ON THE MEASURE OF SELF-SIMILAR SETS

PABLO A. PANZONE

ABSTRACT. We exhibit a method by which we can approximate the Hausdorff measure of self-similar sets of a certain class.

0. INTRODUCTION. In 1. we show a procedure for approximating the measure of certain self-similar sets. In 2. we use these methods to show that if K is the Koch curve then

 $0.26 \le \text{H}^{8}(\text{K}) \le 0.5989 < 2^{\text{s-2}}$, s = log4/log3 (example 2). We also calculate the measure of some "regular" self-similar sets in R² (see example 1, Th.5). This application contains as particular cases some well known results.

Despite the fact that we repeat arguments and use ideas borrowed from the works of Hutchinson [H] and Marion [M 1], on the whole the method shown seems to be new.

1. THE FUNCTION $\mu.$ The Hausdorff metric is defined on the collection of all non empty compact subsets of R^n by

$$d_{H}(E,F) = \inf \{t: F \subset [E]_{t} \text{ and } E \subset [F]_{t}\}$$

where [E]_t = {x ∈ Rⁿ: $\inf_{y \in E} ||x-y|| = d(x,E) \le t$ } and $||\cdot||$

 $(d(\cdot,\cdot))$ is the usual norm (distance). We shall write $F_{j} \xrightarrow{H} K$ instead of $d_{H}(F_{j},K) \xrightarrow[j \to \infty]{} 0$.

We state here the well-known selection theorem due to Blaschke: Let F be an infinite collection of non empty compact sets all lying in a bounded portion B of R^n . Then there exists a sequence $\{F_j\}$ of distinct sets of F convergent in the Hausdorff metric to a non-empty compact set K, (cf. [F], pg.37).

|A| denotes the diameter of a set $A \subset R^n$ and $H^s(\cdot)$ its s-Hausdorff measure (cf. [F]).

A convex body is a compact convex set with non-empty interior.

The following is a corollary of Blaschke's theorem.

LEMMA 1. Let $\textbf{F}_{\mathtt{i}}$ be a sequence of compact convex non-empty sets of \textbf{R}^n such that

- a) $\lim_{i \to \infty} |F_i| = \alpha > 0$
- b) There exists a compact convex set F such that $\text{F}_{i} \subset \text{F}$ for all i

Then there exists exists a subsequence Fi such that

- i) $F_{i} \xrightarrow{H} K$, K compact and convex
- ii) $|K| = \alpha$
- iii) $K \subset F$

Proof. By the mentioned Blaschke selection theorem we know that there is a subsequence $F_{i_{\hat{j}}}$ such that $F_{i_{\hat{j}}} \xrightarrow{H} K$ where K is a non-empty compact set. Obviously K \subset F. As $F_{i_{\hat{j}}} \xrightarrow{H} K$, we have $d_H(F_{i_{\hat{j}}},K) < \epsilon_{\hat{j}}$ with $\epsilon_{\hat{j}} \to 0$. But then $K \subseteq [F_{i_{\hat{j}}}]_{\epsilon_{\hat{j}}}$ for all j (notice that $[F_{i_{\hat{j}}}]_{\epsilon_{\hat{j}}}$ are compact convex sets) and

$$|[F_{i_j}]_{\epsilon_j}| \longrightarrow \alpha$$

Thus $|K| \leq \alpha$. Suppose that $|K| < \alpha$. Since $F_{i_j} \subset [K]_{\varepsilon_j}$ we have $|F_{i_j}| \leq |K|_{\varepsilon_j}$, and letting $j \to \infty$ we arrive at a contradiction. This proves ii) and iii).

We now prove that K is the convex set $\cap [F_{i_j}]_{\epsilon_j}$. Observe that

 $[F_{i_{\dot{1}}}]_{\epsilon_{\dot{1}}}$ tends to K in the Hausdorff metric because

$$d_{H}(K, [F_{i_{j}}]_{\epsilon_{j}}) \leq d_{H}(K, F_{i_{j}}) + d_{H}(F_{i_{j}}, [F_{i_{j}}]_{\epsilon_{j}})$$

Thus given $\epsilon > 0$ there exists j₀ such that

$$[F_{i_j}]_{\epsilon_j} \subset [K]_{\epsilon} \quad \text{if} \quad j \geq j_0$$

Then $\cap [F_i]_{ij} \subset K$. The inclusion $K \subseteq \cap [F_i]_{ij} \in K$ was already established. This finishes the proof of the lemma.

Let K be a compact set in \mathbb{R}^n such that $\mathbb{H}^s(\mathbb{K}) < \infty$ (s > 0). Define for $\delta > 0$:

 $\mu(\delta) := \sup \{ \textit{H}^{s}(K \cap C); \ C \ convex \ compact \ and \ |C| = \delta \}$ This function is a basic tool in our method.

THEOREM 1. $\mu(\delta)$ is continuous from the right and non-decreasing. For any $\delta>0$, $\mu(\delta)=H^{\mathbf{S}}(K\cap C_{\delta}^{\mathbf{o}})$ where $C_{\delta}^{\mathbf{o}}$ is a particular compact convex set of diameter δ .

Moreover if for any compact convex set C we have

$$H^{s}(K \cap \partial C) = 0$$

then $\mu(\delta)$ is continuous.

Proof. From the definition of $\mu(\delta)$ we know that there exists a sequence C^i of compact convex sets of diameter δ , all lying in a bounded portion of R^n , such that

$$\mu(\delta) = \lim_{i \to \infty} H^{s}(K \cap C^{i})$$

By lemma 1 there exists a compact convex set C^o_δ of diameter δ and a subsequence C^{ij} of C^i such that

$$C^{ij} \xrightarrow{H} C^{o}_{\delta}$$

But $\mu(\delta) \ge H^s(K \cap C_{\delta}^o) = \lim_{k \to \infty} H^s(K \cap [C_{\delta}^o]_{1/2}k)$ and

 $C^{ij} \subset [C^o_{\delta}]_{1/2} k$ if i_j is large enough and k fixed. Then $\mu(\delta) = H^s(K \cap C^o_{\delta})$.

From this one easily gets that $\mu(\delta)$ is non-decreasing.

Let $\delta_o > 0$ and $\delta_i > 0$; $i = 1,2,3,\ldots$, $\delta_i \to \delta_o$. Then $\mu(\delta_j) = \mathcal{H}^s(K \cap C^o_{\delta_j}) \quad \text{if} \quad j = 0,1,2,3,\ldots$

with $C_{\delta_j}^o$ a compact convex set of diameter δ_j lying in a bounded portion of R^n .

By lemma 1 there exists a subsequence of $C^o_{\delta_j}$, which we denote in the same way, such that $C^o_{\delta_j} \xrightarrow{H} C^o$, where C^o is a compact convex set of diameter δ_o .

But $H^{s}(K \cap C^{o}) = \lim_{i \to \infty} H^{s}(K \cap [C^{o}]_{1/2}i)$ and $H^{s}(K \cap [C^{o}]_{1/2}i) \ge H^{s}(K \cap C^{o}_{\delta_{j}}) = \mu(\delta_{j})$ if i is fixed and $j \ge j(i)$. Thus $\overline{\lim_{j \to \infty} \mu(\delta_{j})} \le H^{s}(K \cap C^{o}) \le \mu(\delta_{o}).$

This proves that $\mu(\delta)$ is continuous from the right.

We show now that if for any compact convex set C

$$H^{s}(K \cap \partial C) = 0$$

then $\mu\left(\delta\right)$ must be continuous.

Recall $\mu(\delta_o) = H^s(K \cap C_{\delta_o}^o)$, $C_{\delta_o}^o$ a compact convex set of diameter δ_o .

If $C^o_{\delta_o}$ is not a convex body then $C^o_{\delta_o}=\partial C^o_{\delta_o}$ and by hypothesis $\mu(\delta)=0\quad \text{if}\quad \delta\leqslant \delta_o$

Therefore $\mu(\delta)$ is continuous from the left at δ_0 .

Assume $C_{\delta_0}^{o}$ is a convex body.

Let $]C_{\delta_o}^o[_{\epsilon} = \{x: d(x,R^n \setminus C_{\delta_o}^o) > \epsilon\}.$ Thus from the hypothesis we get

$$\mu(\delta_{o}) = H^{s}(K \cap C_{\delta_{o}}^{o}) = H^{s}(K \cap \partial C_{\delta_{o}}^{o}) + H^{s}(K \cap int(C_{\delta_{o}}^{o})) =$$

$$= H^{s}(K \cap int(C_{\delta_{o}}^{o})) = \lim_{i \to \infty} H^{s}(K \cap C_{\delta_{o}}^{o}) + H^{s}(K \cap int(C_{\delta_{o}}^{o})) =$$

This implies the continuity of $\mu(\delta)$ at δ_0 .

A mapping Y: $R^n \to R^n$ is called a contraction if $\|Y(x) - Y(y)\| \le \|x - y\|$ for all $x, y \in R^n$, where 0 < k < 1. Clearly a contraction is a continuous function. A contraction that transforms every subset of R^n to a geometrically similar set is called a similitude. Thus a similitude is a composition of a dilatation, a rotation and a translation.

Let Y_i i = 1,...,m be a set of similitudes with contraction ratios k_i . We know that there exists a unique non-void compact set K such that $K = \bigcup_{i=1}^{m} Y_i(K)$ (see [F]). We assume also the following (s is the Hausdorff dimension of K):

I)
$$0 < H^s(K) < \infty$$
 $(s > 0)$

II)
$$H^{s}(Y_{i}(K) \cap Y_{j}(K)) = 0$$
 if $i \neq j$

Such a K will be called a self-similar set.

Notice that if K is a self-similar set then the following equality holds:

$$\sum_{i=1}^{m} k_i^s = 1.$$

By C(A) we denote the convex hull of a set A.

Let K be a self-similar set. It is clear that $Y_i(C(K)) \subset C(K)$ for all i. We rename the sets $Y_{i_1} \circ \ldots \circ Y_{i_q}(C(K))$ in the following way: C(K) is called T, $Y_i(C(K))$ is called T_i ,

$$Y_i \circ Y_j (C(K)) = Y_i(Y_j(C(K))) = T_{ij}, \text{ etc.}$$

Fix $r \ge 1$. Set $G_r := \{T_{i_1 \dots i_r}; i_j = 1, \dots, m\}$. G_r has m^r elements. Notice $Y_{i_1} \circ \dots \circ Y_{i_r} \circ Y_{i_{r+1}}(K) \subset T_{i_1 \dots i_r i_{r+1}} \subset T_{i_1 \dots i_r}$.

PROPERTY Z. Let K be self-similar. We say that K has property Z if there exists an index i_1 ... i_{r_0} such that

$$T_{i_1, \dots i_{r_0}} \subset int C(K).$$

THEOREM 1'. Let K be a self-similar set having the property Z. Then for any compact convex set C we have

$$H^{s}(K \cap \partial C) = 0$$

and $\mu(\delta)$ is continuous.

For the proof we need two auxiliary propositions:

PROPOSITION 1. Let C_1, C_2 be two compact convex sets such that $C_2 \subset [C_1]_{\varepsilon}$ for some $\varepsilon > 0$. If $p \in C_2$, $p \notin int C_1$ then $d(p, \partial C_2) \leq \varepsilon$.

Proof. Left to the reader.

PROPOSITION 2. If the hypotheses of the theorem 1' hold for K then C(K) is a convex body and the following statement is true: there exist $\varepsilon_0>0$ and an integer number $r_1\ (\geqslant r_0,\ r_0$ of property Z) such that for all convex compact sets C and all $t\leqslant \varepsilon_0$ the set

$$[\partial C]_{t} = \{p: d(p, \partial C) \leq t\}$$

does not intersect all elements of G_{r_1} .

