thus Ur(G) is defined for § = min h,.(a) and u,.(8) is defi-
aeJr(P(Gr))

ned for § > min H.(a). It is easy to see that there exist
aeJr(P(Gr))

T, and o € Jro(P(Gro)) such that Hro(a) < €,- Thus Ur and u,

are defined on [el,w) ifr>r

Let h_(a) := H_(a) - ((max k)%.|K[.2) and
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U,(8) := max {a: h_(a) < 8}. Thus U_(8) is defined for

§ = min H.(a) - ((max k)".|K[.2).
aer(P(Gr))

Moreover u_(§ + ((max ki)r.|K|.2)) = ﬁr(é) and therefore ﬁr is

defined on [el,w) ifr>r

All functions ur(é), Ur(é) and ﬁr(d) are jump functions with a

finite number of jumps, continuous from the right non-decrea-

sing and positive.

The following theorem shows how the above functions are rela-

ted among them and with u($8).

THEOREM 2. Let K be a self-similar set and u_(8), U_.(8), ﬁr(é)

as above. Then
a) u_(6)/6° < u(8)/(8°.H%(K)) <U_(8)/6° < ﬁr(a)/ss For

§ > min {H_(a); o € J_(P(G.))}.

b) Iﬁr(d) - ur(d)l — 0 uniformly on [el,eﬂ as T + o 7f U(S)

18 continuous on (0,).

c) lim ( sup ur(é)/ﬁs) = 1lim ( sup ﬁr(é)/és) =
T+ 66[81,621 T+ 62[51,82]

= (sup u(8)/8%)/H®(K) if u(8) is continuous at €,-
66[81,€£

d) b) and c) hold <f we replace ﬁr by u_.

Proof. We show first that

u_(8) <u(8)/H>(X) <U_(8) if &> min H.(a).
ueJr(P(Gr))

From theorem 1 we know that u(§) = Hs(Cg N K) where Cg is a
compact convex set of diameter &§. But Cg interesects .1 ele-

ments of G_: T, R ..
T ip.00dy Jie-+dr
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Then, because of the self-similarity of K:

u(s)

S o S S S =
H (CG N K < [(kil...kir) + ... +(kjl...kjr) 1.47(K)

a.HS (K).

Also h_(a) < [Cg| = 8. Then u(8) < U_(8).H"(K).

To prove the remaining inequality let ur(d) = a. Then Hr(a) <$

and there exist 1 elements of Gr, say Til"'ir""’Tj1° g
such that
s =
DI 0Ty g Ty D)
= (k; ...k, )%+ + (k. k. )% = a
(kg ook ) PR
i i = 3 - e T. ..
ii) Hr(a) |T11...J.r v v Jl...]rl

Using Hs(Yi(K) N Yj(K)) = 0 if i#j it follows that

u_(8) <u(8)/H%(K).

Now we prove that Ur(é) < ﬁr(d) if § 2 min H (o).
ueJr(P(Gr))

For this we only have to prove that ﬁr(a)\< hr(a) if

a € Jr(P(Gr)). Fix a. From the definition of hr(a) we then

have 1 elements of G_, say T. . 5., T. . , such that
r i,0001p Jp-+-3x

i) Jr({Til seees s . 1) = o

..ir 31"'31'

ii) h_(a) = max (d(T,T"))

I'e{T. R .
r,I'ef i...dp Jl...Jr}

where d(-.+) is the distance between sets.

But any element of {T. R A . } has diameter less
11.--11. Jl-.-Jr

than or equal to (max ki)r.|K|. Thus

|T U... UT, . | <h_(a) + (max k). [|K][.2

iy...4y jp---3r
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and therefore H_(a) < h_(a) + (max k,)".|K|.2 ie. h (o) <h ().
This proves a).
To prove c) we need the following: if u(8) is continuous at €9,

then 1lim ur(sz) = u(ez)/Hs(K). Suppose this is not true, then

r—>o©
for some € > 0 and a subsequence rj

v (6)) < Qe /HIED) - .
But then

ue,-((max k) 3.1K[.2))/H3(K) < U, _(e,-((max k;) 3.]K|.2)) =
J

r

= urj(ez) < u(ez)/Hs(K) - ¢

which is, for j — « an absurd.

T
Let € > 0. Let r; be such that u(e,+((max k) Lox].2)) -

1
- u(ez) < e.H%(K), u(az)/HS(Kj—urLez) < g if r

V

r, and

r
11/x%-17y%| < e if |x-y| < ((max k) '

Let T = sup u(é)/HS(K).
68(0,82]
Now we prove c). Due to the fact that 6r is non-decreasing and

continuous from the right we have that sup ﬁr(é)/és is
sele),e,]

taken on a particular point §_ of [e},e,].
Thus if r > r, we have
sup U (8)/6°% = U.(8,)/62 = u_(8_+((max k)¥.[K|.2))/62.
68[61;52]
There are two possibilities: (8 + ((max ki)r.|K|.2)) =8
belongs to [al,ezl or not.

Suppose that it belongs. Then

S !
u_(81)/65 = u_(81).(1/85-1/617)+u_(81)/8! < t.e + sup u,(8)/6°.
56[81,62]

.|X|.2) and x,y € [e,=).

