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Abstract: We study the boundedness of singular integral operators on Orlicz-Hardy
spaces H,,, in the setting of spaces of homogeneous type. As an application of this

result, we obtain a characterization of H,IR" in terms of the Riesz Transforms.
§1. NOTATION AND DEFINITIONS

Let X be a set. A function d: X x X — IR™ U {0} shall be called a quasi-distance on

X if there exists a finite constant K such that

(1.1) diz,y)=0if andonly if z =y
(1.2) d(z,y) = d(y,z)

and

(1.3) d(z,y) < Kld(z, z) + d(z,y)]

for every z,y and z in X.
In a set X, endowed with a quasi-distance d(z,y), the balls
B(z,r)={y:d(z,y) <r}, r >0,

form a basis for the neighbourhoods of x in the topology induced by the uniform struc-
ture on X. '

We shall say that a set X, with a quasi-distance d(z,y) and a non-negative measure

p defined on a o-algebra of subsets of X containing the balls B(z,r), is a normal
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space of homogeneous type if there exist four positive finite constants A, ,A,, K and
Ky, K, <1< Ky, such that

(1.4) Arr < w(B(z, 7)) if r < Kyp(X)
(1.5) Bl =X  ifr>Kip(X)
(1.6) Ar > p(B(z,1)) if r 2 Kap({z})
(1.7) B(z,r) = {z}  if r < Kyu({z}).

We note that, under these conditions, there exists a finite constant A, such that
(1.8) 0 < u(B(z,2r)) < Au(B(z,r))
holds for every z € X and r > 0.

We shall say that a normal space of homogeneous type (X, d, p) is of order a,0 < a < 00,

if there exists a finite constant K3 satisfying
(1.9) |d(z,z) = d(y, z)| < Kar' ™ %d(z,y)*
for every z,y and z in X, whenever d(z,z) <r and d(y,z) < r (See [MS]).

Throughout this paper X = (X, d, 1) shall denote a normal space of homogeneous type
of order a,0 < o < 1.

Let p be a positive function defined on IRT. Ve shall say that p is of upper type m

(respectively, lower type m) if there exists a positive constant ¢ such that

(1.10) p(st) < ct™p(s),



221

for every t > 1 (respectively, 0 < t < 1). A non-decreasing function p of finite upper
type such that lim; .o+ p(¢) = 0 is called a growth function. ‘
For p(t) a positive right-continuous non-decreasing function satisfying lim, ¢+ p(t) = 0

and lim¢—,0 p(t) = oo, the function

t

(1.11) : o(t) = / p(s)ds
0

will be called a Young function.

Given ®(t) a Young function of finite upper type, we define the Orlicz space L¢ by

Lo={f / &(|f(2)])dz < o0},

and we denote by

7= msn: o () <y

the Luxemburg norm.

Given a Young function, we consider the complementary Young function of ® defined

by
P(t) =/ q(s)ds , with ¢(s) = sup t.
0

p(t)<s

For ®(z) a Young function, the Hélder inequality

(1.12) | / f@)gle)de] <I| f llzell o Nl
holds for every f € Ly and g € L.

We shall understand that two positive functions are equivalent if their ratio is bounded -
above and below by two positive constants.

Let p be a growth function. We shall say that a function ¥(z) belongs to Lip(p), if

a0
W9 llzipg, = sup = == < o0

holds. When p(t) is the function t?, 0 < 3 < oo, we shall say that ¥(t) is in Lip(8)

and, in this case, || ¥ || indicates its norm.
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The space of distributions (E®)', introduced by Macias and Segovia in [MS], is the dual
space of E® consisting of all function with bounded support belonging to Lip (/) for

some 0 < f < a.

For z € X and 0 < v < «, we consider the class T.,(2) of functions ¢ belonging to
E“ satisfying the following condition: there exists r such that r > Kyu({z}), suppy C
B(z,r) and

(1.13) T ¢ lo<l and 7|9 ||,< L

Given 7,0 < v < a, we define the y-maximal function fJ(x) of a distribution f on E¢
by

(1.14) f3 = sup{|f(¢)] : ¥ € Ty(x)}.

(1.15) Definition: Let p be a growth function plus a non negative constant or p = 1.
A (p,q)-atom, 1 < ¢ < 00, is a function a(z) on X satisfying:

(1.16) / a(z)du(z) =0,
X
(1.17) the support of a(x) is contained in a ball B and
1/q .
(1.13) 1 [l < BB i g < oo
or

| all < [W(B)p(u(B))] ™", if ¢ = oo

Clearly, when p(t) = t1/P=1 p < 1, a (p,¢)-atom is a (p. ¢)-atom in the sense of [M-S].

Let w be a growth function of positive lower type [ such that /(1 + o) > 1. For every 4
with 0 < v < o and I(1+7) > 1, we define

(1.19)‘ Hw=Hu(X):{fe(E" -/w[f* )dp(x <,>o}.

and we denote

(20 Sl =l =inf {3500 [0 [ 52  aunr <1},
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Let w be a growth function of positive lower type . If p(t) = t=1 /w1 (#7). we define
the atomic Orlicz Space H”(X) = H”Y,1 < ¢ < oo, as the space of all distributions f

on E* which can be represented by
(1.21) F) = bi(w),

for every ¥ in E, where {b;}; is a sequence of multiples of (p,q)-atoms such that if
supp(b;) C B;, then

(1.22) > u(Biw (|| b,-nq#(Bi)—l/q) < 0.