Proof. Let r_1 be such that $r_1 \ge r_0$ and

(1) Max diameter of elements of $G_{r_1} = (\max k_i)^{r_1} \cdot |K| < d(\partial C(K), T_{i_1...i_{r_0}})/2$.

Let $\epsilon_c = (\max k_i)^{r_1} \cdot |K|/2$. Take all elements Γ of G_{r_1} such that $\Gamma \cap \partial C(K) \neq \{\emptyset\}$. Call this set G'_{r_1} . Observe that

(2)
$$C(\cup \Gamma) = C(K).$$

$$\Gamma \varepsilon G'_{r_1}$$

Let C be a compact convex set and assume that $[\partial C]_{\mathfrak{E}_0}$ intersects all elements of $G_{\mathbf{r}_1}$. For each set $\Gamma \in G'_{\mathbf{r}_1}$ take a point $q_j \in \Gamma \cap [\partial C]_{\mathfrak{E}_0}$. Thus $C(\bigcup_j q_j) \subset [C]_{\mathfrak{E}_0}$ and $C(\bigcup_j q_j) \subset C(K)$. But by (1) and (2) $C(K) \subset [C(\bigcup_j q_j)]_{2\mathfrak{E}_0}$. Using prop.1 we have that if $p \in C(K)$, $p \notin \text{int } C(\bigcup_j q_j)$ then

(3)
$$d(p, \partial C(K)) \leq 2\varepsilon_0.$$

Therefore $T_{i_1 \cdots i_{r_0}} \subset \text{int } C(\bigcup_j q_j)$. By (1) and (3)

(4')
$$d(T_{i_1...i_{r_0}}, \partial C(\bigcup_j q_j)) > 2\varepsilon_0.$$

For $p \in \partial C \cap C(\bigcup_i q_i)$ we have by proposition 1:

$$d(p, \partial C(\bigcup_{i} q_{j})) \leq \varepsilon_{o}.$$

Since $d(p,T_{i_1...i_{r_0}}) \ge d(q,T_{i_1...i_{r_0}}) - d(p,q)$ holds for any q, taking $q \in \partial \mathcal{C}(\bigcup_j q_j)$ we get $d(p,T_{i_1...i_{r_0}}) > 2\varepsilon_o - \varepsilon_o = \varepsilon_o$. This, together with (4') yields

$$d(\partial C, T_{i_1 \dots i_{r_0}}) \geq d(\partial C(\bigcup_j q_j), T_{i_1 \dots i_{r_0}}) - \epsilon_o > \epsilon_o.$$

Thus one obtains $d(T_{i_1\cdots i_{r_0}}, \partial C) > \epsilon_o$ and therefore $[\partial C]_{\epsilon_o}$ cannot intersect $T_{i_1\cdots i_{r_0}}$.

The proof is completed if we notice that there are elements of G_{r_1} contained in $T_{i_1} \dots i_{r_0}$.

Proof of Theorem 1'. Let C be a convex compact set and t > 0. We define

$$W(t,C) := H^{s}(K \cap [\partial C]_{+}).$$

Suppose t $< \epsilon_0$. Then

(5)
$$W(t,C) \leq \Sigma' H^{s}(Y_{i_{1}}(\ldots(Y_{i_{r_{1}}}(K))\ldots) \cap [\partial C]_{t})$$

where Σ' means the sum over all indexes $i_1...i_{r_1}$ such that $T_{i_1...i_{r_1}} \cap [\partial C]_t \neq \{\emptyset\}.$

But

(6)
$$H^{s}(Y_{i_{1}}(...(Y_{i_{r_{1}}}(K))...) \cap [\partial C]_{t}) =$$

$$= k_{i_{1}}^{s}.....k_{i_{r_{1}}}^{s}.H^{s}(K \cap [\partial C^{i_{1}...i_{r_{1}}}]_{t/k_{i_{1}}...k_{i_{r_{1}}}})$$

where $C^{i_1 \dots i_{r_1}}$ is a convex compact set. More precisely

$$C^{i_1 \cdots i_{r_1}} = Y^{-1}_{i_{r_1}} (\dots (Y^{-1}_{i_1}(C)) \dots).$$

Using (5), (6), the identity Σ $k_{i_1}^s \dots k_{i_{r_1}}^s = 1$ and prop.2 we have

$$W(t,C) \leq (\Sigma' k_{i_1}^s ... k_{i_{r_1}}^s) . H^s(K \cap [\partial C']_{t/(\min k_i)} r_1) \leq r.s$$

$$\leq (1 - (\min k_i)^{r_1 s}).W(t/(\min k_i)^{r_1},C')$$

where C' is one of the convex sets $C^{i_1 \cdots i_{r_1}}$.

Thus we have proved that there exists $\epsilon_o>0$, an integer r_1 and a fixed α , $0<\alpha<1$, such that for any compact convex set C and any $t<\epsilon_o$ there is a compact convex set C' such that

(7)
$$W(t,C) \leq \alpha.W(t/(\min k_i)^{r_1},C').$$

Using (7) and the fact that $W(t,C) \le H^s(K) < \infty$ for any C and t > 0, we get

$$\lim_{t\to 0} W(t,C) = 0.$$

COROLLARY 1. The Lebesgue measure of the boundary of a compact convex set in \mathbb{R}^n is equal to zero.

To prove this well know fact take K as an hypercube and apply Theorem 1'.

REMARK 1. Let K be a self-similar set. Suppose that property ${\tt Z}$ does not hold, then it is easy to see that

(int
$$C(K)$$
) $\cap K = {\emptyset}$ ie. $K \subset \partial C(K)$.

1.1. THE FUNCTIONS u, \tilde{U} .

Now we define functions u, U and \widetilde{U} which approximate in some sense the function μ . For defining these functions we need other auxiliary functions.

Recall that G_r is the set of all possible $T_{i_1...i_r}$ with $r \ (\ge 1)$ fixed.

Let $P(G_r)$ be the family of nonvoid subsets of G_r . Define $J_r\colon P(G_r) \to R$ in the following way:

if $\{T_{i_1...i_r},...,T_{j_1...j_r}\}$ is an element of $P(G_r)$ then $J_r(\{T_{i_1...i_r},...,T_{j_1...j_r}\})$:=

$$:= (k_{i_1}^s, \ldots, k_{i_r}^s) + \ldots + (k_{j_1}^s, \ldots, k_{j_r}^s).$$

It is not difficult to check that J_r $(P(G_r))$ is a finite set of points of R such that if $\alpha \in J_r$ $(P(G_r))$ then $0 < \alpha \le 1$, and $1 \in J_r(P(G_r))$. Also $J_r(P(G_r)) \subset J_{r+1}(P(G_{r+1}))$ for all $r \ge 1$. Besides, for each $\epsilon > 0$ there exists $r_o \ge 1$ such that for all $r \ge r_o$, if $x \in [0,1]$ then there exists $\alpha \in J_r(P(G_r))$ such that $|x-\alpha| < \epsilon$.

We shall define functions H_r , h_r on the set $J_r(P(G_r))$, ie.

$$H_r, h_r: J_r(P(G_r)) \longrightarrow R.$$

Let $\alpha \in J_r(P(G_r))$, we define

$$G_r^{\alpha} := J_r^{-1}(\alpha)$$

and

$$H_{\mathbf{r}}(\alpha) := \min_{\beta \in G_{\mathbf{r}}^{\alpha}} (\max_{\Gamma, \Gamma' \in \beta} |\Gamma \cup \Gamma'|) =$$

$$= \min_{\beta \in G_{\mathbf{r}}^{\alpha}} (\text{diameter of } \beta) ;$$

$$\begin{array}{lll} \boldsymbol{h}_{\boldsymbol{r}}(\alpha) & := & \min_{\beta \in \boldsymbol{G}^{\alpha}_{\boldsymbol{r}}} & (\max_{\Gamma, \Gamma' \in \beta} \boldsymbol{d}(\Gamma, \Gamma')) \end{array}$$

where $d(\cdot, \cdot)$ is the distance between sets. Remember that Γ, Γ' are elements of the form $T_{i_1 \dots i_r}$.

From the definitions of H_r and h_r it is clear that $h_r(\alpha) \leq \|H_r(\alpha)\| \leq \|H_r(\alpha)\| \leq \|K\|$ and $H_r(1) = \|K\|$. It is not difficult to see that $H_r(\alpha) - h_r(\alpha) < \epsilon$ for all $\alpha \in J_r(P(G_r))$ if r is big enough. Also $H_{r+1}(\alpha) \leq H_r(\alpha)$.

Let $0 < \epsilon_1 < \epsilon_2$. We define functions U_r , \tilde{U}_r and u_r which approximate $\mu(\delta)$ on $[\epsilon_1, \epsilon_2]$.

Let

$$\begin{aligned} & \mathbf{U_r}(\delta) &:= \max \; \{\alpha \colon \; \mathbf{h_r}(\alpha) \; \leqslant \; \delta \} \; \text{,} \\ & \mathbf{u_r}(\delta) &:= \max \; \{\alpha \colon \; \mathbf{H_r}(\alpha) \; \leqslant \; \delta \}. \end{aligned}$$

Thus $U_{\mathbf{r}}(\delta)$ is defined for $\delta \geqslant \min_{\alpha \in J_{\mathbf{r}}(P(G_{\mathbf{r}}))} h_{\mathbf{r}}(\delta)$ is defined for $\delta \geqslant \min_{\alpha \in J_{\mathbf{r}}(P(G_{\mathbf{r}}))} h_{\mathbf{r}}(\delta)$

ned for $\delta \geqslant \min \ H_{\mathbf{r}}(\alpha).$ It is easy to see that there exist $\alpha \epsilon J_{\mathbf{r}}(P(G_{\mathbf{r}}))$

 r_o and $\alpha \in J_{r_o}(P(G_{r_o}))$ such that $H_{r_o}(\alpha) < \epsilon_1$. Thus U_r and u_r are defined on $[\epsilon_1, \infty)$ if $r \ge r_o$.

Let
$$\tilde{h}_r(\alpha) := H_r(\alpha) - ((\max k_i)^r . |K|.2)$$
 and

 $\tilde{U}_r(\delta) := \max \{\alpha : \tilde{h}_r(\alpha) \leq \delta\}.$ Thus $\tilde{U}_r(\delta)$ is defined for $\delta \ge \min_{\alpha \in J_r(P(G_r))} H_r(\alpha) - ((\max_i)^r.|K|.2).$

Moreover $u_r(\delta + ((\max k_i)^r.|K|.2)) = \tilde{U}_r(\delta)$ and therefore \tilde{U}_r is defined on $[\varepsilon_1,\infty)$ if $r \ge r_0$.

All functions $u_r(\delta)$, $U_r(\delta)$ and $\tilde{U}_r(\delta)$ are jump functions with a finite number of jumps, continuous from the right non-decreasing and positive.

The following theorem shows how the above functions are related among them and with $\mu(\delta)$.

