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BOUNDEDNESS OF SINGULAR INTEGRAL OPERATORS ON Hw. 

Eleonor Harboure - Beairiz Viviani 

Presentado pOl" Carlos Segovia 

Abstract: We study the boundedness of singular integral operators on Orlicz-Hardy 

spaces H w , in the setting of spaces of homogeneous type. As an application of this 

result, we obtain a characterization of HwIRn in terms of the Riesz Transforms. 

§ 1. NOTATION AND DEFINITIONS 

Let X be a set. A function d : X x X -+ IR+ U {OJ shall be called a quasi-distance on 

X if there exists a finite constant K such that 

(1.1 ) d(x, y) = 0 if and only if x = y 

(1.2) d(x,y)::.~ d(y,x) 

and 

(1.3) d(x, y) :::; K[d(:T, z) + d(z, y)] 

for every x, y and z in X. 

In a set X, endowed with a quasi-distance d(x, V), the balls 

B(x,r) = {y: d(x,y) < r}, r > 0, 

form a basis for the neighbourhoods of x in the topology induced by the uniform struc­

ture on X. 

We shall say that a set X, with a quasi-distance d( x, y) and a non-negative measure 

p, defined on a O"-algebra of subsets of X containing the balls B(.T,7'), is a. norma.l 
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space of homogeneous type if there exist four positive finite constants 04 1 ,'042 • Kl and 

J{z, J{z ~ 1 ~ J{l, such that 

(1.4) 

(1.5) B(x, r) = X if r > J{lI.t(X) 

(1.6) 

(1.7) B(x,r) = {x} if r < J{zl.L({x}). 

We note that, under these conditions, there exists a finite constant A., sueh that 

(1.8) 0< J.L(B(x, 2r)) ~ AJ.L(B(x, r)) 

holds for every x E X and r > O. 

We shall say that a normal space of homogeneous type (X, d, J.L) is of order 0:, 0 < 0: < 00, 

if there exists a finite constant J{3 satisfying 

(1.9) 

for every x,y and z in X, whenever d(x,z) < r and d(y,z) < r (See [MS]). 

Throughout this paper X = (X, d, J.L) shall denote a normal space of h.omogeneous type 

of order 0:,0 < 0: ~ 1. 

Let p be a positive function defined on lR+. vIe shall say that p. is of upper type m 
. . 

(respectively, lower type m) if there exists a positive constant c such that 

(1.10) 
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for every t 2: 1 (respectively, 0 < t :5 1). A non-decreasing function p of finite upper 

type such that limt~o+ p( t) = 0 is called a growth function. 

For pet) a positive right-continuous non-decreasing function satisfying limt_o+ pit) = 0 

and limt~oo pet) = 00, the function 

(1.11) ~(t) = 1t p(s)ds 

will be called a Young function. 

Given ~(t) a Young function of finite upper type, we define the Orlicz space L~ by 

Lip = {J: J ~(If(x)l)dx < oo}, 

and we denote by 

II f IIL.= inf{A : J ~ Cf~)I) :5 I} 

the Luxemburg norm. 

G~ven a Young function, we consider the complementary Young function of·~ defined 

by 

.,p(t) = t q(s)ds , with q(s) = sup t. 
10 p(t)~s 

For ~(x) a Young function, the Holder inequality 

(1.12) 

holds for every f E Lip and gEL",. 

We shall understand that two positive functions are equivalent if their ratio is bounded 

above and below by two positive constants. 

Let p be a growth function. We shall say that a function .,p(x) belongs to Lip(p), if 

l.,p(x) - .,p(y)1 
11.,p IILip(p)= sup (d( )) < 00 

x#y P x,y 

holds. When pet) is the function t~, 0 < j3 < 00, we shall say that .,p(t) is in Lip(j3) 

and, in this case, II .,p II~ indicates its norm. 
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The space of distributions (EQ:)', introduced by Maci.a"s and SeHo'via in [MS], is the dual "i4 
space of EQ: consisting of all function with bounded support belonging to Lip un for 

some 0 < (J < 0', 

For x E X and 0 < , < 0', we consider the dass T")' (:r )of functions 4' belonging to 

EQ: satisfying the following condition: there exists r such that r ;::: f(2;.t( {:z:}), Sltpp1j' C 

B(x, r) and 

(1.13) 

Given ,,0 <, < 0', we define the ,-maximal function f;(.r) of a distribution f on EO: 
by 

(1.14) 

(1.15) Definition: Let p be a growth function plus a non negative constant or' p == 1. 