Given a sequence of multiples of (p, ¢)-atoms, {b;}; we set

3

b; B;)~/a
(1.23) A, ({b:}) :inf{A DY w(Biw (Mﬁf‘;&/l_)_) < 1}
and we define

(124) ” f”Hn,a = i77,qu({bi}),

where the infimum is taken over all possible representations of f of the form (1.21).

It has been shown in [V] that the spaces H, and H” are equivalent. More precisely,

in that paper the following Theorem is proved

THEOREM A: Let w be a function of lower type [ such that [(1 + o) > 1. Assume
that'w(s)/s is non-increasing. Let p(t) be the function defined by tp(t) = 1/w™'(1/t).
Then H, = H?? for every 1 < ¢ < o0.

We observe that the statement of the Theorem A implies in particular that the definition
of H, is independent of 74,0 < v < « and I(1 + ) > 1. Furthermore, from proposition
(3.1) in [V], we may assume without lost of generality; that w is, in additon, continuous,

strictly increasing and a subaditive function.
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§2. BOUNDEDNESS OF SINGULAR INTEGRAL OPERATORS ON HARDY-
ORLICZ SPACES

In this section (X, d, n) shall mean a normal space of homogeneous type of order a,

0 < a €1 and K shall denote the constant appearing in (1.3).

We assume that a singular kernel is a measurable function k£ : X x X — IR satisfying

the following conditions:
(2.1) lktw,y)l < cd(z,y)” for z#y
(2.2) There exist 6, 0 < § < o, such that
Ik(z,v) — k(=" 9)| + [k(y,2) — K(y,2")| < ed(z,a')*d(z,y)7 7",
provided d(z,y) > 2d(z,z').
(2.3) Let 0 <r < R < o0, then

a) J k(z,y)du(y) = 0, for every z € X.
r<d(z,y)<R

and

b) I k(y,z)du(y) = 0, for every z € X.
r<d(z,y)<R

Given ¢ > 0, we define

T.f(z) = / k(z,y)f(y)du(y)

e<d(z,y)<1/e

For singular integrals, in the context of spaces of homogeneous type, conditions for their

boundedness on L? were given in [A], [D-J-S], [M-T] and [M-S-T].

In the sequel we shall assume that T is a bounded singular integral operator on L*(X)
associated to a kernel k(z, y) satisfying (2.1), (2.2) and (2.3). Under these assumptions
we shall obtain, in Theorem 2.20, the boundedness of T' on the spaces H,,.
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In order to prove the main theorem we shall need some previous results.

(2.4) LEMMA. Let k(z,y) be a kernel satisfying (2.1) and (2.3). Let ®(t) be a Lipschitz
function defined on [0,00) such that ®(t) = 0 for t > 2. Assume that ®(t) satisfies one

of the following two conditions:
a) ®(t)=1 for t<1,0r

b) &(t) =0 for t g‘1.
Let0 <r < R < o0, then

k(z,y)2(d(z,y))du(y) = 0, for every z € X.
r<d(z,y)<R

PROOF. We prove the lemma for @ satisfying (a). The other case follows the same

lines. Given 0 < r < R, we have three possibilities:
i) 2<r,

i) 0<r<2<R

i) 0<r<R<2.

If r > 2 the lemma follows inmediately. Supposse that (ii) holds. Since k(z,y) satisfies
(2.3) and @(t) = 1 for t < 1, it is enough to assume that r > 1 in this case. Givene > 0,
let P = {to,t1,---tn} be a partition of the interval [r,2], with At; =t; —t;_; < § and
6 a constant depending on ¢ to be determined later. Then we have

N ,
k(z, y)@(d(z, y))du(y) = , / k(z, y)[@(d(z,y)) — 2(t:)]du(y)

r<d(z,9)<R =l <d(zy) <

2

+ 3 8(t) / ke, v)du(y).

i=1 ti—1 <d(z,y)<t;
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Using that @ is a Lipschitz function and applying (2.1) and (2.3), we obtain

) |
[ ewedewaesaYy. [ ke ldu)
r<d(z,y)<R i=1‘-’—15d(1’-y)<¢i

<cé / |k(z, y)ldu(y)

1<d(z,y)<2
< cé.

Choosing § such that ¢§ < e,we conclude the proof of (ii). The remaining case (iii)

follows the same line.

(2.5) REMARK. Let ® be as in Lemma (2.4). For € > 0, the kernel k (z,y)
‘I)(L’:”’—)),aatis__ﬁes (2.1) and, from Lemma (2.4), also verifies (2.3). On other hand ,
since X is of order a, (2.2) holds with constant independent of €. -

Let ¢ and 92 in C*°([0, 00)) satisfying the following conditions: suppy; C [1/2,00) and
Y1(t) = 1if t > 1;suppps C [0,2] and 2(t) =1 for t < 1. For f € LP,1 < p < oo, we
define .
Tf(z)= [ & X9y ed d
f(2) = [ Kz, y)i (= )¢2(ed(z, ¥))f (v)dp(y)-

(2.6) LEMMA. Let k(z,y) be a singular kernel satisfying (2.1), (2.2) and (2.3). Then,
| Tef —=Tflly: =0, ase — 0.

PROOF. We have

T = [ e (C20) j)du) + )

€
¢/2<d(z,y)<e

+ / k(z,y)pa(ed(z,v) f(v)du(y) = T} f(z) + Te f(z) + T2 f(z).
1/e<d(z,y)<2/¢ .