THEOREM 2. Let K be a self-similar set and $u_r(\delta)$, $U_r(\delta)$, $\tilde{U}_r(\delta)$ as above. Then

- a) $u_r(\delta)/\delta^s \leq \mu(\delta)/(\delta^s.H^s(K)) \leq U_r(\delta)/\delta^s \leq \tilde{U}_r(\delta)/\delta^s$ for $\delta \geq \min \{H_r(\alpha); \alpha \in J_r(P(G_r))\}.$
- b) $|\tilde{\mathbb{U}}_{\mathbf{r}}(\delta) \mathbb{U}_{\mathbf{r}}(\delta)| \longrightarrow 0$ uniformly on $[\varepsilon_1, \varepsilon_2]$ as $\mathbf{r} \to \infty$ if $\mu(\delta)$ is continuous on $(0, \infty)$.
- c) $\lim_{r \to \infty} (\sup_{\delta \in [\epsilon_1, \epsilon_2]} u_r(\delta)/\delta^s) = \lim_{r \to \infty} (\sup_{\delta \in [\epsilon_1, \epsilon_2]} \widetilde{U}_r(\delta)/\delta^s) = \lim_{r \to \infty} (\sup_{\delta \in [\epsilon_1, \epsilon_2]} \widetilde{U}_r(\delta)/\delta^s)$
 - = $(\sup_{\delta \in [\epsilon_1, \epsilon_2]} \mu(\delta)/\delta^s)/H^s(K)$ if $\mu(\delta)$ is continuous at ϵ_2 .
- d) b) and c) hold if we replace \tilde{U}_r by U_r .

Proof. We show first that

$$\mathbf{u}_{\mathbf{r}}(\delta) \leqslant \mu(\delta)/\mathbf{H}^{\mathbf{S}}(\mathbf{K}) \leqslant \mathbf{U}_{\mathbf{r}}(\delta) \quad \text{if} \quad \delta \geqslant \min_{\alpha \in \mathbf{J}_{\mathbf{r}}(\mathbf{P}(G_{\mathbf{r}}))} \mathbf{H}_{\mathbf{r}}(\alpha).$$

From theorem 1 we know that $\mu(\delta) = H^s(C^o_\delta \cap K)$ where C^o_δ is a compact convex set of diameter δ . But C^o_δ interesects 1 elements of G_r : $T_{i_1 \dots i_r}, \dots, T_{j_1 \dots j_r}$.

Then, because of the self-similarity of K:

$$\mu(\delta) = H^{s}(C_{\delta}^{o} \cap K) \leq [(k_{i_{1}}...k_{i_{r}})^{s} + ... + (k_{j_{1}}...k_{j_{r}})^{s}].H^{s}(K) =$$

$$= \alpha.H^{s}(K).$$

Also $h_r(\alpha) \leq |C_{\delta}^0| = \delta$. Then $\mu(\delta) \leq U_r(\delta) \cdot H^s(K)$.

To prove the remaining inequality let $u_r(\delta) = \alpha$. Then $H_r(\alpha) \leq \delta$ and there exist 1 elements of G_r , say $T_{i_1...i_r}, ..., T_{j_1}...j_r$, such that

i)
$$J_r(\{T_{i_1...i_r},...,T_{j_1...j_r}\}) = \{k_{i_1}...k_{i_r}\}^s + ... + (k_{j_1}...k_{j_r})^s = \alpha.$$

ii)
$$H_r(\alpha) = |T_{i_1 \dots i_r} \cup \dots \cup T_{j_1 \dots j_r}|.$$

Using $H^s(Y_i(K) \cap Y_j(K)) = 0$ if $i \neq j$ it follows that $u_r(\delta) \leq \mu(\delta)/H^s(K)$.

Now we prove that $U_r(\delta) \leq U_r(\delta)$ if $\delta > \min_{\alpha \in J_r(P(G_r))} H_r(\alpha)$.

For this we only have to prove that $h_r(\alpha) \leq h_r(\alpha)$ if $\alpha \in J_r(P(G_r))$. Fix α . From the definition of $h_r(\alpha)$ we then have 1 elements of G_r , say $T_{i_1...i_r}, ..., T_{j_1...j_r}$, such that

i)
$$J_r(\{T_{i_1...i_r},...,T_{j_1...j_r}\}) = \alpha$$

ii)
$$h_r(\alpha) = \max_{\Gamma, \Gamma' \in \{T_{i_1}, \dots, T_{j_1}, \dots, j_r\}} (d(\Gamma, \Gamma'))$$

where $d(\cdot,\cdot)$ is the distance between sets.

But any element of $\{T_{i_1...i_r},...,T_{j_1...j_r}\}$ has diameter less than or equal to $(\max k_i)^r.|K|$. Thus

$$|T_{i_1...i_r} \cup ... \cup T_{j_1...j_r}| \leq h_r(\alpha) + (\max k_i)^r.|K|.2$$

and therefore $H_r(\alpha) \leq h_r(\alpha) + (\max k_i)^r \cdot |K| \cdot 2$ ie. $\tilde{h}_r(\alpha) \leq h_r(\alpha)$. This proves a).

To prove c) we need the following: if $\mu(\delta)$ is continuous at ε_2 , then $\lim_{r\to\infty} u_r(\varepsilon_2) = \mu(\varepsilon_2)/\text{H}^s(K)$. Suppose this is not true, then for some $\varepsilon>0$ and a subsequence r_1

$$u_{r_{\dot{1}}}(\epsilon_2) < (\mu(\epsilon_2)/H^s(K)) - \epsilon.$$

But then

$$\begin{split} \mu(\varepsilon_2 - ((\max \ k_i)^{r_j} \cdot |K| \cdot 2)) / & H^s(K) \leq \tilde{U}_{r_j}(\varepsilon_2 - ((\max \ k_i)^{r_j} \cdot |K| \cdot 2)) = \\ & = u_{r_i}(\varepsilon_2) < \mu(\varepsilon_2) / H^s(K) - \varepsilon \end{split}$$

which is, for $j \rightarrow \infty$ an absurd.

Let $\varepsilon > 0$. Let \mathbf{r}_1 be such that $\mu(\varepsilon_2 + ((\max k_i)^{r_1} \cdot |\mathbf{K}| \cdot 2))$ - $-\mu(\varepsilon_2) < \varepsilon \cdot H^s(\mathbf{K})$, $\mu(\varepsilon_2) / H^s(\mathbf{K}) - \mathbf{u}_r(\varepsilon_2) < \varepsilon$ if $r \geqslant r_1$ and $|1/x^s - 1/y^s| < \varepsilon$ if $|x - y| \leqslant ((\max k_i)^{r_1} \cdot |\mathbf{K}| \cdot 2)$ and $x, y \in [\varepsilon_1, \infty)$.

Let
$$\tau = \sup_{\delta \in (0, \epsilon_2]} \mu(\delta) / H^s(K)$$
.

Now we prove c). Due to the fact that \tilde{U}_r is non-decreasing and continuous from the right we have that $\sup_{\delta \in [\epsilon_1,\epsilon_2]} \tilde{U}_r(\delta)/\delta^s$ is

taken on a particular point δ_0 of $[\epsilon_1, \epsilon_2]$.

Thus if $r \ge r_1$ we have

$$\sup_{S \in [\varepsilon_1, \varepsilon_2]} \widetilde{U}_r(\delta) / \delta^s = \widetilde{U}_r(\delta_0) / \delta^s_0 = u_r(\delta_0 + ((\max_i)^r . |K|.2)) / \delta^s_0.$$

There are two possibilities: $(\delta_0 + ((\max k_i)^r . |K|.2)) = \delta_0'$ belongs to $[\epsilon_1, \epsilon_2]$ or not.

Suppose that it belongs. Then

$$\mathbf{u}_{\mathbf{r}}(\delta_{o}^{!})/\delta_{o}^{s} = \mathbf{u}_{\mathbf{r}}(\delta_{o}^{!}) \cdot (1/\delta_{o}^{s} - 1/\delta_{o}^{!}) + \mathbf{u}_{\mathbf{r}}(\delta_{o}^{!})/\delta_{o}^{!} \leq \tau.\varepsilon + \sup_{\delta \in [\varepsilon_{1}, \varepsilon_{2}]} \mathbf{u}_{\mathbf{r}}(\delta)/\delta^{s}.$$

If δ_o' does not belong to $[\epsilon_1, \epsilon_2]$ then

$$\begin{split} \mathbf{u}_{\mathbf{r}}(\delta_{\mathbf{o}}^{'})/\delta_{\mathbf{o}}^{\mathbf{s}} &= ((\mathbf{u}_{\mathbf{r}}(\delta_{\mathbf{o}}^{'}) - \mathbf{u}_{\mathbf{r}}(\boldsymbol{\varepsilon}_{2}))/\delta_{\mathbf{0}}^{\mathbf{s}}) + \mathbf{u}_{\mathbf{r}}(\boldsymbol{\varepsilon}_{2}) \cdot (1/\delta_{\mathbf{o}}^{\mathbf{s}} - 1/(\boldsymbol{\varepsilon}_{2})^{\mathbf{s}}) + \\ &+ \mathbf{u}_{\mathbf{r}}(\boldsymbol{\varepsilon}_{2})/(\boldsymbol{\varepsilon}_{2})^{\mathbf{s}} \leq 2 \cdot \boldsymbol{\varepsilon}/(\boldsymbol{\varepsilon}_{1})^{\mathbf{s}} + \tau \cdot \boldsymbol{\varepsilon} + \sup_{\boldsymbol{\delta} \boldsymbol{\varepsilon} \left[\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}\right]} \mathbf{u}_{\mathbf{r}}(\boldsymbol{\delta})/\boldsymbol{\delta}^{\mathbf{s}}. \end{split}$$

Thus c) is proved.

We end the proof of theorem 2 proving that b) holds.

Suppose that $\tilde{U}_r(\delta) - u_r(\delta)$ does not tend to zero uniformly on $[\epsilon_1, \epsilon_2]$. Then we would have a sequence of points $\delta_j \in [\epsilon_1, \epsilon_2]$ and a sequence $r_j \to \infty$, such that

$$0 < \theta \leqslant \tilde{\mathbb{U}}_{r_{j}}(\delta_{j}) - \mathbf{u}_{r_{j}}(\delta_{j}) = \mathbf{u}_{r_{j}}(\delta_{j} + \mathbf{q}_{j}) - \mathbf{u}_{r_{j}}(\delta_{j})$$

where $q_j := (\max k_i)^{r_j} . |K|.2$. Then

$$\begin{split} &\mu(\delta_{\mathbf{j}}+q_{\mathbf{j}})/\textit{H}^{\mathbf{s}}(K) - \mu(\delta_{\mathbf{j}}-q_{\mathbf{j}})/\textit{H}^{\mathbf{s}}(K) = \mu(\delta_{\mathbf{j}}+q_{\mathbf{j}})/\textit{H}^{\mathbf{s}}(K) \stackrel{+}{=} u_{\mathbf{r}_{\mathbf{j}}}(\delta_{\mathbf{j}}+q_{\mathbf{j}})^{\pm} \\ &\pm \tilde{U}_{\mathbf{r}_{\mathbf{j}}}(\delta_{\mathbf{j}}-q_{\mathbf{j}}) - \mu(\delta_{\mathbf{j}}-q_{\mathbf{j}})/\textit{H}^{\mathbf{s}}(K) \geqslant \theta \text{ for all j and this contra-} \end{split}$$

dicts the uniform continuity of $\mu(\delta)$ on $[\epsilon_1 - \epsilon, \epsilon_2 + \epsilon]$.

1.2. THE FUNCTION f ·

Set
$$f(\delta) := \mu(\delta)/\delta^s$$
.