PN N
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If 8! does not belong to [e;,e,] then
Ur(5é)/5§ = ((ur(ﬁé)—ur(ez))/sg) + UrCEZ)-C1/5§-1/(€2)S)‘+

+ ur(ez)/(sz)s < 2.8/(51)S + T.g + iup ?r(d)/és.
Sele, ,€
1°72

Thus c) is proved.
We end the proof of theorem 2 proving that b) holds.
Suppose that ﬁr(d)-ur(d) does not tend to zero uniformly on

[61,82]. Then we would have a sequence of points 6j € [el,s

2
and a sequence rj — o, such that
0<8 < Urj(éj) - urj(dj) = urj(Gj + qj) - urj(éj)
Y.
where a; := (max k) J.]K|].2. Then
s S S

.+q., K) - .-q.)/H (K) = .+q. K) * §.+q.

w(8,+a;)/HS(K) - u(8,-a)/HS(K) = u(s,+a ) /Ho(K) X u (8;+a;

J

t ﬁrj(éj-qj) - u(Gj-qj)/Hs(K) > 6 for all j and this contra-

dicts the uniform continuity of u(8) on [el-e,e +e] . L]

2

1.2. THE FUNCTION f .
Set £(8) := u(8)/s°.

THEOREM 3. Let K be a self-similar set. Then

f(8) <1 for all & € (0,=).

Proof. Suppose the statement is false. Then there exists a

compact convex set Cg of diameter & such that

HE(K N Ce)/IK n Cgl® = HE (K N cﬁ)/|c5|S >8> 1.

From the self-similarity of K (property II above) we obtain

]

)E:
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HE (Y, (K n Cy) NY;(KNCg) =0 if ifj,
s _ 1.8 s
Also H (Yi(K N Cé)) = k;.H (KN CG)'

Thus for all i we have

HE(Y, (K N CY/IY (K NG |® = HE(K N CH/IK N Cgl® =8 > 1.
By induction, for any 1 = 1,2,..., we get:
a) HE(Y; © vove Y5(K N Cg) NYjuo ..o Yiu(K N Cg)) = 0
—_— | —
=1 =1
if the 1-tuples i ... j and i' ... j' are different.
] S
b) H(Yio...on(KﬂCS))/|Yi°...on(KﬂC(S)| >B8>1

for all 1-tuples.

Set An 1= V) Yi 6 ... © Yj (K n Cé)
all the >
l1-tuples with 12n =1
Then A CA and AV A := N A_.
n+l n n n n
Set B_ := U Y. o ... o Y. (KN C.).
" a1l the J, 8
n-tuples =n

Clearly Bn C An. Also from a) and b) we have

HE(B ) = 2 HS(Yia...on(K NnCg)) >8B. Z |Yio...on(KnC6)|S=

all the all the
n-tuples n-tuples
=8. Z k%. ... .k |[Knc.®=28.]KncC|®
all the & J 8 §
n-tuples
m
(the last inequality because ( | ki)n = 3z ki. . k? =1).
i=1 all the
n~-tuples
But H%(A_) < H°(K). Thus lim H®(A) = H°(A) > B.|K n Cg|® > 0.

n-+>o©
Clearly the sets Y; o ... o Yj (X n Cd) for all the 1-tuples
Nl — 2

1 >n, form a Vitali family Vn for A, ie. they are compact sets
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and for any € > 0 and any x € A there exists Yio...on(K N Cd)

of positive diameter < e such that x € Yio...on(K N Cs).

Let n  and € > 0 be such that HS(An )+e < B. H®(A). Then there
(o]

exists a disjoint subfamily V% of V_ such that (I[F],pg.11)
' [o} o
(8) H%(A) < (2 |Yje...o¥;(K N C5)|S)+€/B =W+ e/B

1
Yi°"'°Yj (KOC(S) EVno

and either W = » or W < » and

HS(A- U Yio...OYj (Kﬂcé))=0-

° ]
Yio. .o Yj (KﬂCG)EVno

But if W = « by (8) and b) it follows
B.HZ(A) < z B.lY; e oot 0 Y5 (KN c5)|S + e <
° 1
Yion.. oY, (K ncﬁ)evno

< z HE(Y; o ouu o Y, (KNnC) + ¢ < HS(K) + ¢
Y.o...oY.(KﬂCS)SV'
i J N,

and then H®(K) = =.
Therefore W < o, Then,'by (8) and b),

B.HZ(A) < z H3(Y; o vvt 0 Y5 (KN Cg)) + e <
Yia. .. on (Kﬁcg)svt'10

< H%(A, )+e < B.HZ(A). .
o

PROPERTY A: Let K be a self-similar set. We say that property
A holds for K if there exists A > 0 such that for any x € K
and any By . (ball centered at x and radius r) with r <A

there exist y € K and a similitude Y with contraction ratio

"k =1, Y: R® — R", such that

’

a) Y(B,  NK) =B N K

X,T

b) (By . N K) C Yi (K) for some io 1

’ o

N
=
A
E]
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LEMMA 2. Let X be a self-similar set having property A. Then
for any 8§, 0 < 8§ < A, there exists j, j € {1,...,m} , such
that £(8) = f(cs/kj).

Proof. Suppose 0 < § < A. By theorem 1 we know that u(§) =

= H(X n Cd)’ where Cé is a convex compact set of diameter é.

By property A there exists Cé a convex compact set of diameter
§ such that H°(K n C}) = H°(K n Cg) and (K n C§) - Yy () ={g}

with 1 <1  <m.