Since T, f(z) converges to Tf in L2, we only need to'prove that T} f converges to zero
in L? for : = 1,2. Clearly from (2.1), we have

-~ (2.7) Tif(z) < eMf(z) , fori=1,2.
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From (2.7) and by the density in L? of the Lipschitz « functions with bounded support,
it is enough to prove the convergence of T:f for such functions. Let f be a function

with bounded support belonging to Lip(vy). Then by Lemma (2.4), we get

o) mi@i=1 [ e (D) 10) - sl <l 7 e

€/2<d(z,y)<e

On the other hand from (2.1), we obtain

IT2f(2)] < / I (ed(z, v)) 1 F () du(y)
1/e<d(z,y)<2/¢
1/2

<ell f Il / a(ed(z, v))Pdu(y)
1/e<d(x,y)<2/e
(2.9) <c|l flle e

By (2.7), (2.8), (2.9) and the Lebesgue dominated convergence Theorem, the desired

conclusion follows, ending the proof of the Lemma.

(2.10) LEMMA. (Partition of unity). Let z € X and r > 0. Then, there exists a

sequence {®7(z,y)}j>o0 of non-negative functions satisfying:

(2.11) the support of @7 for j > 1 is contained in the ring C(z, (2K )'r,(2K)I*%r),

"(2.12) the support of B is contained in B(z,4Kr) and ®j(z) =1 on B(z,3Kr),

(2.13) there ezists a constant ¢ shuch that for every j > 0, @7 € Lip(«) as functions of
y with || 7 | < c(2K)Ier—e,

(2.14) 3 @%(z,y) =1 for everyy € X.
320

PROOF. Let n(t) and +(t) in C°°([0,00)) satisfying: 0 < n(t) < 1, supp 1 C [0,4K],
n(t)=1if 0 <t < 3K;0 < y(t) < 1, suppy C [2K,8K%] and v(¢) = 1 if 3K < ¢ < 6K2.
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Taking vo(z,y) = 1 (d(z,y)/r) and ¢;(z,y) = 'y(r—(‘;%%):) for every j > 1, it follows
easily that ®%(z,y) = ¢;(z,y))/ 2 ¥(z,y) for j 2 0, satisfy all the conditions in the
k30

lemma.

LEMMA (2.15). Let k(z,y) be a kernel satisfying (2.1), (2.2) and (2.3). Let b(z) be a
multiple of a (p,00) atom with support contained in B(zo,r). Assume that {®%(z,y)}j>0
is as in Lemma (2.10) and T} is the operator associated to the kernel

kD = k(z,y)®j(z,y), for j 2 0. Then

(2.16) the support of TTb is contained in B(zo,(2K)/*3r) for j >0,
217) (| Tt lleoS Gt forj 2 L1 T5b [l ¢ |1 b lloo #(Bl=o,7))'/%, and
(2.18) JT7b(z)du(z) = 0 for every j > 0.

PROOF. Let us first note that if C(z, (2K)/r, (2K)'+2r) N B(ao,r) #0 for j > 1, from
(1.3),we have

(2.19) (2K) 7 r < d(z,20) < (2K) .

Therefore if z & C(zo, (2K )7~ 'r, (2K)7+3r), then T} b(z) = 0 for every j > 1. For j =0,
it is clear that supp (7¢b) C B(zo,8K?r), and hence (2.16) follows. Next we shall prove
(2.17). By remark (2.5), we get

175012 e | bll2< ¢ b lloo w(B(zo,m))!/2.

On the other hand, since X is a normal space, from (2.5) and (2.19) we obtain, that for

any j > 1.
175 b(z)| = l/[K(x»y)‘I’}(l‘,y) = K(z,20)®j(x, z0)]b(y)du(y)|

zo)?
<ellbloo / Ayiz0)”

d(zg, z)1+9
d(y,zo)<rT
c

Smllbllm-

Finally, (2.18) is a consequence of Lemma (2.4).

@

3r
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Now we are in position to prove the main result.

THEOREM 2.20 Let T be a singular integral operator associated to a kernel k(z,y)
satisfying (2.1), (2.2) with § > 1/1 — 1 and (2.3). Assume that (1 +a) > 1. Then, T 1s

a bounded operator from H,, into H,.

PROOF: By the density of L2(X) in H,, it is enough to show the theorem for f €

L*(X)( H.. Given € > 0, from Theorem A and (1.24), there exists a sequence {by}«

of multiples of (p,o0) atoms with supp(by) C By = B(zg, k), such that f = > by in
=

(E*) and
(2.21) I f Il (14 € > Ass({Br}).

If we are able to prove that

(2.22) - Tf=) Th in (E°),
D & |

wewill get Tf € H, and || Tf ||g, < c || f llg, - In fact, let {@;‘}] be a partition of the

unity as in Lemma (2.10) associated to By, therefore

(2.23) Tf=> > Tibe+ > T¢b in (E) .
k

£ >t

Futhermore, Lemma (2.15) implies that {Tjkbk }j,& are multiples of a (p, 00) atom. Hence,
from (1.24) it follows that ‘

(2.24) TS e, < Ao({T5F bk} k) + Ao ({ T bi }i)-

Let n > 1 be a constant to'be determined later, A = A ({bs }+) and’
B> supp(bek),j > 0. We now estimate

| Tfbi |l w(BY)~/?

(2.25) ZZH(BJ*)W( ‘ ST ) :

k>1

By (1.8), (2.16) and (2.17), the sum (2.25) is bounded by

-\ j b S
CZZ(C2I&) #(Bi)w (%)

E i>1




230

since w is of lower type | > 1/1 + §), (2.25) is bounded by

b ||oo
CECQI\ 1(1 (H&)DZ (Bi)w (H /\’Cl/”[ >

J2>1

< (134).