THEOREM 3. Let K be a self-similar set. Then $f(\delta) \, \leqslant \, 1 \, \text{for all } \delta \in \, (0,\infty) \, .$

Proof. Suppose the statement is false. Then there exists a compact convex set C_δ of diameter δ such that

$$H^{s}(K \cap C_{\delta})/|K \cap C_{\delta}|^{s} \ge H^{s}(K \cap C_{\delta})/|C_{\delta}|^{s} \ge \beta > 1.$$

From the self-similarity of K (property II above) we obtain

$$H^{s}(Y_{i}(K \cap C_{\delta}) \cap Y_{i}(K \cap C_{\delta})) = 0 \text{ if } i \neq j.$$

Also
$$H^{s}(Y_{i}(K \cap C_{\delta})) = k_{i}^{s}.H^{s}(K \cap C_{\delta}).$$

Thus for all i we have

$$\mathsf{H}^{\mathbf{s}}(Y_{\mathbf{i}}(K \cap C_{\delta}))/|Y_{\mathbf{i}}(K \cap C_{\delta})|^{\mathbf{s}} = \mathsf{H}^{\mathbf{s}}(K \cap C_{\delta})/|K \cap C_{\delta}|^{\mathbf{s}} \geqslant \beta > 1.$$

By induction, for any $1 = 1, 2, \ldots$, we get:

a)
$$H^{s}(Y_{\underline{i}} \circ ... \circ Y_{\underline{j}}(K \cap C_{\delta}) \cap Y_{\underline{i}}, \circ ... \circ Y_{\underline{j}}, (K \cap C_{\delta})) = 0$$

if the 1-tuples i ... j and i' ... j' are different.

b)
$$H^{s}(Y_{i} \circ \ldots \circ Y_{j}(K \cap C_{\delta}))/|Y_{i} \circ \ldots \circ Y_{j}(K \cap C_{\delta})|^{s} \geqslant \beta > 1$$

for all 1-tuples.

Set
$$A_n := \bigcup_{\substack{\text{all the} \\ 1-\text{tuples with } 1 \geq n}} Y_i \circ \ldots \circ Y_j \quad (K \cap C_{\delta})$$

Then $A_{n+1} \subset A_n$ and $A_n \setminus A := \bigcap_n A_n$.

Set
$$B_n := \bigcup_{\substack{\text{all the} \\ \text{n-tuples}}} Y_i \circ \ldots \circ Y_j \quad (K \cap C_{\delta}).$$

Clearly $\mathbf{B}_{\mathbf{n}} \subset \mathbf{A}_{\mathbf{n}}$. Also from a) and b) we have

$$\mathcal{H}^{s}(B_{n}) = \sum_{\substack{\text{all the} \\ \text{n-tuples}}} \mathcal{H}^{s}(Y_{i} \circ \ldots \circ Y_{j}(K \cap C_{\delta})) \geqslant \beta. \sum_{\substack{\text{all the} \\ \text{n-tuples}}} |Y_{i} \circ \ldots \circ Y_{j}(K \cap C_{\delta})|^{s} = \beta.$$

=
$$\beta$$
. Σ k_i^s k_j^s $|K \cap C_{\delta}|^s = \beta$. $|K \cap C_{\delta}|^s$ all the n-tuples

(the last inequality because
$$(\sum_{i=1}^{m} k_i^s)^n = \sum_{\substack{i=1 \ n-\text{tuples}}} k_i^s \dots k_j^s = 1)$$
.

But
$$H^s(A_n) \leq H^s(K)$$
. Thus $\lim_{n \to \infty} H^s(A_n) = H^s(A) \geqslant \beta \cdot |K \cap C_{\delta}|^s > 0$.

Clearly the sets
$$Y_i \circ \dots \circ Y_j$$
 (K $\cap C_\delta$) for all the 1-tuples

 $1 \geqslant n$, form a Vitali family V_n for A, ie. they are compact sets

and for any $\epsilon > 0$ and any $x \in A$ there exists $Y_i \circ \ldots \circ Y_j$ $(K \cap C_\delta)$ of positive diameter $< \epsilon$ such that $x \in Y_i \circ \ldots \circ Y_j$ $(K \cap C_\delta)$. Let n_o and $\epsilon > 0$ be such that $H^s(A_{n_o}) + \epsilon < \beta$. $H^s(A)$. Then there exists a disjoint subfamily $V_{n_o}^*$ of $V_{n_o}^*$ such that ([F],pg.11)

$$(8) \ \ \textit{H}^{s}(A) \ \leqslant \ \ (\sum \ |Y_{i} \circ \dots \circ Y_{j} (K \cap C_{\delta})|^{s}) + \epsilon/\beta = W + \epsilon/\beta$$

$$Y_{i} \circ \dots \circ Y_{j} (K \cap C_{\delta}) \epsilon V_{n_{o}}^{t}$$

and either W = ∞ or W $< \infty$ and

$$H^{s}(A - \bigcup_{Y_{i} \circ \ldots \circ Y_{j}} (K \cap C_{\delta})) = 0.$$

$$Y_{i} \circ \ldots \circ Y_{j} (K \cap C_{\delta}) \varepsilon V'_{n_{o}}$$

But if $W = \infty$ by (8) and b) it follows

$$\beta. \mathcal{H}^{s}(A) \leq \sum_{\substack{Y_{i} \circ \dots \circ Y_{j} \ (K \cap C_{\delta}) \in V_{n_{0}}'}} \beta. |Y_{i} \circ \dots \circ Y_{j} (K \cap C_{\delta})|^{s} + \epsilon \leq$$

$$\leqslant \sum_{\substack{Y_{i} \circ \ldots \circ Y_{j} \ (K \cap C_{\delta}) \in V_{n_{o}}'}} \mathcal{H}^{s}(Y_{i} \circ \ldots \circ Y_{j} \mid (K \cap C_{\delta})) + \epsilon \leqslant \mathcal{H}^{s}(K) + \epsilon$$

and then $H^{s}(K) = \infty$.

Therefore W $< \infty$. Then, by (8) and b),

$$\begin{split} \beta. \mathcal{H}^{s}(A) & \leq \sum_{\substack{Y_{\underline{i}} \circ \ldots \circ Y_{\underline{j}} (K \cap C_{\delta}) \in V_{n_{0}}^{!} \\ }} \mathcal{H}^{s}(A_{n_{0}}) + \varepsilon < \beta. \mathcal{H}^{s}(A). \end{split}$$

PROPERTY A: Let K be a self-similar set. We say that property A holds for K if there exists $\Delta > 0$ such that for any $x \in K$ and any $B_{x,r}$ (ball centered at x and radius r) with $r \leq \Delta$ there exist $y \in K$ and a similitude Y with contraction ratio k = 1, Y: $R^n \to R^n$, such that

a)
$$Y(B_{v,r} \cap K) = B_{x,r} \cap K$$
,

b)
$$(B_{y,r} \cap K) \subset Y_{i_0}(K)$$
 for some $i_0 \in M$.

LEMMA 2. Let K be a self-similar set having property A. Then for any δ , $0<\delta\leqslant\Delta$, there exists j, j $\in\{1,\ldots,m\}$, such that $f(\delta)=f(\delta/k_{\frac{1}{2}})$.

Proof. Suppose $0 < \delta \le \Delta$. By theorem 1 we know that $\mu(\delta) = H^{S}(K \cap C_{\delta})$, where C_{δ} is a convex compact set of diameter δ . By property A there exists C_{δ}' a convex compact set of diameter δ such that $H^{S}(K \cap C_{\delta}') = H^{S}(K \cap C_{\delta})$ and $(K \cap C_{\delta}') - Y_{i_{0}}(K) = \{\emptyset\}$ with $1 \le i_{0} \le m$.

Then $Y_{i_0}^{-1}(C_{\delta}') = C_{\delta/k_{i_0}}$ is a compact convex set of diameter δ/k_{i_0} . It is easy to check that $H^s(K \cap C_{\delta/k_{i_0}}) = 1/k_{i_0}^s \cdot H^s(K \cap C_{\delta}')$ Clearly $\mu(\delta/k_{i_0}) \ge H^s(K \cap C_{\delta/k_{i_0}})$.

Also by theorem 1 $\mu(\delta/k_{i_0}) = H^s(K \cap C_{\delta/k_{i_0}})$ where $C_{\delta/k_{i_0}}$ is a convex compact set of diameter δ/k_{i_0} .

But
$$\mu(\delta/k_{i_0}) = H^s(K \cap C_{\delta/k_{i_0}}) \le 1/k_{i_0}^s . H^s(K \cap Y_{i_0}(C_{\delta/k_{i_0}})) \le 1/k_{i_0}^s . H^s(K \cap C_{\delta/k_{i_0}}).$$

Then
$$\mu(\delta/k_{i_0}) = H^s(K \cap C_{\delta/k_{i_0}}) = 1/k_{i_0}^s \cdot H^s(K \cap C_{\delta}^t) =$$

$$= \mu(\delta)/k_{i_0}^s.$$

THEOREM 4. Let K be a self-similar set. Then

- i) $\overline{\lim}_{\delta \to 0} f(\delta) = 1$
- ii) Let also K have property A. Let $0<\epsilon_1<\epsilon_2$ be such that
 - a) $\epsilon_1 \leq \Delta$ with Δ of property A.
 - b) $\epsilon_1 \cdot (\max 1/k_i) \leq \epsilon_2$

Then $f(\delta) = 1$ for some $\delta \in [\epsilon_1, \epsilon_2]$

Proof. We prove first that $\overline{\lim}_{\delta \to 0} f(\delta) = 1$ (cf.[F],T.2.3). Suppose it is false, then there exists a > 0 such that $f(\delta) \le 1$ -a if $\delta \in (0,a)$. From the definition of Hausdorff measure of K we have that for any $\varepsilon > 0$ there exists a countable family E_i of compact convex sets of diameter less than ε such that $H^s(K \cap E_i) \neq 0$ for all i, $\sum_i H^s(K \cap E_i) \geqslant H^s(K)$ and $H^s(K) + \varepsilon \geqslant \sum_i |E_i|^s$

But if $\epsilon < a$, then

$$\sum_{i} |E_{i}|^{s} = \sum_{i} H^{s}(K \cap E_{i}) \cdot |E_{i}|^{s} / H^{s}(K \cap E_{i}) \geqslant$$

$$\geqslant \sum_{i} H^{s}(K \cap E_{i}) / f(|E_{i}|) \geqslant \sum_{i} H^{s}(K \cap E_{i}) / (1-a) \geqslant$$

$$\geqslant H^{s}(K) / (1-a)$$

which is in contradiction with (9) for ε small enough.

We prove now ii). Suppose K has property A. To prove ii) it is only necessary to show that $\sup_{\delta \in [\epsilon_1,\epsilon_2]} f(\delta) = 1$ since $\mu(\delta)$

is continuous from the right and non-decreasing. Now, from Lemma 2 it follows that if $0 < \delta < \epsilon_1$ then there exists $\delta' \in [\epsilon_1, \epsilon_2]$ such that $f(\delta') = f(\delta)$. So $\overline{\lim_{\delta \to 0}} f(\delta) \leqslant$

 \leq $\sup_{\delta \in [\epsilon_1, \epsilon_2]} f(\delta) \leq 1$ and because of i) the proof is complete. lacktriangle

1.3.

A combination of theorems 2,3 and 4 gives us a procedure by which we can compute the measure of a self similar set K if property A holds and T = C(K) is known.

The method is as follows: we observe first that the function $J_r \colon P(G_r) \longrightarrow R$ defined above is a function whose values we can calculate. Thus H_r and h_r are functions which we can also

calculate because this involves taking the distance (or the diameter) between sets of the form $Y_{i_1}(...Y_{i_r}(C(K))...) = T_{i_1...i_r}$ (recall T = C(K) is known!).