Then Y;l(Cé) = Cé/k is a compact convex set of diameter
o ig
f - S = S s '
é/kio. It is easy to check that H (K N Cé/kio) 1/kio.H (KﬂCG)
. S
Clearly u(é/kio) = H (KN Cé/ki ).
o
Also by theorem 1 u(d/kio) = HS(X N Cé/ki ) where Cé/ki is
o o
a convex compact set of diameter 6/kio
- yS ' s ] ) '
But u(d/kio) H (K N Cé/kio) < 1/ki0.H (K n YlO(CG/kio)) <
] s _ s
< 1/kiC.H (kK N Cé) = H (KN C5/ki ).
o
- s - S s ' =
Then u(é/kio) H (K n Cd/kio) 1/kio.H (K n CG)
= u(8)/k% . »
10

THEOREM 4. Let K be a self-similar set. Then
i) 1im £(6)
§+0
ii) Let also K have property A. Let 0 < e, <&, be such that

1

‘a) €, <A with A of property 4.

b) e,.(max 1/ki) <eg,

Then £(8) = 1 for some & € [e,¢,]
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Proof. We prove first that ITim £(§) = 1 (cf.[F],T.2.3). Sup-
§+0
pose it is false, then there exists a > 0 such that

f(8) < 1-a if § € (0,a). From the definition of Hausdorff
measure of K we have that for any € > 0 there exists a counta-
ble family E; of compact convex sets of diameter less than €

such that H°(K N E,) # 0 for all i, Z #°(K N E,) > H?(K) and
1

(9) HS(K) + e >Z |E,|®
1

1

But if € < a, then

™
o
i)

[

i

ZHS(KNE,)).|E.|®/HS(X NnE.) >

i 1 1

>Z2 HS(K n E.)/f(|E.|]) = Z H°(K N E,)/(1-a) =
i 1 1 i 1

> H®(K)/(1-a)
which is in contradiction with (9) for € small enough.

We prove now ii). Suppose K has property A. To prove ii) it

is only necessary to show that sup f(8) = 1 since u(98)
Ge[el,ez]

is continuous from the right and non-decreasing. Now, from
Lemma 2 it follows that if 0 < § < ¢e; then there exists

§' € [el,ez] such that f(§') f(8). So Tim f(8) <
§~+0

< sup f(8) < 1 and because of i) the proof is complete. ®
sele),e,]

1.3.

A combination of theorems 2,3 and 4 gives us a procedure by
which we can compute the measure of a self similar set K if

property A holds and T = C(K) is known.

The method is as follows: we observe first that the function
Jr: P(Gr) — R defined above is a function whose values we

can calculate. Thus Hr and hr are functions which we can also
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calculate because this involves taking the distance (or the
diameter) between sets of the form Yil("'Yi (C(X))...) =
r

= T3 . (recall T = C(K) is known!).
1eeely

Thus, the functions ﬁr’ Ur and u_ are known.

But these functions are of the form

1
izl q; - S(x-7))

where T; € (0,=), a; >0 (Ti and q; are known!) and

1 if x =20
S(x) =
0 if x<0

Let € be as in theorem 4. Then sup {Ur(cS)/GS: g, <$ <62} =

1’ 2
= max {Ur(d)/ds: § =€, or § € [51,52] and U_ has a jump at 8}

and similar expressions hold for ﬁr and u_ .

Thus B = sup Ur(ﬁ)/ﬁs , Er = sup ﬁr(a)/as and
58[61,82} 68[&1,52]
Br = sup ur(d)/és are all numbers which we can calculate.
sele;,e,)]
By theorems 2,3,4 we have B, < 1/H%(K) < Br < ﬁr and

Br < Br+1 (this because Hr = Hr+1). From theorem 2 we know
~ . . 5 S r1r

that Br-sr — 0 if r — « ije. 1/Br < 1/Br < H(K) < 1/8r

and 1/_-1/B_ — 0 if 1 — .

In the next section we compute measures and "approximate mea-

sures'" of some self-similar sets.

2. EXAMPLE 1

The sets Kn will be self-similar sets in R2 for each n =2 3 and

they are defined as follows. Let Pn be a regular poligon of n
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sides,|Pn| = 1. Thus, for example, P, is an equilateral trian-

3
gle whose base has lenght 1, P4 is a square of side equal to

1/v2, P. is a pentagon, etc.

5
We define Y?, i=1,...,n, a similitude in the following way:

for each vertex Vz, 1 <i<n, of the regular poligon Pn, Y?
is a contraction of ratio 1/n and a translation (ie. there is

no rotation) and Y?(V:) = ’v’ril.Kn is defined to be the (unique)

n
compact set such that ) Y?(Kn) = Kn.

i=1
From the definitions of Yg one easily gets the open set con-

dition: the sets Yi (intC(Pn)) are disjoint and

" Co

Y?(int C(P_)) C int C(P_)

i=1

(see beginning of proof of lemma 4).

Thus, by Hutchinson's theorem (see [F], pg.119) we get that
sn
a) 0<H (K)< =
- Sn, 0, n _ . . .
b) H (Yi(Kn) N Yj(Kn)) =0 if i# 3

where s, is the Hausdorff dimension of Kn. Here s, = 1 for all

n.
Observing that V? must belong to Kn it follows that C(Kn) =

- _ oD 0 _ —n
C(Pn) = P_. Recall that C(Kn) =T, Yi(C(Kn)) = Ti , etc.

Notice that property Z holds for Kn.