A (p,q)-atom, 1 < q:::;: 00, is a function a(x) on X satisfying: 

(1.16) /, a(x)d{t(x) = 0, 

(1.17) the support of a( x) is contained in a ball Band 

(1.18) 

or 

Clearly, when p(t) = t1/p-l,p :::;: 1, a. (p, q)-atom is a (p.q)-atoll1 in the sense of [M-S]. 

Let w be a growth function of positive lower type I such that I( 1 + 0') > 1. For every ., 

with 0 < , < 0' and 1(1 + ,) > 1, we define 

(1.19) 

and we denote 

(1.20) 
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Let w be a growth function of positive lower type I. If p(t) = Ci/w-i(t-I), we define 

the atomic Orlicz Space HP,q(X) = HP''!, 1 < q:::; 00, as the space of all distributions f 
on Ea which can be represented by 

(1.21) 

for every 'ljJ in E(\ where {b;}; is a sequence of multiples of (p, q)-atoms such that if 

supp(b;) c B;, then 

(1.22) LJ1.(B;)w (II b;ll q J1.(Bi)-l/Q) < 00. 

; 

Given a sequence of multiples of (p, q)-atoms, {bdi we set 

(1.23) 

and we define 

(1.24) 

where the infimum is taken over all possible representa.tions of f of the form (1.21). 

It has been ~hown in [V] that the spaces Hw and HP,q are equivalent. More precisely, 

in that paper the following Theorem is proved 

THEOREM A: Let w be a function of lower type 1 .mch that 1(1 + Q) > 1. Assume 

that'w(s)/s is non-increasing. Let p(t) be the function defined by tp(t) = 1/w-1 (1/t). 

Then Hw == HP,q for every 1 < q :::; 00. 

We 0bserve that the statement of the Theorem A implies in particular that the definition 

of Hw is independent of 1',0 < I' < Q and I( 1 + 1') > 1. Furthermore, from proposition 

(3.1) in [V], we may assume without lost of generality; that w is, in additon, continuous, 

strictly increasing and a subaditive function. 
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§ 2. BOUNDEDNESS OF SINGULAR Ii\TEGRAL OPERATORS ON HARDY-

ORLICZ SPACES 

In this section (X, d, f-L) shall mean a normal space of homogeneous type of order (x, 

o < (X :::; 1 and J{ shall denote the constant appearing in (1.3). 

We assume that a singular kernel is a measurable function k : X x X -; Hi satisfying 

the following conditions: 

(2.1) \ k( x , y) \ :::; cdC x, y) -1 for x =F y 

(2.2) There exist 0, ° < 0 :::; (x, such that 

\k(x,y) - k(x',y)\ + \k(y,:r) - k(y,x')\:::; cd(x,x')Od(x,y)-l-O, 

provided d(x,y) > 2d(x,x'). 

(2.3) Let ° < r < R < 00, then 

a) J k(x, y)df-L(y) = 0, for every x E X. 
r5,d(x,y)<R 

and 

b) J key, X )dll(Y) = 0, for every x E X. 
r5,d(x,y)<R 

Given c: > 0, we define 

T~f(x) = J k(x, y)f(y)df-L{y). 

~5,d(x,y)<l/E 

For singular integrals, in the context of spaces of homogeneous type, conditions for their 

boundedness on L2 were given in [AJ, [D-J-S], [M-TJ and [M-·S-TJ. 

In the sequel we shall assume that T is a bounded singular integral operator on L2(X) 

associated to a kernel k(x, y) satisfying (2.1), (2.2) and (2.3). Under these assumptions 

we shall obtain, in Theorem 2.20, the boundedness of T on the spaces Hw' 
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In order to prove the main theorem we shall need some previous results. 

(2.4) LEMMA. Let k(x, y) be a kernel satisfying (2.1) and (2.3). Let cI>(t) be a Lipschitz 

function defined on [0,(0) such that cI>(t) =' 0 for t ~ 2. Assume that cI>( t) satisfies one 

of the following two conditions: 

a) cI>(t) = 1 for t::::; 1, or 

b) cI>(t) = 0 for t::::; 1. 