Thus, the functions \tilde{U}_r , U_r and u_r are known.

But these functions are of the form

$$\sum_{i=1}^{1} q_i \cdot S(x-\tau_i)$$

where $\tau_i \in (0,\infty)$, $q_i > 0$ (τ_i and q_i are known!) and (1 if $x \ge 0$

$$S(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Let ϵ_1 , ϵ_2 be as in theorem 4. Then $\sup \{U_r(\delta)/\delta^s \colon \epsilon_1 \le \delta \le \epsilon_2\} = \max \{U_r(\delta)/\delta^s \colon \delta = \epsilon_1 \text{ or } \delta \in [\epsilon_1, \epsilon_2] \text{ and } U_r \text{ has a jump at } \delta\}$ and similar expressions hold for \tilde{U}_r and u_r .

Thus
$$B_r = \sup_{\delta \in [\epsilon_1, \epsilon_2]} U_r(\delta)/\delta^s$$
, $\tilde{B}_r = \sup_{\delta \in [\epsilon_1, \epsilon_2]} \tilde{U}_r(\delta)/\delta^s$ and

 $\beta_r = \sup_{\delta \in [\epsilon_1, \epsilon_2]} u_r(\delta)/\delta^s$ are all numbers which we can calculate.

By theorems 2,3,4 we have $\beta_r \leqslant 1/H^s(K) \leqslant B_r \leqslant \tilde{B}_r$ and $\beta_r \leqslant \beta_{r+1}$ (this because $H_r \geqslant H_{r+1}$). From theorem 2 we know that $\tilde{B}_r - \beta_r \to 0$ if $r \to \infty$ ie. $1/\tilde{B}_r \leqslant 1/B_r \leqslant H^s(K) \leqslant 1/\beta_r$ and $1/\beta_r - 1/\tilde{B}_r \to 0$ if $r \to \infty$.

In the next section we compute measures and "approximate measures" of some self-similar sets.

2. EXAMPLE 1

The sets K_n will be self-similar sets in R^2 for each $n \ge 3$ and they are defined as follows. Let P_n be a regular poligon of n

sides, $|P_n| = 1$. Thus, for example, P_3 is an equilateral triangle whose base has length 1, P_4 is a square of side equal to $1/\sqrt{2}$, P_5 is a pentagon, etc.

We define Y_i^n , i = 1,...,n, a similitude in the following way: for each vertex V_i^n , $1 \le i \le n$, of the regular poligon P_n , Y_i^n is a contraction of ratio 1/n and a translation (ie. there is no rotation) and $Y_i^n(V_i^n) = V_i^n \cdot K_n$ is defined to be the (unique) compact set such that $\bigcup_{i=1}^n Y_i^n(K_n) = K_n$.

From the definitions of Y_i^n one easily gets the open set condition: the sets Y_i^n (int $C(P_n)$) are disjoint and

$$\bigcup_{i=1}^{n} Y_{i}^{n}(\operatorname{int} C(P_{n})) \subset \operatorname{int} C(P_{n})$$

(see beginning of proof of lemma 4).

Thus, by Hutchinson's theorem (see [F], pg.119) we get that

a)
$$0 < H^{s_n}(K) < \infty$$

b)
$$H_{i}^{s_{n}}(Y_{i}^{n}(K_{n}) \cap Y_{i}^{n}(K_{n})) = 0$$
 if $i \neq j$

where s_n is the Hausdorff dimension of K_n . Here $s_n = 1$ for all n.

Observing that V_i^n must belong to K_n it follows that $C(K_n) = C(P_n) = P_n$. Recall that $C(K_n) = T^n$, $Y_i^n(C(K_n)) = T_i^n$, etc.

Notice that property Z holds for K_n .

We will compute the measures of the sets $\mathbf{K}_{\mathbf{n}}:$

THEOREM 5. $H^1(K_n) = 1$ for all $n \ge 3$.

2.1.

Our proof of this theorem will need some lemmas.

To motivate the reading of these auxiliary propositions the reader may go directly to the proof of theorem 5 in next section. Figures 7 and 8 show how K_3 and K_5 look like. We denote with $\mu(\delta,n)$ the function $\mu(\delta)$ of K_n .

LEMMA 3. Let n,j be positive integers. Then

a)
$$\frac{1/n}{(1-1/n).\sin(\pi/n)-1/n} \le 1$$
 if $n \ge 5$

b)
$$\frac{2/n}{(1-1/n).\sin(\pi/n)} \leq 1 \quad if \quad n \geq 5$$

c)
$$\frac{(j+1)/n}{\sin(j\pi/n)-2/n} \leq 1 \quad if \quad n \geq 7 \text{ and } 2 \leq j \leq [n/2]$$

d)
$$(1-1/n).\sin(\pi/n) < \sin(2\pi/n)-2/n \text{ if } n \ge 6$$

e)
$$(1-1/n).\sin^2(\pi/n) \le 2/n \quad if \quad n \ge 6$$

f)
$$\sqrt{\frac{2}{(1+\cos(\pi/n))} \cdot (1-1/n) \cdot \sin(\pi/n) \cdot \sin(\pi/2n)} \leq$$

$$\leq \frac{2}{n} \quad \text{if} \quad n \geq 7$$

Proof. From Taylor's series of sin x we obtain

(1)
$$\sin x - x \ge -x^3/3!$$
 if $x \in [0, \pi/2]$.

In the following x denotes real values and n (or j) denote integer values.

a) Let $f(x) := (\pi-2) - \pi/x - \pi^3 \cdot (x-1)/(x^3 \cdot 3!)$. Then $f(x) \ge 0$ if $x \in [5,\infty)$ because f(x) is non-decreasing if $x \in [5,\infty)$ and f(5) > 0. But using (1) we get for $n \ge 5$ that

$$1 \le 1+f(n) \le n. [(1-1/n).\sin(\pi/n)-1/n]$$

and a) follows.

- b) Follows from a) immediately.
- c) Let $g(n,j) = (n/j)^2 \cdot ((\pi-1)-3/j)$. Then $g(n/j) \ge \pi^3/3!$ if $n \ge 8$ and $[(n \text{ is even and } 4 \le j \le n/2) \text{ or } (n \text{ is odd and})$

 $4 \le j \le (n-1)/2$ because $g(n,j) \ge 4.(\pi-7/4) \ge \pi^3/3!$ for the above values of n and j.

If j = 2 and $n \ge 7$ we get $g(n,2) \ge (7/2)^2 \cdot (\pi-5/2) \ge \pi^3/3!$. If j = 3 and $n \ge 7$ we get $g(n,3) \ge (7/3)^2 \cdot (\pi-2) \ge \pi^3/3!$.

(2)
$$g(n,j) \ge \pi^3/3!$$
 if $n \ge 7$ and $2 \le j \le [n/2]$

Thus using (1) and (2) we get $0 \leq (g(n,j)-\pi^3/3!).(j/n)^3 \leq \sin(j\pi/n)-j/n-3/n$ and c) follows.

d) Let $h(x) := (\pi.(\sqrt{3}-1)-2).x^{2}-\pi^{3}.(\sqrt{3}-1)/3!$. Then h(6) > 0 and therefore h(x) > 0 if $x \ge 6$. But using (1) we get if $n \ge 6$ that $0 < h(n)/n^{3} \le (\sqrt{3}-1).\sin(\pi/n) - 2/n \le (2.\cos(\pi/n)-1 + 1/n).\sin(\pi/n) - 2/n$

and d) follows.

e) and f) Let $f(x) := \sin^2(\pi x) - \sqrt{(1+\cos(\pi/7))/2.2x}$. It is not difficult to prove that $f(x) \le 0$ if $x \in (0,\infty)$. Using this inequality e) and f) follow.

LEMMA 4. Let n be a positive integer. Then

- a) $\mu((1-1/n).\sin(\pi/n),n) \leq H^{1}(K_{n})/n \text{ if } n \geq 6 \text{ and } n \text{ is even}$
- b) $\mu(\sin(j\pi/n)-2/n,n) \leq H^1(K_n).j/n \text{ if } n \geq 6, \text{ n is even and } 2 \leq j \leq n/2.$
- c) $\mu(2(1-1/n).\sin(\pi/2n),n) =$ $= \mu(\sqrt{2/(1+\cos(\pi/n))}.(1-1/n).\sin(\pi/n),n) \leq H^{1}(K_{n})/n \quad if$ $n \geq 5 \quad and \quad n \quad is \quad odd.$
- d) $\mu(\sqrt{2/(1+\cos(\pi/n))}.\sin(j\pi/n)-2/n,n) \leq H^{1}(K_{n}).j/n$ if $n \geq 5$, n is odd and $2 \leq j \leq (n-1)/2$.

Proof. Let $n \ge 5$. Recall that $C(K_n) = C(P_n) = T^n$, $Y_i^n(C(K_n)) = T^n$

=
$$T_i^n$$
, $Y_j^n(Y_i^n(\mathcal{C}(K_n)))$ = T_{ji}^n , etc. We call C_e^n the center of P_n ie. C_e^n = $\sum_i V_i^n/n$. Thus it is easy to check that (recall $|P_n|$ = 1)

$$d(V_i^n, C_e^n) = \begin{cases} 1/2 & \text{if n is even,} \\ 1/2\cos(\pi/2n) = 1/\sqrt{2.(1+\cos(\pi/n))} & \text{if n is odd.} \end{cases}$$

Since T_i^n contains V_i^n , $|T_i^n| = 1/n$ and

$$\begin{array}{ll} d(V_1^n,V_{j+1}^n) = & \begin{cases} \sin(j\pi/n) & \text{if n is even, } 1 \leqslant j \leqslant n/2 \\ \\ = d(V_1^n,V_{n-j+1}^n) = \end{cases} \begin{cases} \sin(j\pi/n) & \text{if n is even, } 1 \leqslant j \leqslant n/2 \\ \\ \sqrt{2/(1+\cos(\pi/n))!} \cdot \sin(j\pi/n) & \text{if n is odd, } 1 \leqslant j \leqslant (n-1)/2 \end{cases}$$

we get

(3)

$$\begin{split} &d(T_{1}^{n},T_{j+1}^{n}) = \begin{cases} \sin(j\pi/n) - (2/n) & \text{if } n \text{ is even, } 1 \leqslant j \leqslant n/2 \\ &= d(T_{1}^{n},T_{n-j+1}^{n}) \geqslant \begin{cases} \sqrt{2/(1+\cos(\pi/n))!} \cdot \sin(j\pi/n) - (2/n) & \text{if } n \text{ is odd,} \\ &1 \leqslant j \leqslant (n-1)/2 \end{cases} \end{split}$$

Set center $T_i^n = Y_i^n(C_e^n)$. Then

(4)
$$d(\text{center } T_1^n, \text{center } T_2^n) = d(\text{center } T_1^n, \text{center } T_n^n) =$$

$$= \begin{cases} (1-1/n).\sin(\pi/n) & \text{if n is even,} \\ \sqrt{2/(1+\cos(\pi/n))}.(1-1/n).\sin(\pi/n) & \text{if n is odd.} \end{cases}$$

The above formulae imply:

(31)

$$\min_{i \neq j} \ d(T_i^n, T_j^n) \ \geqslant \begin{cases} (1-1/n).\sin(\pi/n)-1/n & \text{if n is even, } n \geqslant 6, \\ \sqrt{2/(1+\cos(\pi/n))^n}.[(1-1/n).\sin(\pi/n)-1/n] & \text{if n is odd,} \\ n \geqslant 5. \end{cases}$$