Therefore, using again that w is of lower type [ and choosing 7 = ¢, the sum (2.25) is

less than or equal to 1, which implies
(2:26) A2({Tfbr} k) < choo({bx})-

On the other hand, by (2.5) T¢f is a bounded operator on L?, thus applying (1.8), (2.16),
(2.17) and the fact that w(s)/s is nonincreasing, we get

. Tobs BO)~1/2
(2.27) ZN(BS o <|| 0bs ”i\lu/(l x) )

k

¢l bk lloo
<c E w(Bi)w ( YD
bk |loo
< Zuee (55

Taking n = ¢, and using (2.27), it follows that
(2.28) Aa({T5 b }i) < cAoo({bk}i).
Collecting the estimates (2.21), (2.24), (2.26) and (2.28), we obtain that
N Tflla<cll flla,
In order to prove (2.22)~, let us first Eote that if $f is the operator of Lemma (2.6)
associated to the kernel k. (z, y), then k.(z,.)is a function of bounded support belonging

to Lip(é) for each z € X. Therefore

T.f= Z T.by, pointwise and in (E*)'
k
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Moreover Lemma. (2.6) implies that T. f converges to Tf in L?. In consequence, if we

are able to show

(2.29) ZT b . ZTbk in H,,

e—0

then (2.22) holds inmediately, completing the proof of the Theorem. Now, in order to

prove (2.29), we decompose both operators, T. and T, as in (2.23). Therefore, we have

(2.30) Z(ibk —Tb) = Z Z(Tf,jbk — T} by)

k k>0

where Tsli ; 1s the operator associated to the kernel

( y)

&.](CC y)_I‘(:L y)[¢l )¢2( (lvy)“) 1](1) (l y) -f ( U)(I) (7 U)

Since by (2.5) K.(z,y) satisfies (2.1), (2.2) and (2.3) with a constant independent of ¢,
using Lemma (2.15) and proceeding as in estimates (2.25) and (2.27), we get that

ZZN(B% (Il T b [l2 p(BS)™1?) < oo,

72>0

where B;-“ D supp(Tsk,jbk). Thus, given 0 < # < 1, there exists N = N(f) such that

(231) S0 D B TE il 1 (BT < 8/2.

|k|>N j>N

This finishes the proof of the Theorem.
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§ 3. CHARACTERIZATION OF THE ORLICZ-HARDY SPACES H,,
In this section we shall work, as before, on a normal space X = (X, d, i) of order «.

Let {b;}: a sequence of multiples of (p, ¢) atoms, 1 < g < oo, such that A ({b;i}) < oo and
a; =| b llg p(Bi)™19/w™ (u(Bi)™"), where By D supp(bi). Let p(t) = t~!/w'(t71)
and (z) € Lip(p) . Then

(3.1) [ 20NN lipo 3 (B 11 bl
<c “ P ”Lip(p) Eai-

In order to estimate the sum )  «; we shall need the following lemma whose proof can

be found in [V], p. 410.

(3.2) LEMMA: Assume that p(t), {b;}: and a; are as above. Then there ezists a constant
c independent of {b;}, such that

3o < el ({bi}) + 1V

Using Lemma (3.2), by (3.1) it follows that the serie Z bi(¢) is absolutely convergent
for every ¥ € Lip(p). Thus, if we define

(3.3) F)y = bi(¥),
we obtain a linear funtional on Lip(p) satisfying

(34) F@) < el % Nnipepy [Ag({bi} + 1))

(3.5) DEFINITION: Let w be a growth function of positive lower type . If p(t) =
t1/w=(t71), we define HP9(X) = HP1, 1 < q < oo, as the linear space of all bounded
linear functionals f on Lip(p) which can be represented as in (3.3), where {b;} is a
sequence of multiples of (p,q) atoms such that Aj({b;}) < co. For f € HP4, we define

I f s, =inf {A({bi})}

where the infimum 1s taken over all possible representations of f of the form (4.3).

We now observe that, since every 1) in E* belongs to Lip(p), we can define the linear

transformation R from H*9 into H.,, given by

(3.6) R(f) = f,
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where fis the restriction of f to E°.

The next result states that R is an isomorphism onto H,. Its proof makes use of the
atomic decomposition of H, and Lemma (5.5) in [V], and it follows the lines of (5.9) in

[MS].

(3.7) THEOREM: Let R be as in (3.6). Then R defines a one to one linear mapping

from HP9 onto HY. Moreover, there exist two positive constants ¢; and ¢z such that

(38) et fllgo SHRf < e |l £l -

PROOF: Let f = Y. b; in H”9. Theorem A implies that

R(ﬁﬂ:‘]) C H, and ” Rf ”st ¢ ” f ”I’;p,q

On the other hand, given g € H,, again by Theorem A, there exists a sequence {b;} of
multiples of {p, ¢) atoms such that

g = Z.bi n (Ea)/ and Aq({bi}) <c “ g HHu :

By (3.4), the sum 3 b; defines an element f of H#? whose restriction to E* coincides

]
with g, that is R(f) = g¢. In order to show that R is one to one, we need to prove
that f(¢) = 0 for every » € E° implies f(¥) = 0 for every ¥ in Lip(p). This result is

obtained in Lemma (5.5) of [V] as a consequence of lemma (3.2).