Let 0 < r < R < 00, then 

J k(x,y)cI>(d(x,y»dJ.t(Y) = 0, for every x E X. 

r~d(x.y)<R 

PROOF. We prove the lemma for cI> satisfying (a). The other case follows the same 

lines. Given 0 < r < R, we have three possibilities: 

i) 2::::; r, 

ii) 0 < r < 2 < R 

iii) 0 < r < R::::; 2. 

If r ~ 2 the lemma follows inmediately. Supposse that (ii) holds. Since k(x, y) satisfies 

(2.3) and cI>(t) = 1 for t ::::; 1, it is enough to assume that r ~ 1 in this case. Given c > 0, 

let P = {to, t 1, ... t N} be a partition of the interval [r, 2], with t:l.ti = ti ~ ti-l < S and 

S a constant depending on c to be determined later. Then we have 

J k(x,y)cI>(d(x,y»dJ.t(Y) = t, J k(x,y)[cI>(d(x,y» ~ cI>(td]dJ.t(y) 

r~d(x.y)<R t'_1 ~d(X.y)<ti 

N 

+ L cI>(ti) k(x, y)dJ.t(y); 
i=l 
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Using that ~ is a Lipschitz function and applying (2.1) and (2.3), we obtain 

N . J k(x, y)~(d(x, y))dfL(y)1 :s; Cb?= J Ik(x, y)ldfL(y) 
r~d(z,y)<R l=lti_c5d(z,y)<ti 

:s; cb J Ik(x, Y)ldfL(Y) 

1~d(z,y)<2 

:s; cb. 

Choosing b such that cb < c:,we conclude the proof of (ii). The remaining case (iii) 

follows the same line. 

(2.5) REMARK. Let ~ be as in Lemma (2.4). For c: > 0, the kernel k (x, y) 
~(d(:,y»). satisfies (2.1) and, from Lemma (2.4), also verifies (2.3). On other hand, 

since X is of order Ct, (2.2) holds with constant independent of c: .. 

Let 'l/Jl and 'l/J2 in COO([O, 00)) satisfying the following conditions: SUPP'I/JI C [1/2,00) and 

'l/Jl(t) = 1 ift;::: l;supp'I/J2 C [0,2] and 'l/J2(t) = 1 for t S 1. For f E P, 1 :s; p < 00, we 

define - J d(x y) . 
T"J(x) = k(x, Y)'l/Jl(-;-)'l/J2(c:d(x, y))f(y)dfL(Y). 

(2.6) LEMMA. Let k( x, y) be a singular kernel satisfying (2.1), (2.2) and (2.3). Then, 

liTe! - Tfll£2 -t 0, asc: -t O. 

PROOF. We have 

Tef(x) = J k(x, Y)1/Jl (d(X: y)) f(y)dfL(y) + Tef(x) 

e/2~d(z,Y)~E 

+ J k(x, y)'l/J2(c:d(x, y))f(y)dfL(Y) = T; f(x) + T,d(x) + T; f(x). 

1/e~d(z,y)<2/E 

Since TEf(x) converges to Tf in L2, we only need to'prove that T;f converges to zero 

in L2 for i = 1,2. Clearly from (2.1), we have 

(2.7) T;f(x):s; cMf(x) , for i = 1,2. 
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From (2.7) and by the density in L2 of the Lipschitz -y functions with bounded support, 

it is enough to prove the convergence of Til for such functions. Let I be a function 

with bounded support belonging to Lip(-y). Then by Lemma (2.4), we get 

(2.8) IT;f(x)1 = I J k(X,y)1fJ1 (d(X;Y») [f(y) - l(x)]dJl(Y)I:::; c II I 11""1 c:""1. 

t:/2<d(x,y)<t: 

On the other hand from (2.1), we obtain 

IT; f(x)1 :::; c: J 11fJ2(c:d( x, Y »IIf(y )ldll(Y) 

l/t:'5,d(x,y) <2/t: 

( )

1/2 

:::; c: II IIIL2 J 11fJ2(c:d(x,y»12dIL(Y) 
1/t:'5,d(x,y)<2/t: 

(2.9) :::;cIlIIlL2c:1/ 2. 

By (2.7), (2.8), (2.9) and the Lebesgue dominated convergence Theorem, the desired 

conclusion follows, ending the proof of the Lemma. 