Also using d) of lemma 3 we get, for $n \ge 6$,

(5)
$$(1-1/n) \cdot \sin(\pi/n) < \sin(2\pi/n) - (2/n) <$$

 $< \sin(3\pi/n) - (2/n) < \dots < \sin(\pi/2) - (2/n)$

And for n odd, $n \ge 5$,

(6)
$$\sqrt{2/(1+\cos(\pi/n))} \cdot (1-1/n) \cdot \sin(\pi/n) <$$

$$<\sqrt{2/(1+\cos(\pi/n))} \cdot \sin(2\pi/n) - (2/n) <$$

$$<\sqrt{2/(1+\cos(\pi/n))} \cdot \sin(3\pi/n) - (2/n) < \dots <$$

$$<\sqrt{2/(1+\cos(\pi/n))} \cdot \sin((n-1)\pi/2n) - (2/n).$$

The first inequality may be verified directly for n=5 and is a consequence of (5) for $n \ge 6$.

a) Let C be a compact convex set of diameter $(1-1/n).\sin(\pi/n)$. Suppose $T_1^n \cap C \neq \{\emptyset\}$. From (3) and (5) we have that $C \cap T_j^n = \{\emptyset\}$ if $j \neq 1, 2, n$. Thus from symmetry C can only intersect two elements of $\{T_1^n, T_2^n, T_n^n\}$. We assume C intersects T_1^n and T_2^n . Observe that $H^1(T_i^n \cap K_n) = H^1(K_n)/n$. By Theorem 1' we get that if L is any line in R^2 then

(7)
$$H^{1}(L \cap K_{n}) = 0.$$

Let L_1 , L_2 be two parallel lines at a distance $(1-1/n).\sin(\pi/n)$, perpendicular to the segment joining the centers of T_1^n , T_2^n and such that $C \subset W$ where W is (see figure 1) the strip : $W = C(L_1 \cup L_2). \text{ Recall that d (center } T_1^n, \text{ center } T_2^n) = \\ = (1-1/n).\sin(\pi/n) \text{ and observe that the set } (K_n \cap T_1^n) \text{ is a translation of the set } (K_n \cap T_2^n). \text{ Then from symmetry and } (7) \\ \text{we obtain: } H^1((K_n \cap (T_1^n \cup T_2^n)) - W) \geqslant H^1(K_n)/n. \text{ Thus a) follows.} \\ \text{This last argument will be used quite often. Case c) is proved in an analogous way using (3), (4) and (6).}$

b) Let n and j be as in b). Let C be a compact convex set of diameter $\sin(j\pi/n)$ -(2/n). Assume C \cap T₁ⁿ \neq {Ø}. Then from (3) and (7) we get

$$0 = H^{1}(K_{n} \cap T_{j+1}^{n} \cap C) = H^{1}(K_{n} \cap T_{j+2}^{n} \cap C) = \dots =$$

$$= H^{1}(K_{n} \cap T_{n-j+1}^{n} \cap C).$$

Thus we could assume that C intersects in a non-trivial way at most the sets: $T_{n-j+2}^n, T_{n-j+3}^n, \ldots, T_n^n, T_1^n, T_2^n, \ldots, T_{j-1}^n, T_j^n$. By symmetry and using this last argument repeatedly we obtain that C intersects in a non-trivial way at most j elements of $\{T_i\}$ and b) follows.

Case d) is proved in a similar way using (3) and (7).

LEMMA 5. Let n and i be integers. Then

a)
$$\mu(1-(1/n^{i}),n) \leq (1-(3/n^{i})).H^{1}(K_{n})$$
 if $n \geq 6$, $i \geq 1$

b)
$$\mu(1-(3/n^{i}),n) \leq (1-(1/n^{i-1})).H^{1}(K_{n})$$
 if $n \geq 6$, $i \geq 2$

c)
$$\mu(1-(1/5^{i}),5) \leq (1-(2/5^{i})) \cdot H^{1}(K_{5})$$
 $if i \geq 1$

d)
$$\mu(1-(2/5^{i}),5) \leq (1-(1/5^{i-1})).H^{1}(K_{5})$$
 if $i \geq 2$

e)
$$\mu(1-(3/n),n) \le H^{1}(K_{n})/2$$
 if $n \ge 0$

f)
$$\mu(1-(2/5),5) \leq H^1(K_5).2/5$$

Proof. Let $n \ge 5$. It is clear that $H^1(K_n \cap T_{j_1 \cdots j_i}^n) = H^1(K_n)/n^i$ and $|T_{j_1 \cdots j_i}^n| = 1/n^i$. Call $n_o := [n/2]$. Then

$$V_1^n \in \underbrace{T_{1...1}^n}_{i}, V_{n_0+1}^n \in \underbrace{T_{n_0+1,...,n_0+1}^n}_{i}, d(V_1^n, V_{n_0+1}^n) = 1.$$

Let C be a compact convex set of diameter 1- $(1/n^i)$. Assume $C \cap \underbrace{T_{1\ldots 1}^n}_{i} \neq \emptyset$. Let L_1 , L_2 be two lines perpendicular to the line that joins V_1^n and $V_{n_0+1}^n$ and such that $d(L_1,L_2) = 1-(1/n^i)$ and $C \subset W$, where W is the strip between L_1 and L_2 .

Then since $K_n \cap \underbrace{T_{1\ldots 1}^n}_i$ is a translation of $K_n \cap \underbrace{T_{n_0+1,\ldots,n_0}^n}_i$ we have, using (7), that

(8)
$$H^{1}(K_{n} \cap (\underbrace{T_{1...1}^{n}}_{i} \cup \underbrace{T_{n_{0}+1,...,n_{0}+1}^{n}}_{i}) \cap C) \leq H^{1}(K_{n})/n^{i}$$

But a similar expression holds for pairs $(T_{\underbrace{j...j}}^{n}, T_{\underbrace{n_0+j,...,n_0+j}}^{j})$

- $j = 2, ..., n_0$. If we assume $n \ge 6$ then there are at least 3 such pairs and a) is proved. If n=5 there are 2 such pairs and c) is proved.
- e) Let $n \ge 6$. Observe that $d(T_1^n, T_{n_0+1}^n) \ge 1 (2/n) > 1 (3/n)$. Thus if C is a convex compact set of diameter 1-(3/n) and $C \cap T_i^n \neq \{\emptyset\}$ then $C \cap T_{n_0+1}^n = \{\emptyset\}$ and e) follows easily.
- f) It is easy to check that if C is a convex compact set of diameter 1-(2/5) and $C \cap T_1^5 \neq \{\emptyset\}$ then $H^1(C \cap (T_3^5 \cup T_4^5) \cap K_5) = 0$. Using symmetry f) follows.
- b) Let $i \ge 2$, $n \ge 5$ and let Q_i^n be the intersection (see fig.2) of the line L joining V_1^n and $V_{n_0+1}^n$ and the line L' perpendicular to L such that L' contains the point

$$\underbrace{Y_1^n(Y_1^n...Y_1^n(Y_n^n(V_1^n))...)}_{\mathbf{i}} \in \underbrace{T_{11...1}^n}_{\mathbf{i}}.$$

It is easy to check that

$$d(V_1^n,Q_i^n) = \begin{cases} n^{1-i} \cdot (1-1/n) \cdot \sin^2(\pi/n) & \text{if n is even} \\ \sqrt{2/(1+\cos(\pi/n))^1} \cdot n^{1-i} \cdot (1-1/n) \cdot \sin(\pi/n) \cdot \sin(\pi/2n) = \\ = 2 \cdot n^{1-i} \cdot (1-1/n) \cdot \sin^2(\pi/2n) & \text{if n is odd} \end{cases}$$

Let, for $n \ge 6$, C be a compact convex set of diameter 1-(3/ n^{1}).

Assume
$$C \cap \underbrace{T^n_{n_0+1,\ldots,n_0+1}}_{i} \neq \{\emptyset\}$$
. Then, from the fact that
$$d(T^n_{1\ldots 1}, \underbrace{T^n_{n_0+1,\ldots,n_0+1}}_{i}) = 1 - (2/n^i) > 1 - (3/n^i)$$
 we get $C \cap \underbrace{T^n_{1\ldots 1}}_{i} = \{\emptyset\}$. Also by e) (or f) if n is odd) of

1 emma 3 $d(V_1^n, Q_i^n) \le 2/n^i$.

 $T_{\underbrace{11...1n}}^{n}$ and $T_{\underbrace{n_0+1,...,n_0+1}}^{n}$ are translations

one of the other, we can use an argument similar to the one used in a) and get

$$H^{1}(K_{n} \cap (T_{\underbrace{11...1}_{i}}^{n}) \cup T_{\underbrace{n_{0}+1,...,n_{0}+1}_{i}}^{n}) \cap C) \leq H^{1}(K_{n})/n^{i}$$

which combined with the fact that C \cap Tⁿ_{1...1} = { \emptyset } gives

$$(9) \qquad \operatorname{H}^{1}(K_{n} \cap (T_{1\ldots 1}^{n} \cup T_{1\ldots 1n}^{n} \cup T_{n_{0}+1,\ldots,n_{0}+1}^{n}) \cap C) \leqslant \operatorname{H}^{1}(K_{n})/n^{i}$$

Note that if C does not intersect $T_{\underbrace{1\dots 1}}^{n}$ nor $\underbrace{T_{n_0+1,\dots,n_0+1}^{n}}_{i}$

then (9) holds. b) follows from (9) and the fact that the same argument can be repeated for all the triples

$$(T_{\underbrace{j\ldots j}}^{n},T_{\underbrace{j\ldots j(j-1)}}^{n},T_{n_{0}+j,\ldots,n_{0}+j}^{n}),\overset{?}{2}\leqslant j\leqslant n_{o} \text{ (for n odd observe that C can only intersect } n_{o} \text{ elements of the form}$$

$$\{T_{\underbrace{j...j}}\}$$
 $j = 1,...,n$.

Case d) (n=5) is proved in a similar way using $d(V_1^5, Q_i^5) \le 2/5^i$.