In what follows we will restrict our attention to the case X = IR™ and we shall study
the connection of the Hardy-Orlicz spaces H,(IR") with Riesz transforms. Using the
boundedness result established in section 2, we shall obtain in Theorem (3.38) a char-

acterization of H,(IR") in terms of these operators

LetP(z) be the Poisson kernel defined by P(z) = ¢ (1 + !zlz)_% and denote Py(z) =
t~"P(z/t). For f € L?(H,(IR"), we shall consider the n 4+ 1 harmonic functions in
Ry = {(z,t): 2 € R™,t > 0} defined by

ui(t,z) = PR f(z), - un(t,z) = PixR, f(z) , unti(t,z) = Ppxf(z).
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Let us denote by F(z,t) the vector field associated to f given by
(3.9) Flz,t) = (ui(t, ). un(t, 2), unpr (2, 2)).

The vector field F satisfies the following generalized Cauchy-Riemann equations:

5u] _ Ouj Q_l_ti
(3.10) divF = Z 3, = 5or = 7,

for every j £ k; 7,k € {1,...,n+ 1}, where x4 = t.

Let z € IR" and I'(z) = {(y,t) € R}*" : |x — y| < t} the cone of aperture one and

vertex in z. We define the non-tangential maximal function f**(z) of f as

fra) = sup ulty)= sup  Pef(y).
(y,t)€T(z) (y,t)el (z)

We shall also consider the following maximal operator

fulx) = suplf(¥)|/A(¥)

where A() = [|¢(t)|dt + |suppy YT [ |p(M+1)(¢)|dt and the supremum is taken over
all the functions ¢ € C™ with compact support such that dist(x, suppy) < |suppy|.
For the case of HP, p < 1, it is known that the norm || f3, ||z» 1s equivalent to that
given by the atomic descomposition. On the other hand, in [V] (see Theorem A) the
equivalence between the atomic Orlicz norm and the norm || f ||L, is shown in the
general context of spaces of homogeneous type.

For the case IR™, following the same argument given in Theorem A it can also be
established that the norm || fi; ||z, is equivalent to that defined in the atomic Orlicz

space H??. Therefore, in the following we shall make use of the maximal 3, instead of

f1.

Moreover, following Garcia Cuerva - Rubio de Francia ((GC-RF] pag. 247) it is easy to
see that '
I farlleo<ell f* |lz, forM such thatM!>1.

On the other hand, the reverse inequality is a consequence of the following result whose

proof is similar to that of Lemma (4.3) in [V].

(3.11) LEMMA: Let w a growth function of positive lower type | > L=, Assume that
b(z) is a function belonging to be LI(IR™), 1 < ¢ < oo, with wpport cointained in
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B = B(z¢,70) and [b(z)dz = 0. Then, there ezists a constant c, independent of b(x ),
such that
/“’(b**(:v))dw < c|Blw(|| b, [BI7/1)

Therefore, in the following we shall assume that there exist two positive constants

0 < ¢; < ¢, satisfying

(312) all flla < leo< e | fllm,

. We shall need the following technical lemma concerning the equivalence between growth

functions.

(3.13) LEMMA: Lety > 1. Let 1(t) be a continuous increasing function of lower type
o and upper type B such that 8 > o > «. Then, the function

w(S)

e

o(t) =1t"
0
18 a continuous, increasing and convex function equivalent to Y (t).

PROOF: Since a > v, we get

2() _/ ¢l+‘yd < ey t)/ g1+ ds = E_E_‘yd'(f)

On the other hand, using the fact that 1(¢) is the upper type 3, we have that

P(st) > esPp(t) if s<1.

Therefore, since > v, we obtain that

1 1
_ P(ts) sP ] c
®(t) = A= ds > cw(t)/o N ds = 3 71/v(t).

To prove that ® is a convex function, it is enougth to see that ®'(t) is increasing. Take

t; < t2. Since 1 is non-decreasing and v > 1, it follows that

_ - Boa(s
1(+3d +4 (87 -47") 0 31—+3db
P(t2)  ¥(t1)
to t1
>ty () [t — 157 +

S Plta) = %its) |

2 t) 24U,

®'(t2) — ®'(t)) = vt 7"

P(t2)  P(t)
t) t
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which ends the proof of the lemma.

In the sequel, we shall assume that ®(t) is a continuous strictly increasing non negative
function of lower type greater than one and of finite upper type, such that tl_i—rgl+ &(t)=0
and tllglo ®(t) = co. '

The following result, on harmonic majorization of subharmonic functions which are

uniformly in an Orlicz space Lg, is an extension to that of Theorem 4.10 in [GC-RF].

3.14) THEOREM: Let U(z,t) be a non-negative subarmonic unétion in IRTT! such
( ;
that

sup || U(.,1) ||Ls < 0.

>0

Then, U(z,t) has a least harmonic majorant-in IREY'. Moreover, this harmonic majo-
rant 13 the Poisson integral of a function h € Le(IR"™), where h is obtained as the limit

of U(z,t;) for any sequence tj | 0 (j — 00) in the weak - * topology of Le.
For the proof of Theorem (3.14) we shall need the next result.
(3.15) LEMMA: Let U(z,t) be a non-negative subarmonic function in R_’;’H satisfying
(3.16) sup || U(.,t) |lLe= M < oo.
>0
Then, there ezists a constant ¢ depending only on ® and n, such that
(3.17y U(z,t) < cM®(1/t") ,for every (z,t) € RTH .

Consequently, U(z,t) is bounded in each proper sub-half-space {(z,t) € IR;'_'H t>t>
0}. Moreover, the following property holds:

U(z,t) -0 as |(z,t)] — oo in each proper sub-half-space.