(2.10) LEMMA. (Partition of unity). Let x E X and r > O. Then, there exists a 

sequence {<Pi(x, y)} i~O of non-negative functions satisfying: 

(2.11) the support of <Pi for j ~ 1 is contained in the ring C(x, (2J()i r , (2J()i+ 2r ), 

'(2.12) the support of <Po is contained in B(x,4](r) and <po(x) = 1 on B(x,3](r), 

(2.13) there exists a constant c shuch that for every j ~ 0, <Pi E Lip(a) as functions of 

y with II <Pi lIa:::; c(2I()-ia r - a , 

00 

(2.14) E <Pi(x, y) = 1 for every y E X. 
i~o 

PROOF. Let 7J(t) and -yet) in COO([O,oo)) satisfying: 0 :::; 7J(t) :::; 1, S1tpp 7J C [0,4/(], 

7J(t) = 1 if 0:::; t :::; 3J(; 0:::; -y(t) :::; 1, S1tpP'Y C [2/(,8J(3] and -yet) = i if 3K :::; t S 6/(2. 
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Taking tPo(x, y) = 17 (d(x, y)/r') and1j'i(x, y) = 1'( r(~}~)~~l) for every j ~ 1, it follows 

easily th,at <I>r:(x, y) = tPi(x, y»/ L: tPk(X, y) for j ~ 0, satisfy all the conditions in the 
J k~O 

lemma. 

LEMMA (2.15). Let k(x,y) be a kernel satisfying (2.1), (2.2) and (2.3). Let b(x) be a 

multiple ola (p, 00) atom with support contained in B(xo, r). Assume that {<I>j(x, y)} i~O 

is as in Lemma (2.10) and TJ is the operator associated to the kernel 

kj = k(x, y)<I>j(x, y), for j ~ O. Then 

(2.16) the support ofTJb is contained in B(xo,"(2J()i+3r ) for j ~ 0, 

(2.17) II TJb 1100:5 (2~J')~'lr'+6) for j ~ 1, II Tab IIp:5 c II b 1100 p(B(xo,r»1/2, and 

(2.18) JTJb(x)dp(x) = 0 for every j ~ O. 

PROOF. Let us first note that if C(x, (2J()i 1·, (2J()i+2 r ) n B(xo, r) #0 for j ~ 1, from 

(1.3),we have 

(2.19) 

Therefore if x ¢ C(xo,(2J()i- 1r ,(2K)i+3r), then TJb(x) = o for every j ~ 1. For j = 0, 

it is clear that supp (Tab) C B(xo, 8J(2 r ), and hence (2.16) follows. Next we shall prove 

(2.17). By remark (2.5), we get 

On the other hand, since X is a normal space, from (2.5) and (2.19) we obtain, that for 

anyj~1. 

d(y,xo)<r 

Finally, (2.18) is a consequence of Lemma (2.4). 
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Now we are in position to prove the main result. 

THEOREM 2.20 Let T be a singular integral operator associated to a kernel k( x, y) 

satisfying (2.1), (2.2) with 8 > 1/1-1 and (2.3). Assume that 1(1 + a) > 1. Then, T is 

a bounded operator from H", into H",. 

PROOF: By the density ofL2(X) in H"" it is enough to show the theorem for f E 

L2(X)nH",. Given € > 0, from Theorem A and (1.24), there exists a sequence {bdk 

of multiples of (p,oo) atoms with supp(bk) C Bk = B(xk,rk), such that f = 'L-bk in 
k . 

(EO)' and 

(2.21) 

If we are able to prove that 

(2.22) T f= LTbk in (Eo)', 
. '.k 

we will get Tf E H", and II Tf IIH",:::; c II f IIH", . In fact, let {lPj} j be a partition of the 

unity as in Lemma (2.10) associated to B k , ther~fore 

(2.23) Tf = LLTfbk + ETtbk in (EO)'. 
k j~l k 

Futhermore, Lemma.(2.15) implies that {Tjkbk} j,k are multiples of a (p, 00) atom. Hence, 

from (1.24) it follows that 

(2.24) 

Let 7J ~ 1 be a' constant -to be determined later, >. = '7JAoo({ bd-k} and' 

Bt ::J supp(Tjbk),j ~ o. We now estimate 

(2.25) 

By (1.8), (2.16) and (2.17), the sum (2.25) is bounded by . 