LEMMA 6. Let i be an integer. Then

a)
$$\mu(1-(2/3^{i+1}),3) \leq (1-(1/3^{i})).H^{1}(K_{3})$$
 if $i \geq 1$

b)
$$\mu(1-(1/3^{i}),3) \leq (1-(5/3^{i+1})).H^{1}(K_{3})$$
 if $i \geq 1$

c)
$$\mu(1-(5/3^{i+1}),3) \leq (1-(2/3^{i})).H^{1}(K_{3})$$
 if $i \geq 1$

Proof. Recall that T_{j_1,\ldots,j_i}^3 is an equilateral triangle of base equal to $1/3^{i}$.

a) Let $i \ge 1$ and let C be a convex compact set of diameter

1-(2/3ⁱ⁺¹). Then if
$$C \cap (T_{\underbrace{1 \dots 1}}^3 \cup \underbrace{T_{2 \dots 2}^3}_{i+1} \cup \underbrace{T_{3 \dots 3}^3}_{i+1}) = \{\emptyset\}$$
 we have

$$H^{1}(K_{3} \cap C) \leq (1-(1/3^{1})).H^{1}(K_{3})$$

Therefore we may assume $C \cap \underbrace{T_{1...1}^{3}}_{\emptyset} \neq \{\emptyset\}.$

Since
$$d(T_{\underbrace{1...1}}^{3}, \underbrace{T_{\underbrace{2...2}}^{3}}_{i+1}) = d(\underbrace{T_{\underbrace{1...1}}^{3}}_{i+1}, \underbrace{T_{\underbrace{3...3}}^{3}}_{i+1}) = 1 - (2/3^{i+1})$$

(see fig.3) we have

$$H^{1}(K_{3} \cap (T_{\underbrace{2 \dots 2}_{j+1}}^{3} \cup T_{\underbrace{3 \dots 3}_{j+1}}^{3}) \cap C) = 0$$

It is not difficult to check that the segment $[P_{i+1},Q_{i+1}]$ is perpendicular to $[V_1^3,V_2^3]$. Thus $d(P_{i+1},V_1^3)>1$ - $(2/3^{i+1})$ and by an argument similar to that given in lemma 5 a) we have that

$$H^{1}(K_{3} \cap (T_{\underbrace{2 \dots 2}_{i+1}}^{3} \cup \underbrace{T_{11 \dots 1}^{3}}_{i+1}) \cap C) \leq H^{1}(K_{3})/3^{i+1}$$

and a) follows.

b) Let $i \ge 1$ and C be a convex compact set of diameter $1 - (1/3^{i}). \text{ Then if } C \cap (\underbrace{T_{1}^{3} \dots 1}_{i} \cup \underbrace{T_{2}^{3} \dots 2}_{i} \cup \underbrace{T_{3}^{3} \dots 3}_{i}) = \{\emptyset\} \text{ we have}$ $H^{1}(K_{3} \cap C) \le (1 - 1/3^{i-1}).H^{1}(K_{3})$

Let us suppose that $C \cap T_{\underbrace{1 \dots 1}}^{3} \neq \{\emptyset\}$. We have,

by symmetry, only three subcases:

b1)
$$C \cap T_{\underbrace{1...1}}^{3} \neq \{\emptyset\}$$

b2) $C \cap T_{\underbrace{j...j}}^{3} = \{\emptyset\}, j = 1,2,3 ; C \cap T_{\underbrace{1...12}}^{3} = \{\emptyset\},$

b3)
$$C \cap T_{\underbrace{j \dots j}_{i+1}}^{3} \neq \{\emptyset\}$$

 $C \cap T_{\underbrace{j \dots j}_{i+1}}^{3} = \{\emptyset\}, j = 1,2,3 ; C \cap T_{\underbrace{j \dots 1}_{i+1}}^{3} \neq \{\emptyset\},$
 $C \cap T_{\underbrace{j \dots 1}_{i+1}}^{3} \neq \{\emptyset\}.$

b1) It is easy to see that (see fig.3)

$$d(T_{\underbrace{1\dots 1}}^{3}, T_{\underbrace{2\dots 2}}^{3}) \text{ and } d(T_{\underbrace{1\dots 1}}^{3}, T_{\underbrace{2\dots 2}}^{3}) \ge d(T_{i+1}, Q_{i+1}) = 1 - (1/3^{i})$$

Thus $H^1(K_3 \cap (\underbrace{T_{2...2}^3}_{i+1} \cup \underbrace{T_{2...23}^3}_{i+1}) \cap C) = 0$ and by symmetry

$$H^{1}(K_{3} \cap (\underbrace{T_{3...3}^{3}}_{i+1} \cup \underbrace{T_{3...32}^{3}}_{i+1}) \cap C) = 0. \text{ Also as } d(V_{1}^{3}, R^{i+1}) =$$

= 1-(1/3ⁱ) we have that $H^{1}(K_{3} \cap (T_{\underbrace{1 \cdot \cdot \cdot 1}}^{3} \cup \underbrace{T_{2 \cdot \cdot \cdot \cdot 21}^{3}}_{i+1}) \cap C) \leq H^{1}(K_{3})/3^{i+1}$.

b2) Since $d(S_{i+1}, P_{i+1}) = 1 - (1/3^{i})$, it follows that

(10)
$$H^{1}(K_{3} \cap (T_{\underbrace{1 \dots 1}_{j+1}}^{3} \cup T_{\underbrace{2 \dots 2}_{j+1}}^{3}) \cap C) \leq H^{1}(K_{3})/3^{i+1}$$

 \dot{b} 3) From b2) one gets (10) again and by symmetry

$$H^{1}(K_{3} \cap (T_{\underbrace{1...12}}^{3} \cup T_{\underbrace{3...32}}^{3}) \cap C) \leq H^{1}(K_{3})/3^{i+1}$$

c) Let i \geqslant 1 and let C be a compact convex set of diameter 1-(5/3ⁱ⁺¹). We assume C \cap T $_{1...1}^3 \neq \{\emptyset\}$ (if

$$C \cap (T_{1...1}^{3} \cup T_{2...2}^{3} \cup T_{3...3}^{3}) = \{\emptyset\}$$
 then $H^{1}(K_{3} \cap C) \leq \{(1-(1/3^{i-1})), H^{1}(K_{3})\}.$

Then, by symmetry, only two choices are possible:

c1)
$$C \cap T_{\underbrace{1 \dots 1}_{i+1}}^{3} \neq \{\emptyset\}$$
. Consequently, $C \cap (T_{\underbrace{2 \dots 2}_{i}}^{3} \cup T_{\underbrace{3 \dots 3}_{i}}^{3}) = \{\emptyset\}$.
c2) $C \cap T_{\underbrace{j \dots j}_{i+1}}^{3} = \{\emptyset\}$, $j = 1, 2, 3$; $C \cap T_{\underbrace{1 \dots 12}_{i+1}}^{3} \neq \{\emptyset\}$. Then,

c2)
$$C \cap \underbrace{T_{j \dots j}^{3}}_{i+1} = \{\emptyset\}, j = 1,2,3; C \cap \underbrace{T_{1 \dots 12}^{3}}_{i+1} \neq \{\emptyset\}. Then,$$

$$H^{1}(K_{3} \cap (T_{3}^{3}, ..., 3) \cup T_{2}^{3}, ... 2) \cup T_{2}^{3}, ... 2) \cup T_{1}^{3}, ... 1) \cap C) = 0$$

2.2 PROOF OF THEOREM 5

Recall that property Z holds for K $n \ge 3$. Thus $\mu(\delta,n)$ is continuous on $(0,\infty)$. Let $f(\delta,n) = \mu(\delta,n)/\delta$. Then, if $1 < \delta$, f(δ ,n) = $H^1(K_n)/\delta < H^1(K_n)$ = f(1,n) \leq 1 (th.3). Therefore to prove the theorem we must show $H^1(K_n) \ge 1$. Observe that any number 0 < Δ_n < min $d(T_i, T_j)$ could be used as Δ in property A. Therefore from theorem 3 and 4 we get

i')
$$f(\delta,n) \leq 1$$
 on $[\Delta_n,1]$

ii')
$$f(\delta_0,n) = 1$$
 on for some $\delta_0 \in [\Delta_n,1]$

From the continuity of $\mu(\delta,n)$ one gets i') and ii') for

i)
$$f(\delta,n) \leq 1$$
 on $[\min_{i \neq j} d(T_i^n, T_j^n), 1]$

$$\begin{split} & \Delta_n = \min_{i \neq j} \ d(T_i^n, T_j^n) \quad \text{ie.} \\ & i) \qquad f(\delta, n) \leqslant 1 \quad \text{on} \quad [\min_{i \neq j} \ d(T_i^n, T_j^n), 1] \\ & ii) \qquad f(\delta_o, n) = 1 \quad \text{for some} \quad \delta_o \in [\min_{i \neq j} \ d(T_i^n, T_j^n), 1] \end{split}$$

We recall formulae (3') of lemma 4 (3')

$$\min_{\mathbf{i} \neq \mathbf{j}} d(T_{\mathbf{i}}^{n}, T_{\mathbf{j}}^{n}) \geq \begin{cases} (1-1/n).\sin(\pi/n)-1/n & \text{if n is even, } n \geq 6 \\ \sqrt{2/(1+\cos(\pi/n))^{n}}.[(1-1/n).\sin(\pi/n)-1/n] & \text{if n is odd, } n \geq 5 \end{cases}$$

and min $d(T_i^3, T_j^3) = 1/3$. Let n be even, $n \ge 8$. Define the functions $g(\delta,n)$ and $h(\delta,n)$ as follows:

$$g\left(\delta,n\right) = \begin{cases} 1/n & \text{if } \delta \in [(1-1/n).\sin(\pi/n)-(1/n),(1-1/n).\sin(\pi/n)) \\ 2/n & \text{if } \delta \in [(1-1/n).\sin(\pi/n),\sin(2\pi/n)-(2/n)) \\ (j+1)/n & \text{if } \delta \in [\sin(j\pi/n)-(2/n),\sin((j+1)\pi/n)-(2/n)) \\ & \text{and } 2 \leq j \leq (n/2)-1 \end{cases}$$

(11)
$$h(\delta,n) = \begin{cases} 1-1/n^{\frac{1}{2}} & \text{if } \delta \in [1-1/n^{\frac{1}{2}}, 1-3/n^{\frac{1}{2}+1}) \text{, } i = 1,2,... \\ 1-3/n^{\frac{1}{2}+1} & \text{if } \delta \in [1-3/n^{\frac{1}{2}+1}, 1-1/n^{\frac{1}{2}+1}) \text{, } i = 0,1,2,... \\ 1/2 & \text{if } \delta \in [1/2, 1-3/n) \end{cases}$$

Then $h(\delta,n)$ is defined on [1/2,1) and $g(\delta,n)$ on $[(1-1/n).\sin(\pi/n)-(1/n),1-2/n)$. Also $h(\delta,n)/\delta \leq 1$ and by lemma 3 a,b,c) we get $g(\delta,n)/\delta \leq 1$. By lemmas 5 a,b,e), 4 a,b) and from the fact that $\mu(\delta,n)$ is non decreasing we get

(12)
$$f(\delta,n)/H^{1}(K_{n}) \leq h(\delta,n)/\delta \leq 1 \quad \text{if} \quad \delta \in [1/2,1)$$
 and

 $f(\delta,n)/H^1(K_n) \leq g(\delta,n)/\delta \leq 1$ if $\delta \in [(1-1/n).\sin(\pi/n)-(1/n),1-2/n)$

and using the continuity of $\mu(\delta,n)$

(13)
$$f(\delta,n)/H^{1}(K_{n}) \leq 1 \quad \text{if} \quad \delta \in [\min_{i \neq j} d(T_{i}^{n},T_{j}^{n}),1]$$
 Using property ii) above we get $H^{1}(K_{n}) \geq 1$.

Thus $H^1(K_n) = 1$ if n is even, $n \ge 8$.

The proof of the other cases are similar.

Let n be odd, $n \ge 7$. Define $h(\delta, n)$ as in (11) and

$$g(\delta,n) = \begin{cases} 1/n & \text{if } \delta \in [\sqrt{2/(1+\cos(\pi/n))} \cdot ((1-1/n) \cdot \sin(\pi/n) - (1/n)), \\ \sqrt{2/(1+\cos(\pi/n))} \cdot (1-1/n) \cdot \sin(\pi/n) \cdot (1-1/n) \cdot \sin(\pi/n), \\ 2/n & \text{if } \delta \in [\sqrt{2/(1+\cos(\pi/n))} \cdot (1-1/n) \cdot \sin(\pi/n), \\ \sqrt{2/(1+\cos(\pi/n))} \cdot \sin(2\pi/n) - (2/n), \\ (j+1)/n & \text{if } \delta \in [\sqrt{2/(1+\cos(\pi/n))} \cdot \sin(j\pi/n) - (2/n), \\ \sqrt{2/(1+\cos(\pi/n))} \cdot \sin((j+1)\pi/n) - (2/n), \\ 2 \leq j \leq (n-1)/2 - 1 \end{cases}$$

g(δ ,n) is defined on $[\sqrt{2/(1+\cos(\pi/n))}]$. ((1-1/n).sin(π /n)-(1/n)), $\sqrt{2/(1+\cos(\pi/n))}$.sin((n-1) π /2n)-(2/n)).