PROOF: Let (z0,t) € R}*" and

Eo = B((Io,tg),to/g) C B(.Z‘(),to/Q) X (tg —to/?..,t() +t0/2)
= B() X (t0/2,3t0/2)

Since U(z,t) is sub-harmonic, applying the Hélder inequality (1.12) with ¥ the com-
plementary function of ®,we have

1 Fto
(3.18) U(zo,to) < —=— /U(z,t)dmdt < nL+1 /2 / i Xp, (2)U(z,t)dzdt
|Bo|§ tO to/2
(4]
c

310
<t / 1T ool xo, e dt.
to to/2
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Taking || x5, llze= |Bo|®7'(1/|Bol), from (3.16) and (3.18), we get (3.17). On the
other hand, given t; > 0 fix and ¢ > 0, since lir(r)1+ ®~1(s) = 0, there exists t; >ty such
that ®~1(1/t}) < e. Thus, by (3.17) we obtain that

U(z,t) < cMe, for every ¢t > t; and x € IR" .

It only remains to prove that U(z,t) < e, for every t; <t < t; and |z| big enough. Let
z € IR" and |z| > t;. Take B = B((I,{),to/Z) with o < t < t;. Proceeding as in the
first part of the proof, we get

~

étl

C 2
(619 V@D < oy xaea i [
0 : lo/2

XB(z‘to/Q)('.)U('vt) g dt

Now, let us observe that, for each t, we have

(3200 / & [XBetosn) (W)U (vs1)] d / Uy, )dy
B(z, to/’)

/ & (U(y,1)) dy
|[y|>|z]|—t1/2

Since @ is of finite upper type, from (3.16) and (3.20) it follows that

IN

I XB(z,to/g)(.)U(.,t) lLe— 0 as |z] — oo for each t .

Therefore, using in (3.19) the Lebesgue dominated convergence Theorem, we obtain that
U(z,t) — 0 as |z] — oo, uniformly for every t, < ¢ < t, completing the proof of the

lemma.

PROOF OF THEOREM (3.14) : Let {t;}; be a sequence such that ¢; | 0 and
denote f;(z) = U(z,t;). Since || f; |1, < oo for every j, there exists a subsequence of
{fj}, that we also denote {f;}, converging in the weak- * topology of L¢ (see Theorem
144 in [K]). That is, there exists a function f € L¢, such that for every g € Ly, ¥ being

the complementary function of ®, we have

(3.21) [ H@a@is =, [ i@

If we are able to prove that

(3.22) Ula,t +1,) < /Ptu—y)fj(y)dy
e
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for every j, then using (3.21), th. conclusion of the Theorem follows inmediately. Now,

in order to prove (3.22) it is enough to see that the functions
Gj(z,t) = U(z,t +t;) and Fj(z,t) = P f;(z)

tend to zero when |(z,t)] — co. In fact, if this happens, given ¢ > 0, there exists R > 0

big enough satisfying
(3.23) Dj(z,t) = Gj(z,t) — Fj(z,t) <&,

for every (z,t) such that |(z,t)] > R, and in particular, (3.23) holds for every (z,t)
in the boundary of the region Kr = {(z,t) € R}*' : |(z,t)] < R}. Since Dj(z,t) is

subharmonic, it follows that
Dj(z,t) < ¢, for every (z,t) € Kpg,

which together with (3.23) proves (3.22). Finally, let us prove the convergence of the
functions G; and Fj;. Applying Lemma (3.15), we obtain,

Gj(z,t) = 0 as [(z,1)] — o0

and

filz) = 0as |z| - oo .

Using this fact and that f; € Ls, by a standard argumente, we may conclude that
Fj(z,t) — 0 as |(z,t)| > oo,

which completes the proof of the Theorem.
We also need the following lemma which gives a norm inequality between the vector

field F(z,t), defined in (3.9), and the function f(z).

(3.24) LEMMA: Let F(z,t) be the function defined in (3.9). Then
Sup || F('Vt) ||LwS c “ f “Hw °
>0

PROOF: Let n = ny + 1, be a constant to be fixed: later on. Let us estimate

(3.25) sup/w[———-IF(x—’t)l——] drcg/w fsup——"ﬂ% dz

b ) @7 T 7 2P a7
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u(t, y)|
— | d
</ Lyi‘i&t N nmw} :

- (4,
*Z/“’[ T f lIn )1/’] 4

j=1 Iy—13|<t

< Jolariritm ] o
+ 3 [ [t

An application of Theorem 2.20, together with (3.25) and the fact that w(s) is lower
type I, imply

[ 1F@, 1) ] m w[ ) }
?‘;ﬁ’/ [m T EE o 1 F i)

772 R;f**(z) Cl/ljl dz
Z:/ [(772 | Rif [l )M ‘

cmym
n n

=1,

by choosing 71 = ¢; and 52 = ncyc with ¢, the constant appearing in (3.12). This
finishes the proof of the lemma.

The next lemma provides the boundedness of the Poisson integral on H,,,.

(3.26) LEMMA: Let f € H,,. Then u(t,z) = Pyxf(z) belongs to LY(H,, 1 < ¢ < oo,
and .

| w(t, ) 1o, < cll f i,

PROOF: In view of Theorem (3.7), we have that f € H”° and there exists a sequerice
of multiples of (p, c0) atoms such that

() = ij(\ll) , for every ¥ € Lip(p) .