We will compute the measures of the sets Kn:

THEOREM 5. H'(K ) = 1 for all n >3,

Our proof of this theorem will need some lemmas.
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To motivate the reading ot these auxiliary propositions the
reader may go directly to the proof of theorem 5 in next sec-
tion. Figures 7 and 8 show how K3 and K5 look like. We denote

with u(8,n) the function u(g§) of K .

LEMMA 3. Let n,j be positive integers. Then

a) 1/n <1 if n>5
(1-1/n).sin(w/n)-1/n

b) 2/n <1 4f n=5
(1-1/n) .sin(w/n)

) (j*1)/n <1 4f n>7and 2 <j < /2

sin(jn/n)-2/n
d) (1-1/n).sin(w/n) < sin(27/n)-2/n Zf n = 6
e) (1-1/n).sin’(n/n) <2/n <f n > 6

5 \/2/(+cos(r/n)).(1-1/n) .sin(n/n).sin(n/2n) <

<2/n Zf n=>=7

Proof. From Taylor's series of sinx we obtain

(n sin x - x > -x3/3! if x € [0,n/2].

In the following x denotes real values and n (or j) denote in-
teger values.

a) Let f(x) := (m-2) - 7©/x - ﬂ3.(x—1)/(x3.3!). Then f(x) =2 0
if x € [5,«) because f(x) is non-decreasing if x € [5,«) and
£f(5) > 0. But using (1) we get for n > 5 that

1 < 1+f(n) <n.[(1-1/n).sin(n/n)-1/n]

and a) follows.
b) Follows from a) immediately.

¢) Let g(n,j) = (n/i)%.((v-1)-3/j). Then g(n/j) > n3/3! if
n >8 and [(n is even and 4 <j < n/2) or (n is odd and
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4 <j < (n-1)/2)] because g(n,j) = 4.(w-7/4) = ﬂ3/3! for the
above values of n and j.

If j =2and n>7 we get g(n,2) > (7/2)%.(n-5/2) > v3/3!. 1If
j=3and n>7 we get g(n,3) > (7/3)%.(n-2) > 13/3!.

Thus

(2) g(n,j) > 13/3! if n>7 and 2 <j < [n/2]

Thus using (1) and (2) we get
0 < (g(n,3)-7/31).(3/n)3 < sin(jn/n)-j/n-3/n
and c) follows.
d) Let h(x) := (m.(/3-1)-2).x%-72.(¥/3-1)/3'. Then h(6) > 0
and therefore h(x) > 0 if x > 6. But using (1) we get if n > 6
that 0 < h(n)/n> < (¥3-1).sin(n/n) -2/n <
< (2.cos(w/n)-1 + 1/n).sin(n/n) - 2/n

and d) follows.

A
e) and f) Let f(x) := sinz(ﬂx) - \/E1+COS(H/7))/2.2X. It is
not difficult to prove that f(x) < 0 if x € (0,«), Using this
inequality e) and f) follow. n

LEMMA 4. Let n be a positive integer. Then
a) u((1-1/n).sin(n/n),n) < Hl(Kn)/n if n =2 6 and n is even

b) wu(sin(jm/n)-2/n,n) < H'(K ).j/n if n > 6, n is even and
2 €j <n/2.

c) wu(2(1-1/n).sin(w/2n),n) = »
W (V2  (1rcos (/). (1-1/n) . sin(r/n) ,n) < Hi(k y/mooif

n=5and n s odd.

4) wV2/(+cos(n/n)).sin(§n/n)-2/n,n) < H (K ).j/m if
n>5 nis odd and 2 < j < (n-1)/2.

Proof. Let n > 5. Recall that C(K_) = C(P ) = T, Y?(C(Kn)) =
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=T, YI.I(YI.I(C'(K ))) = Tr.l., etc. We call C" the center of P ie.
jooi n ji e n

1

CZ = Z VI/n. Thus it is easy to check that (recall [P | = 1)
1
n .n /2 if n is even,
d(vi’ce) = L
1/2cos(n/2n) = 1/\/2. (1+cos(n/n))' if n is odd.
Since T? contains Vz, |T2| = 1/n and
a(V +1) = sin(jn/n) if n is even, 1 <j <n/2
= dwve 1, e J+1 \/2/(1+cos(r/n)) sin(jm/n) if n is odd, 1 <j < (n-1)/2
we get
(3)
d(Tn,Tr.lH) = sin(jn/n)-(2/n) if n 1is even, 1 <j <n/2
= AT, ) > \/ 2/(1+cos(n/n)).sin(jn/n)- (2/n) if n s odd,
<j < (n—1)/2

Set center T = Y?(C"). Then
1 1 e

(4) d(center Trll,center Trzl) = d(center Trll,center T;’)

(1-1/n).sin(n/n) if n is even,
\V2/(1+cos(n/n)). (1-1/n).sin(n/n) if n is odd.

The above formulae imply:
(3")

m1n d(T T ) =

{(1-1/n).sin(1r/n)-1/n if n is even, n > 6,

\V/2/(1+cos(n/m)). [(1-1/n) .sin(r/n)-1/n] if n is odd,
n = 5.

Also using d) of lemma 3 we get, for n > 6,

(5)  (1-1/n).sin(n/n) < sin(2m/n)-(2/n) <

< sin(3n/n)-(2/n) <...<sin(w/2)-(2/n)

And for n odd, n > 5,
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L
(6) \/E/(1+cos(w/n)) . (1-1/n).sin(n/n) <
<:VQ/(1+cos(n/n))'. sin(2w/n) - (2/n) <

<\/2/(1+cos(ﬂ/n))1. sin(3n/n) - (2/n) < ... <
<\/2/(1+cos(w/n)j'. sin((n-1)n/2n) - (2/n).