Using lemma 3 a,b,c,d) we get $g(\delta,n)/\delta \leq 1$. By lemma 4 c,d) it follows that $f(\delta,n)/H^1(K_n) \leq g(\delta,n)/\delta \leq 1$. As we have seen, lemma 5 a,b,e) implies (12). Thus (13) holds and the proof ends as in the previous case.

For n=6, $h(\delta, 6)$ is defined as in (11) and

$$g(\delta,6) = \begin{cases} 1/6 & \text{if } \delta \in [(1-1/6).\sin(\pi/6)-1/6, (1-1/6).\sin(\pi/6)) \\ 1/3 & \text{if } \delta \in [(1-1/6).\sin(\pi/6), \sin(\pi/3)-1/3] \end{cases}$$

and the proof runs in a similar way using lemma 3 a),b), lemma 5 a),b),e), and lemma 4 a),b).

For n=5 let

$$h(\delta,5) = \begin{cases} 1-2/5^{i} & \text{if } \delta \in [1-2/5^{i}, 1-1/5^{i}) & \text{i} = 1,2,\dots \\ 1-1/5^{i-1} & \text{if } \delta \in [1-1/5^{i-1}, 1-2/5^{i}) & \text{i} = 2,3,\dots \\ 2/5 & \text{if } \delta \in [2/5, 1-2/5) \end{cases}$$

 $g(\delta,5) = 1/5$, if $\delta \in [\sqrt{2/(1+\cos(\pi/5))}]$. $[(1-1/5).\sin(\pi/5)-1/5]$, $\sqrt{2/(1+\cos(\pi/5))}$. $(1-1/5).\sin(\pi/5)]$ and use lemmas 5 c,d,f), 4c),3a).

For n=3 we define only one function $g(\delta,3)$ in the following way

$$g(\delta,3) = \begin{cases} 1-2/3^{i} & \text{if } \delta \in [1-2/3^{i}, 1-5/3^{i+1}) & \text{i} \ge 1 \\ 1-5/3^{i+1} & \text{if } \delta \in [1-5/3^{i+1}, 1-1/3^{i}) & \text{i} \ge 1 \\ 1-1/3^{i} & \text{if } \delta \in [1-1/3^{i}, 1-2/3^{i+1}) & \text{i} \ge 1 \end{cases}$$

Thus $g(\delta,3)$ is defined on [1/3,1) and this case follows from lemma 6.

Case n=3 is considered in [Mn]. Case n=4 may be found in [F] and [Mn]. The proofs given there are different.

2.3. EXAMPLE 2.

The unique compact set K such that

$$K = \bigcup_{i=1}^{4} Y_i(K)$$

where Y_1 are similitudes of the complex plane defined by $Y_1(z) = z/3$; $Y_2(z) = z.(1/2+i\sqrt{3}/2)/3+1/3$; $Y_3(z) = z.(1/2-i\sqrt{3}/2)/3+(1/2+i/2\sqrt{3})$; $Y_4(z) = z/3+2/3$, is the well known Koch curve.

It is not difficult to see that $C(K) = C(\{0,1,1/2+i/2\sqrt{3}\})$ and therefore using int C(K) one can prove that an "open set condition" holds for K. Therefore K is self similar (see [F]). Moreover $s = \log 4/\log 3$.

Alternatively K can be defined with only two similitudes ie.

$$K = \bigcup_{i=1}^{2} Y_{i}^{i}(K)$$

where $Y_1'(z) = z \cdot (-\sqrt{3}/2 - i/2)/\sqrt{3} + (1/2 + i/2\sqrt{3})$;

 $Y_2'(z) = z \cdot (-\sqrt{3}/2 + i/2)/\sqrt{3} + 1$ (primes will be used to describe elements that arise from this definition).

Property Z holds for K and therefore $\mu(\delta)$ and $f(\delta)$ are continuous. Figure 4 shows how K looks like.

Let C be a compact set of diameter $\delta < 1/3\sqrt{3}$ such that (by theorem 1) $\mu(\delta) = \text{H}^s(C \cap K)$. If C intersects T_1' or T_2' but not both then using $Y_1'^{-1}$ (or $Y_2'^{-1}$) one can prove that

(1)
$$\mu(\delta.\sqrt{3}) = (\sqrt{3})^{s}.H^{s}(C \cap K)$$

If C intersects both T_1' and T_2' then C can intersect at most the set $\{T_{23}, T_{24}, T_{31}, T_{32}\}$ (fig.5). But

Y(K \cap (T₂₃ \cup T₂₄ \cup T₃₁ \cup T₃₂)) = K \cap {T₁₁ \cup T₁₂ \cup T₁₃ \cup T₁₄} where Y is a similitude with contraction ratio 1. Therefore one could assume that C only intersects T₁ and (1) holds. Thus we have proved that if $\delta < 1/3\sqrt{3}$ then f(δ) = f($\delta . \sqrt{3}$). Therefore theorem 4 holds with $\epsilon_1 = \Delta$, Δ any number less than $1/3\sqrt{3}$ and $\epsilon_2 = \Delta . \sqrt{3}$. In fact, in its proof we have only used the thesis of lemma 2. From this lemma and Th.3 we obtain:

i)
$$f(\delta) \le 1$$
 $\delta \in [1/3\sqrt{3}, 1/3]$

ii)
$$f(\delta_0) = 1$$
 for some $\delta_0 \in [1/3\sqrt{3}, 1/3]$

We note that property A holds for K for some $\Delta << 1/3\sqrt{3}$.

Upper and lower bounds for K had been given in [B]

$$0.026 \approx 2^{-s-4} \leq H^{s}(K) \leq 2^{s-2} \approx 0.5995.$$

In [M 2] an alternative proof of the upper bound was given and it was conjectured that $H^s(K) = 2^{s-2}$. But we shall see that indeed $H^s(K) < 2^{s-2}$.

Now to get a lower bound for $H^s(K)$ we need to compute h_r . The following is a table of a function \tilde{h}_2 which is an

$\tilde{h}_2(6/16) = 1/3\sqrt{3}$	$\tilde{h}_2(9/16) \approx 0.29397$
$\tilde{h}_2(7/16) = 2/9$	$\tilde{h}_2(10/1.6) = 1/3$
$\tilde{h}_2(8/16) = 2/9$	$\tilde{h}_2(11/16) = 4/9$

approximation of h_2 . We recall the definition of h_2 :

$$h_2(\alpha) = \min_{\beta \in G_2^{\alpha}} (\max_{\Gamma, \Gamma' \in \beta} d(\Gamma, \Gamma'))$$

where d(.,.) is the usual distance between sets. Let p_1 = 0 , p_2 = 1 , p_3 = $1/2+i/2\sqrt{3}$, p_4 = 1/3 , p_5 = 2/3 , p_6 = $1/6+i/6\sqrt{3}$, p_7 = $1/3+i/3\sqrt{3}$, p_8 = $2/3+i/3\sqrt{3}$,

$$p_9 = 5/6 + i/6\sqrt{3}$$
 and $\Gamma = T_{i_1i_2}$, $\Gamma' = T_{j_1j_2}$. Then set

$$\tilde{d}(\Gamma,\Gamma') = \min_{1 \le k,m \le 9} d(Y_{i_1} \circ Y_{i_2}(p_k), Y_{j_1} \circ Y_{j_2}(p_m))$$

and define \tilde{h}_2 in the following way:

$$\tilde{h}_{2}(\alpha) = \min_{\beta \in G_{2}^{\alpha}} (\max_{\Gamma, \Gamma' \in \beta} \tilde{d}(\Gamma, \Gamma'))$$

Notice that $\tilde{d}(\Gamma,\Gamma')$ - 1/54 $\leq d(\Gamma,\Gamma') \leq \tilde{d}(\Gamma,\Gamma')$. Therefore

$$\tilde{h}_2 := \tilde{h}_2 - 1/54 \le h_2 \le \tilde{h}_2$$

and if we define $\tilde{U}_2(\delta)$:= max $\{\alpha\colon \tilde{h}_2(\alpha)\leqslant \delta\}$ then $U_2\leqslant \tilde{U}_2$. h_2 and \tilde{h}_2 are non decreasing. (This is a general fact: H_r and h_r are non decreasing functions if $k_i=k_1$ for all i). To compute the supremum of \tilde{U}_2 on $[1/3\sqrt{3},1/3]$ we do not need all the values of \tilde{h}_2 but only those displayed in the table above.

From i, ii) above and theorem 2 a) we get

$$1/\tilde{B}_2 \leq 1/B_2 \leq H^{s}(K)$$

where $\tilde{B}_2 = \sup_{\delta \in [1/3\sqrt{3},1/3]} \tilde{U}_2(\delta)/\delta^s$; $B_2 = \sup_{\delta \in [1/3\sqrt{3},1/3]} U_2(\delta)/\delta^s$. Using the

table it is easy to compute \hat{B}_2 . We have $\hat{B}_2 \approx 3.723$ and $0.26 \leqslant \textit{H}^{S}(K)$

We compute now an upper bound. Observe that Q = $\{T_{212} \cup T_{213} \cup T_{214} \cup T_{214} \cup T_{221} \cup T_{222} \cup T_{223} \cup T_{224} \cup T_{231} \cup T_{232} \cup T_{233} \cup T_{234} \cup T_{241} \cup T_{242} \cup T_{243} \cup T_{244} \cup T_{311} \cup T_{312} \cup T_{313} \cup T_{314} \cup T_{321} \cup T_{322} \cup T_{323} \cup T_{324} \cup T_{331} \cup T_{332} \cup T_{333} \cup T_{334} \cup T_{341} \cup T_{342} \cup T_{343} \}$ has diameter $\delta' = \sqrt{(292/243)}/3 \approx 0.36539$ (see fig.6) and that $H^s(Q \cap K) = (30/64)H^s(K)$.

Therefore

$$30.H^{s}(K)/(64.\delta^{'s}) \leq \mu(\delta')/\delta^{'s} \leq 1$$

ie. $H^{s}(K) < 0.5989 < 0.5995 \approx 2^{s-2}$.

The numbers displayed in example 2 are all exact up to the last digit.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

REFERENCES

- [B] BENEDEK A. y PANZONE R., Dominios uniformes: la isla de von Koch, Academia Nac. de Ciencias Exactas, Físicas y Naturales, Buenos Aires, 42 (1990), 87-98.
- [F] FALCONER K.J., THE GEOMETRY OF FRACTAL SETS, Cambridge University Press (1989).
- [H] HUTCHINSON J.E., Fractals and Self-Similarity, Indiana University Math. Journal, 30 (1981), 713-747.
- [M1] MARION J., Mesure de Hausdorff d'un Fractal à Similitude Interne, Ann. sc. math. Quebec, 10, No.1 (1986), 51-84.
- [M2] MARION J., Mesures de Hausdorff d'ensembles Fractals, Ann. sc. math. Quebec, 11, No. 1 (1987), 111-132.
- [Mn] MORGAN F., GEOMETRIC MEASURE THEORY, Academic Press (1988).

Acknowledgment: Figures 4,5,6,7,8 are computer-made. This work was done by Pedro Panzone who kindly also computed the \tilde{h}_2 -table.

Departamento e Institúto de Matemática Universidad Nacional del Sur. Av. Alem 1253. (8.000) Bahía Blanca. Argentina.

Recibido en julio de 1992.