Since Pt(il?) S Llp(p) with “ Pg ”Lip(p)s C(t), ‘We get

(3.27) |u(t,z)] = |f (Pe(z —.))| = |Zb]~ (Pe(z =) | Sc|| Pz =) fLipipn< c(t) .
. J

Therefore, u(t,.) is an L function. Now, let us see that u(t J) €L, 1 < g <oo. Given

g € 8, we have

N
ut) o0 = [ Jim Y byPz)g(e)ie
j=1
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Using (3.27) and the Lebesgue dominated convergence Theorem, we obtain
N
o o)l = | i 3 JbsPi@a@e
N .
= jim, > Ju@Pag@s

N
=| Jim 3 b;(Pixg)|
=1
= |f(Pixg)l < c|l Pexg ||Lip(p) -

In order to prove that u(t,.) € LY, it is enough to show

(3.28) | Pexg l|Lip(p)< e(t) | 9 ll Lo -

Let z,z' € IR™ with jz — z'| > t/2. Then using the fact that p is of upper type m < 1,

we have

(3.29) |Perg(z) — Pexg(2)] S 2 || Prxg floo< 2| PellLell g Il Lo

—n/q |$_‘7:I|
<ct /qP(—T— Il gL

< et ' maz{1/t,1}"p(lx — 2'|) || g || L
=c(t)o(lz — ') || ¢ Il

On the other hand, if |z — 2| < t/2, we obtain

(3:30) [Porg(a) — Perg@)| < [ 1Pue =) = PA&" =) low)ly
i/q
<([1pGa=n-P - obd) ol

1/q
<le—2'| gl ( [19:Pt(z =) + 6 - x’))lqdy)

1/q
< jlz — 2'| I d dy
Sc tn+1 g ”qu ) + (tllx — y,)("+2)q
r—y|<t lz—y|>t

|z —2'|\™ —n/q’
<e(EZZN g

< |z — 2|\ ,—n/g < )
Sep|—— )¢ g llpe <ct)p(lz—z') |l gl s
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because p is of upper type m < 1. Thus, from (3.29) and (3.30) we obtain (3.28). Next
we prove that u(¢,-) € H,. In fact,

(3.31) u(t,")™(z) = sup |PexPixf(y)| < sup |Pryoxflz)] < f7(2)
ly—z|<s ly—z|<s+t

Therefore, we conclude that Pyxf € H,, with || Pexf |m < c |l f ||A.-
(3.32) REMARK: Let f € (Lip(p))', then u(z,t) = f(P(x —-)) is ¢ harmonic function

in IR*'. In fact, taking for example #[u(z,t + h) — u(x)], it can be proved that this
incremental quotient tends to f(%Pt(a: —)), by showing that for each (z,t) fixed

1. N
I 7 [Pern(e =) = Pi(z = )] = 5. Pz =) lLip(e) —o
il t ot ¢ Lip(p h_ﬁg

This, in turn, is a consequence of the mean value Theorem, and the fact that p is upper

type m < 1.
(3.33) LEMMA: Let f be a distribution belonging to H,,. Then
| w(t,.) = fln,— 0, ast — 0.

PROOF: Let £ > 0. We first assume that f € H, (L7, 1 < ¢ < co. Thus, there exists
a ball B = B(zg, R) such that

(3.38) /w(f*"(r))dx <e/2.

CB

Since by (3.31) u(t,-)**(z) < f**(x), it follows that

(3.35) /w [(ut,.) = f()*™(z)]dz <2 /w(f**(:c)) dz <e.

CB CB

On the other hand, if Ay =|| u(t,) — f ||+ |B|~!/9, using that w(s)/s is non increasing,
we have '

w((u(t,.) = /)™(=)) < cw (M(u(t,.) - f)(z))
<ew [(M(u(t’ :) - f) (T) + )‘l]

< cw(A) (M(”(t’ 3: D) 1> '.

Integrating on B, we obtain
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(3.36) wl(u(t,.) = f)™(z)]dz
/

< Cw(A)I | M(u(t,.) = £) Il IBIY7 +1B]]

t—0

< Cw(A)|B| —o -

t—0

From (3.35) and (3.36), since w is of finite upper type, we get

(3.37) )= fllae — O,

t—0

which proves the lemma under the assumnption f € H, (LY. Next, we shall remove
that assumption. Let f € H,. Given € > 0, by the density of LY in H, (see Theorem
(4.16) in [V]), there exists g € L? such that | f — ¢ ||y, < €. Hence, in view of Lemma

(3.26), we have that there exists ¢y = to(&) such that

| ult,) = flla, S| Pox(f—9) lu, + 1l Poxg =g lu, + 11 f =g llm
Setc||f-gllu,<ece,

for every t < to, as we wanted to prove.

Now we are in a position to prove the main theorem, which gives another characteriza-

tion of the Hardy-Orlicz spaces.

(3.38) THEOREM: Letw be a function of lower type | such that l > - Assume that

w(s)/s is non increasing. Then there exist two constants ¢, an ¢, satisfying

(3.39) el flla <0 Fllee + D I Rif laS el £l

JH1

for every f € LY ﬂH‘,(R”),i < ¢ < o0, and

(3.40) e[| f s <I limu(t,) Iz, +_21 I lim Rj(u(t, ) [lL.
J=
<c || fllu,, forevery f e H,.