The first inequality may be verified directly for n=5 and is a
consequence of (5) for n > 6.

a) Let C be a compact convex set of diameter (1-1/n).sin(w/n).
Suppose T? N C # {@}. From (3) and (5) we have that CtﬁT? = {@}
if j # 1,2,n, Thus from symmetry C can only intersect two
elements of {TT,Tg,Tg}. We assume C intersects TT and Tg. Ob-
serve that Hl(T? N Kn) = Hl(Kn)/n. By Theorem 1' we get that

if L is any line in R? then
1
(7) H'(L nK) = 0.

Let L;, L, be two parallel lines at a distance (1-1/n).sin(n/n),
perpendicular to the segment joining the centers of TT, Tg and such
that C C W where W is (see figure 1) the strip

W = C(L1 U L2). Recall that d (center TT, center Tg) =

= (1-1/n).sin(w/n) and observe that the set (Kn N TT) is a
translation of the set (Kn N T;). Then from symmetry and (7)
we obtain: H'((K_ n (T} U T5))-W) > #'(K_)/n. Thus a) follows.
This last argument will be used quite often. Case c) is pro-
ved in an analogous way using (3), (4) and (6).

b) Let n and j be as in b). Let C be a compact convex set of

diameter sin(jn/n)-(2/n). Assume C N T? # {@}. Then from (3)
and (7) we get

0

1 n — 1 n = =
H (Kn N Tj+1 NnNC)=H (Kn N Tj+2 NnNec) = ...

1 n
Ho (K, N Tn-j+l n C).
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Thus we could assume that C intersects in a non-trivial way at
N . n n n 0 .0 n n _
most the sets: Tn-j+2’Tn—j+3’""Tn’Tl’T2’°"’Tj—l’Tj‘ By sym
metry and using this last argument repeatedly we obtain that C
intersects in a non-trivial way at most j elements of {Ti}

and b) follows.

Case d) is proved in a similar way using (3) and (7). u

LEMMA 5. Let n and i be integere. Then
a) w(1-(i/a')y,n) < (1-G/maiyHtx)  ir nz6, i1
b) w(1-(3/n"),n) < (1-(1/n*" 1)K ) <f n>6, i3>
<) w(1-(1/5%),5) < (1-(2/5™).H (K  if i3> 1

d) w(1-(2/5%,5)
) u(1-(3/n),n) < H'(K)/2 if n>6

N

(-(1/571) (K if i 2

£ 1(1-(2/5),5) <H(Kg).2/5

Proof. Let n > 5. It is clear that Hl(Kn N T? 1.‘) =
. _ 131
= #lex )/n* and |TV . | = 1/n*. call n_ := [n/2]. Then
n Jl...Ji o
n n n n n ,,n _
Vl € Tl...l’Vno+1 € ?no+1,...,no+l ’ d(Vl’Vno+l) =1
— h 4
1 1

Let C be a compact convex set of diameter 1-(1/ni). Assume
cn T? 1 # @ . Let Ll’ L2 be two lines perpendicular to
¥ |
.1 .. n n
the line that joins V1 and V“o+1 and such that d(Ll,Lz)
= 1-(1/n') and C C W, where W is the strip between L1 and Lz'

Then since Kn N T? is a translation of Kn N TE

.1 P N
we have, using (7), that .
1 n n 1 i
<
(8) HE(K, n (Ty v Tno+1,...,no+1) nec) <H (K)/n

—— T
i i

N AN
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- . . n j
But a similar expression holds for pairs (Tj...j’Tno+j,..,no+j)
—\— ~ V ‘
i i
j = 2,...,no. If we assume n = 6 then there are at least 3

such pairs and a) is proved. If n=5 there are 2 such pairs and
c) is proved.
e) Let n > 6. Observe that d(T?,TE +j) = 1-(2/n) > 1-(3/n).
o
Thus if C is a convex compact set of diameter 1-(3/n) and

n

CNT, # {@) then CNT . = {@} and e) follows easily.
| n,+j

f) It is easy to check that if C is a convex compact set of
diameter 1-(2/5) and C N T # {@} then H'(CN (T UT}) NK,) = 0.

Using symmetry f) follows.

b) Let i 2 2, n > 5 and let Qg be the intersection (see fig.2)

of the line L joining VT and VE +1 and the line L' perpendi-
o

cular to L such that L' contains the point

n n n n n n
Yl(Yl...Yl(Yn(Vl))...) € Tll. ln°
N — . —
i i
It is easy to check that
1-1 .2 . .
n- . (1-1/n).sin” (n/n) if n is even

non, _ .
dV,Q) = 1\/2/(1+cos(n/n)) . 0. (1-1/n).sin(n/n).sin(r/2n) =
= 2.nl"%, (1-1/n).sin? (n/2n) if n is odd

Let, for n =2 6, C be a compact convex set of diameter 1-(3/n}).