PROOF: Let f € LY\ H,(IR"). Let us first check the right inequality on (3.39). Since

Pyxf tends to f in L7, we have that

|f()] < £() and R, (a)| < (R;f)**(¢) for a.e.x € R".
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Therefore, ,
|f(z)] ]</ [ /()] ]d, <1
/“’[(cnfum‘/' R (T AT R
and, applying Theorem (2.20),
R f(=)| ] / [ R;f*(z) ]
1 dr < i ) dr <,
/“’[(c AP0 e A T R DU R
for every j = 1,---n, which implies that

I Fllee +d I Rif o< ezl flla. -
j=1

On the other hand, in order to prove the left inequality on (3.39), we shall consider the

function
(3-41) Uy,t) = [Fy,1)I"
with 2=1 5 < I < I, which is subharmonic in view of Lemma 4.14 in [GC,

RF). Now, we observe that Lemma (3.13) implies that the function ¥(t) = w(t ) is
equivalent to a Young function ®(t) of lowe type [/I' > 1 and of upper type 1/I'. Then
using Lemma (3.24), we get

Uy,1) } / ( F(y, 1) )
| — 1 d — 2 2\ d .
3‘;%’/ [(«:nquw)"/' v [\ @7 a7 ) @S

Therefore
) I/
sup || U+ 1) llza< el £ 113 < oo .
t>0

By Theorem (3.14), there exists a function h € Lg such that
(3.42) Uy,t) < Pyxh(y).

Moreover, for t; | 0 (j — o) and g € Ly, with ¢ the Young complementary function

of &, we have
(3.43) /'h(l‘)g(l’)d:l) = lim /U(x,tj)g(x)dw.
. Jee

Now, if G(z) = sup(y yer(z) 1F(¥,1)], by (3.41) and (3.42) we obtain that

(y,1)€T(z)

< [o (i) e fo (L)

| Jole@irenniy )i = w[ sup  (Uly,t)/e nhum’/"} i
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where Mh(z) is the Hardy- Littlewood maximal function. From the maximal operator
theory in Orlicz spaces, it is known that M is bounded on L. Therefore, it follows
that

(3.44) 1G e, < ellnlfl

This implies, in particular, that F is non-tangentially bounded at almost every r € R".
Consequently, by Theorem 4.21 in [GC, RF)), there exists a function Fy(z) such that

(3.45) Fy(z) = limnon tang F(y,t) , fora.e.x € R"
(y,8) =@
In view of (3.43) and (3.45), we get

(3.46) h(z) = |Fo(2)|" for a.e.x € R™ and || Fy ||, ~I| h ||/}

Futhermore, since Py*f converges to f in L9, we obtain
. 1/2
(3.47) |Fo(z)] = (f(ar:)2 + Z(R]f(a:))2> for a.e.z € IR" and
i=1

I Follz, <l £ Nz, +Z I Rif Iz, -
Then, from (3.44), (3.46) and (3. 47) we have

[l @ £ . +Z||anL D) dr

S/ G(z)/(e(ll f L. +Z | B; f e, ))‘/'}

IE [cnéi(ifi )1/']"‘” IE [ TR 1/"]"””
1

which completes the proof of the Theorem for the case f € LY (| H,. Now, we assume
that f € H,. Since Lemma (3.26) implies that u(t,-) € LY\ H,, applying (3.39) it
follows that

(3.48) e llult, ) llm, <Hut ) e, + 3 1 Bi(ut, ) ln.
. j=1

e |ult) I,

From Lemma (3.26) and Remark (3.33), we may conclude that u(t,z) is harmonic

IN

IN

and non-tangentially bounded function. Hence, there exists }in(l)u(t,i) for a.e.x € IR".
Therefore, taking limit in (3.48) and applying Lemma (3.33) and the Lebesgue dominated
convergence Theorem, we obtain (3.40) ending the proof of the Theorem.///



245

REFERENCIAS

(Al

[D-J-8]

[F-S]
[GC-RF]
K]
[M-5]

[M-S-T]
[M-T]

[Vl

Aimar, H., “Singular integrals and approximate identities on spaces on ho-
mogeneous type”. Trans. Amer. Math. Soc. 292 (1985), 135-153.

David, G., Jouneé, J.L. and Semmes, S., “Opérateurs de Calderén - Zyg-
mund, fonctions para accrétives et interpolation”. Rev. Mat. Iberoameri-
cana, 1 (1985), 1-56.

Fefferman, C. and Stein, E.M., “HP Spaces of Several Variables”. Acta
Mathe-matica 129, p. 137-193, 1972.

Garcia-Cuevas, J. and Rubio de Francia, J.L. “Weighted Norm Inequalities
an Related Topocs”. North-Holland, Amsterdam, New York, Oxford. 1985.

Krasnosel’skii, M.A. and Rutickii, Y.B. “Convex Functions and Orlicz Spa

ces”. Groningen, 1961.

Macias, R.A. and Segovia. C. “A Decomposition into Atoms of Distribution
on Spaces of Homogeneous Type”. Advances in Math. 33 (1979), 271-309.

Macias, R.A., Segovia, C. and Torrea, J.L. “Singular Integral Operator with
non Necessarily Bounded Kernels on Spaces of Homogenous Type”. Adv.
in Math., V93, N° 1, 1992.

Madcias, R.A. and Torrea, J.L. “L? and L Boundedness of Singular Integrals
on non Necessarily Normalized Spaces of Homogeneous Type”. Revista de
la Unién Matematica Argentina. Vol. 34, p. 97-114, 1988.

Viviani, B. “An Atomic Decomposition of the Predual of BMO(p)”. Rev.
Mat. Iberoamericana. Vol. 3, N°® 3 y 4, p. 401-425, 1987.

PEMA-INTEC, F.I1.Q. - U.N.L.
Giliemes 3450
3000 Santa Fe, Argentina

Recibido en setiembre de 1993.