Assume C N TE # {@}. Then, from the fact that

«

otl,...,no+1
V
i

n

n _ i i
ATy 1oTo+1, ... = 17(2/07) > 1-(3/n7)
—— Ve -
i i
we get C N TT 1= {@}. Also by e) (or f) if n is odd) of
VT

1
lemma 3 d(VT,Q?) < 2/nt.
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Since T are translations

n n
11...10 2™ 1o 41, 0L ng+l
N ~ Y
i i
one of the other, we can use an argument similar to the one

used .in a) and get

1 n n 1 i
H (Kn n (Tll...ln v Tno+l,...,no+l) nC) <H (Kn)/n
— ~ \ v
i i
which combined with the fact that C n T} ; = {9} gives
N
1
1 n n n 1 i
(9) H (Kn n (Tl...l UTl...ln UTno+1,...,r10+l ) NC) <H (Kn)/n
1 1 1
. . . n n
Note that if C does not intersect Tl.“1 nor Tno+1,...,no+1
Vv I S
1 1

then (9) holds. b) follows from (9) and the fact that the. sa-
me argument can be repeated for all the triples

n n n . y .
. ., T, .. T . )2 < < -
(TJ---J j...3(-1)’° no+3,...,no+3), J n, (for n odd ob
M M Y
1 1 1

serve that C can only intersect n elements of the form

{Tj...j} j=1,...,n).

~—

_\/-——/
i
Case d) (n=5) is proved in a similar way using

av?,Q®) < z/st. .
1

LEMMA 6. Let i be an integer. Then
a) w(1-(2/3"*1),3) < (1-(1/30)) 0Ky if 1>
b) w(1-01/3%),3) < (1-(5/3" )tk if 1>

¢) w(1-(5/3""1),3) < (1-(2/3M)) M (Ky) i 1>

Proof. Recall that T?l is an equilateral triangle of

<35
base equal to 1/3%.

a) Let 1 =2 1 and let C be a convex compact set of diameter

PN

P
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i+l : 3 3 3 -
1-(2/3%77). Then if Cn (T; [, VT, L UTy )= {0}
i+l i+l i+l

we have

HE(Ry 0 C) < (1-(1/38)) 1 (Ky)

Therefore we may assume C N Ti 1 # {0}.

W—/
i+l
A 3 3 _ 3 3 4 i+l
Since d(Ty  ,T, ) = d(Ty ,T5 4) = 1-(2/37°7)
i+1 i+l S 4l i+l
(see fig.3) we have
1 3 3 . _
HO(Kg 0 (T, VT3 30 NC) =0
i+l i+l

It is not difficult to check that the segment [Pi+1’Qi+1] is

perpendicular to [V?,Vg]. Thus d(P i) > 1-(2/3i+1) and

i+1°V
by an argument similar to that given in lemma 5 a) we have
that
1 3 3 S| i+1
HO(Kg 0 (T, 3 VT, ) PO < H (K /3
‘\/._/ _\I,__I
i+l i+l
and a) follows,

b) Let i 2 1 and C be a convex compact set of diameter

1-(1/3%). Then if C N (Tf LV T; , U Tg ;) = {0} we have
1 1 1

Wk, n o) < (-1/37 L A

Let us suppose that C N Ti 1 # {@}. We have,
ﬂ4
i
by symmetry, only three subcases:

3
b1) CnTy 710}

;_v_/
3i+1 3

b2) C NT; 5= {9y, = 1,2,3;CnT] , = {0},
N —\

i+l i+l
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3
C NT 13 # {0}

——

i+l
B3)  CNT] =0}, 5= 1,2,35 00T, ¢ (0],
i+l i+l
3
cCnTl |, # (0.
i¥1

b1) It is easy to see that (see fig.3)

3 3 3 3 , ) i
d(Ty o7, p) and d(Ty 1Ty | 53) = d(Ty,,Q,,) = 1-(1/3%)

i+l i+l i+l i+l
Thus Hl(K3 N (Tg , Y Tg 23) N C) = 0 and by symmetry
¥_N_.’ ﬂ__/
i+l i+l

1 3 3 oA 3 i+l _

H (K3 N (T3_”3 ) T3..'32).ﬂ C) = 0. Also as d(Vl,R ) =
— Y
i+l i+l

- 1. i 1 3 3 <
1-(1/37) we have that H (K3 N (Tl...l U T2...21) N C)

bv‘_d
. i+l i+l

. o1l iy s
b2) Since d(si+1’Pi+1) = 1-(1/37), it follows that

1 3 3 1 i+1
1 ; .
(10) +#H (Ky n (T U T?'..23) NC) <H (K3)/3

...13
i+l i+l

b3) From b2) one gets (10) again and by symmetry
1 3 3 1. i+l
HE(Ky N(Ty 1 VT, 30) MO <HI(K3)/3
‘_V_-/
i+l i+l
c) Let 1 2 1 and let C be a compact convex set of diameter
1—(5/31+1). We assume C N Tf L7 {0} (if

—_—

cn (Tf LU Tg , UTS ) = {8} then Hl(K3 nc) <
e o Xy
1 1 1

< (1-(1/3i‘1)).H1(K3)).

Then, by symmetry, only two choices are possible:
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cl) C nTi.“l # {@}. Consequently, C N (Tg UTg 3) = {@}.

.2

i+l i i
c2) C N Ti.. ;=18 5= 1,23 ¢n T3 |, # {8}. Then,
'
41 A
1 3 3 3 3 .
HE(Ky N (T3, 3 UTy o, UTy, 53U T) () NC)=0 .
i i+l i+1 41

2.2 PROOF OF THEOREM 5

Recall that property Z holds for Kn n = 3. Thus u(8,n) is
continuous on (0,«). Let f(§,n) = u(s,n)/8§. Then, if 1 < § ,
£(8,n) = H' (K )/8 <H'(K) = £(1,n) <1 (th.3). Therefore to
prove the theorem we must show Hl(Kn) = 1. Observe that any
number 0 < An < ?;? d(Ti,Tj) could be used as A in property A.
Therefore from theorem 3 and 4 we get

i) f(s,n) <1 on (a_,1]

ii") £(6

n) =1 on for some 6 € [A_,1]

o’ o n?

From the continuity of u(é,n) one gets i') and ii') for

. n .n .
A = T;? d(Ti,Tj) ie.
i) £(8,n) <1 on [min d4(T%,TS),1]
it] S
ii) f(8,,n) = 1 for some 6, € [mip d(T?,T?),1]

i#j
We recall formulae (3') of lemma 4
(3")

(1-1/n).sin(r/n)-1/n if n is even, n = 6

min d(T®,T) > < V2/(1+cos(n/n)). [(1-1/n)..sin(n/n)-1/n]
i#j Sl 1 if n is odd, n > 5

and mip d(Ti,T?) = 1/3. Let n be even, n > 8. Define the
17]
functions g(8,n) and h(8,n) as follows:
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([ 1/n if 6§ e [(1-1/n).sin(w/n)-(1/n), (1-1/n).sin(w/n))
) - ‘ 2/n if 8 e [(1-1/n).sin(n/n),sin(2n/n)- (2/1))
ELOM) 9 Geny/m if 8 € [sin(Gn/m)-(2/n),sin((G+1)1/n)-(2/n))
[ and 2 <j < (n/2)-1
(11) { 1-1/n*  if 5§ € [1-1/nY,1-3/m* Yy | i =1,2,...

h(§,n) = 123/ if s e (1-3/ni% -1ty ) i=0,1,2,...
1/2 if § € [1/2,1-3/n)

Then h(8,n) is defined on [1/2,1) and g($§,n) on
[(1-1/n).sin(m/n)-(1/n),1-2/n). Also h(8,n)/8 <1 and by lem-
ma 3 a,b,c) we get g(&,n)/S < 1. By lemmas 5 a,b,e), 4 a,b)

and from the fact that u(8,n) is non decreasing we get

(12) £(8,n)/H (K)) <h(8,n)/6 <1 if &€ [1/2,1)

and
£(6,n)/H (K ) <g(8,n)/6 <1 if

§ € [(1-1/n).sin{(m/n)-(1/n),1-2/n)
and using the continuity of u(é,n)
1 . . n ..n
(13) f(s,n)/H (K)) <1 1if ¢ € [rpln d(Ti,Tj),ﬂ

i#j
Using property ii) above we get Hl(Kn) > 1.

Thus Hl(Kn) = 1 if n is even, n = 8.

The proof of the other cases are similar.

Let n be odd, n = 7. Define h(d,n) as in (11) and

1/n if 6 € [\V2/(1+cos(n/n)).((1-1/n).sin(n/n)-(1/n)),
V2/(1+cos(1/n)). (1-1/n).sin(n/n))
2/n if 8§ € [\VV2/(1+cos(n/n)). (1-1/n).sin(n/n),
\V/2/(1+cos(m/n)).sin(2m/n)-(2/n))
G+ /n if § € [\/2/(1+cos('rr/n))j.sin(jﬂ/n)—(Z/n),
V2/(1+cos(n/n)).sin((j+1)m/n)-(2/n))
2<j < (@-1)/2 -1

g(s,n) =
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g(8,n) is defined on [V2/(1+cos(n/n)). ((1-1/n).sin(r/n)-(1/n)),

\/g/(1+cos(w/n)§.sin((n—1)n/2n)-(Z/n)).

Using lemma 3 a,b,c,d) we get g(8,n)/8 < 1. By lemma 4 c,d) it

follows that f(6,n)/Hl(Kn) < g(8,n)/8 < 1. As we have seen,
lemma 5 a,b,e) implies (12). Thus (13) holds and the proof

ends as in the previous case.
For n=6, h(8,6) is defined as in (11) and

1/6 if § € [(1-1/6).sin(n/6)-1/6,(1-1/6).sin(7w/6))

g(d,6) =<
| 1/3 if 6 € [(1-1/6).sin(7/6),sin(1/3)-1/3]

and the proof runs in a similar way using lemma 3 a),b), lem-
ma 5 a),b),e), and lemma 4 a),b).

For n=5 let

L}
—_
-
N
-

[ 1-2/5%  if s e [1-2/5%,1-1/51) i
T 1-1/5% L i s e p1-1/517 o275y

i}

h(s$,5)

[}
(3]
-
[9]]
-

2/5 if 6 € [2/5,1-2/5)

g(8,5) = 1/5 , if 6 € [V2/(1+cos(1/5)). [(1-1/5).sin(n/5)-1/5],

V2/(1+cos(n/5)). (1-1/5).sin(n/5)] and use lemmas 5 c,d,f),
4c),3a).

For n=3 we define only one function g(8,3) in the following

way
f1-2/3Y  if s e [1-2/73%,1-5/3 ) i >

g(6,3) =< 1-5/37*1 5f s e (1-5/38 1-1/3h) im0
1-1/3%  if s e 11-1/3%,1-2/37h i > 1

Thus g(68,3) is defined on [1/3,1) and this case follows from
lemma 6.
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Case n=3 is considered in [Mn]. Case n=4 may be found in [F]
and [Mn]. The proofs given there are different.

2.3. EXAMPLE 2.

The unique compact set K such that
4
= U
K=,9 YK

where Yi are similitudes of the complex plane defined by
Y, (2) = z2/3; Yz(z) = 2.(1/2+1/3/2) /3+1/3; Y3(z) = z.(1/2-iv/3/2)/3+
(1/2+i/2V/3) ; Y, (z) = z/3+2/3, is the well known Koch curve.
It is not difficult to see that C(K) = c({0,1,1/2+i/2V/3}) and
therefore using int C(K) one can prove that an "open set con-

dition" holds for K. Therefore K is self similar (see [F]).
Moreover s = log 4/log 3.

Alternatively K can be defined with only two similitudes ie.

2

K= U Y'(K

o Y10
where Y} (z) = z.(-V/3/2-1/2)/V/3+(1/2+1/2V/3) ;
Yé(z) = z.(-v3/2+i/2)/V/3+1 (primes will be used to describe
elements that arise from this definition).
Property Z holds for K and therefore u(8) and f£(8) are conti-
nuous. Figure 4 shows how K looks like.
Let C be a compact set of diameter & < 1/3v/3 such that (by
theorem 1) u(8) = H3(C N K). If C intersects T} or T) but

1

not both then using Yi_ (or Yé_l) one can prove that

(n u(s.v3) = (¥/3)5.H%(C N K)

If C intersects both Ti and Té then C can intersect at most

the set {T T T32} (fig.5). But

23’T24’ 31°
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Y(K N (T,5 UT,, UTy UT,,)) = KN {T;; UT;, UT;UT

12 14}
where Y is a similitude with contraction ratio 1. Therefore

one could assume that C only intersects Ti and (1) holds. Thus

we have proved that if & < 1/3/3 then f(§) = £(6§.V/3). There-
fore theorem 4 holds with €; = A, A any number less than

1/3/3 and e, = A.Y3. In fact, in its proof we have only used

the thesis of lemma 2. From this lemma and Th.3 we obtain:
i) £f(8) <1 s € [1/3/3,1/3]

ii) f(8,) = 1 for some §, € [1/3/3,1/3]

We note that property A holds for K for some A << 1/3/3.

Upper and lower bounds for K had been given in [B]

4 -2

0.026 ~ 27 57% < HS(K) <2°7° ~ 0.5995.

In [M 2] an alternative proof of the upper bound was given
and it was conjectured that HS(K) = 2872,

s-2

But we shall see

that indeed H®(X) < 2

Now to get a lower bound for H®(K) we need to compute hr'

The following is a table of a function h, which is an

2

52(6/16) = 1/3/3 ﬂ2(9/16) ~ 0.29397
ﬂ2(7/16) = 2/9 52(10/16) = 1/3
£2(8/16) = 2/9 ﬁ2(11/16) = 4/9

approximation of h2. We recall the definition of h,:

hz(a) = min ( max 4d(T',T"))
BeG, T,T'eB

where d(.,.) is the usual distance between sets.

Let p, = 0, P, = 1, Py = 1/2+i/2V3 , p, = 173, Py = 2/3 ,

Pg = 1/6+i/6V3 , P, = 1/3+i/3V3 , Pg = 2/3+i/3V/3 ,
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= 5/6+i = T. . =T, . .
Py /6+i/6vV3 and T T1112’ T TJIJZ Then set

d(r,r') = min d(Y. Y. , Y. o Y.
( ) o (Yj,° 12(pk) i 32(pm))

and define iz in the following way:
hy(a) = min ( max d(T,T'))

Becg T,T'eB

Notice that a(F,F') - 1/54 <4(r,r') < a(F,F'). Therefore

~

h2 1= h2 - 1/54 < h2 <h,
and if we define 52(6) := max {a: iz(a) < 8§} then U, < ﬁz.
h2 and ﬂz are non decreasing. (This is a general fact: Hr and

hr are non decreasing functions if ki = k1 for all i). To com-
pute the supremum of 62 on [1/3/3,1/3] we do not need all the

values of ﬂz but only those displayed in the table above.
From i,ii) above and theorem 2 a) we get
< H°(K)

where B, = sup UZ(G)/GS ; B2 = sup UZ(G)/GS. Using the
8el1/3V/3,1/3] se[1/3v/3,1/3]

table it is easy to compute ﬁz' We have ﬁz ~ 3.723 and

0.26 < H°(K)
212 Y T3 Y

2 YTyp3 UTyyUTyg UTygy UTy33 UTy, VT,

We compute now an upper bound. Observe that Q = (T

uT V) T221 uT V)

214 22

uT uT uT uT uUT uT uT

244 311 314

U Tgp, UTyyy YTy UTggy UTyyUTy ) UTy, 5 UTy 5} has diameter

§' =V (292/243) /3 =~ 0.36539 (see fig.6) and that

H®(Q N K) = (30/64)H°(K).

UTyp UTyus 312Y 1313 321 Y T3pp U T35 Y

Therefore
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30.H3(K)/(64.8'%) < nu(8')/s6'S <1

ie. H(K) < 0.5989 < 0.5995 ~ 2572,

The numbers displayed in example 2 are all exact up to the
last digit.

Figure 1
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le‘(. ) .le‘(Yg(v‘;)) o))

n
(n-1)/2+1

Figure 2
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Figure 3
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Figure 5

§' = d(Pl,Pz)

Figure 6
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