c ~~(C2K)j Jl(Bk)W C2il):(~_~;).l/I) 
J_ 

" ! 
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since w is of lower type I> 1/1 + 5), (2.25) is bounded by 

c L(c2Inj(1-(lH)I) L p(Bdw (II ~~)!oo ) 
j~l k 

'" (1Ibkll oo ) :sc ~ p(Bdw )..lll . 
k 

Therefore, using again that w is oflower type I and choosing 17 = c, the sum (2.25) is 

less than or equal to 1,which implies 

(2.26) 

On the other hand, by (2.5) Tok is a bounded operator on L2, thus applying (1.8), (2.16), 

(2.17) and the fact that w(s)/s is nonincreasing, we get 

(2.27) 

Taking 1] = c, and using (2.27), it follows that 

(2.28) 

Collecting the estimates (2.21), (2.24), (2.26) and (2.28), we obtain that 

II TIll H", :S C " 1 "H", 

In order to prove (2.22), let us first note that if 1'1 is the opr'rator of Lemma (2.6) 

associated to the kernel ke(x, y), then ke(x, .)is a function of houndp.d support belonging 

to Lip( 8) for each x EX. Therefore 

Tel'= LTebk' pointwise and in (EDt)' . 
k 
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Moreover Lemma (2.6) implies that TEf converges to Tf in L2. In eOllseqlleuCl" if we 

are able to show 

(2.29) LYebk _ LTbk in Hw, 
k ,,--+0 k 

then (2.22) holds inmediately, completing the proof of the Theorem. Now, in order to 

prove (2.29), we decompose both operators, To and T, as in (2.23). Therefore, we have 

(2.30) 

= LLt;'jh, 
k j?O 

where t:'j is the operator associated to the kernel 

Since by (2.5) K,,(x, y) satisfies (2.1), (2.2) and (2.3) with a constant independent of 10, 

using Lemma (2.15) and proceeding as in estimates (2.25) and (2.27), we get that 

LL/-L(Bj)w(11 tE~jbk 112 /-L(Bj)-1/2) < 00, 

k j?O 

where i3j :J supp(t':'jbk ). Thus, given: 0 < j3 ::; 1, there exists N = N(j3) such that 

(2.31) L L /-L(i3j)",'(11 tek,jbk 112 /-L (i3j)-J/2) < /3/2. 
Ikl>N j>N 

This finishes the proof of the Theorem. 
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§ 3. CHARACTERIZATION OF THE ORLICZ-HARDY SPACES Hw 

In this section we shall ~ork, as before, on a normal space X = (X, d, /1) of order a. 

Let {bdi a sequence of multiples of (p, q) atoms, 1 < q ~ 00, such that Aq( {bd) < 00 and 

ai =11 bi Ilg /1(Bi)-l/q /w- 1(/1(B;)-J), where Bi ~ supp(bi ). Let pet) = t-1/w-1(r 1) 

and 'Ij;(x) E Lip(p) . Then 

(3.1) I L bi('Ij;) I ~II 'Ij; IILip(p) LP(ri)/1(Bd/ql II bi Ilq 

~ c II 'Ij; IILip(p) L ai· 
i. 

In order to estimate the sum I: ai we shall need the following lemma whose proof can 
i 

be found in [V], p. 410. 

(3.2) LEMMA: Assume that pet), {bdi and Cl:i are as above. Then there exists a consta.nt 

c independent of {bi.}, such that 

Using Lemma (3.2), by (3.1) it follows that the serie I:b i (1') is absolutely convergent 
i 

for every 'Ij; E Lip(p). Thus, if we define 

(3.3) 

we obtain a linear funtional on Lip(p) satisfying 

(3.4) If('Ij;)1 ~ c II v' IILip(p) [Aq({bd + 1)] 1// 2 

(3.5) DEFINITION: Let w be a growth function of positive lower type t. If p(t) = 

r1/w-1(r1), we define HP,g(X) = HP,q, 1 < q ~ 00, as the linear space of a,ll bO'llnded 

linear functionals f on Lip(p) which can be represented as in (3.3), where {b;} is a 

seq1tenCe of multiples of (p, q) atoms st£ch that Ag( {bi }) < 00. For f E ii p,q, we define 

II f II][P .• = inf {Ag({bi})} , 

where the infimum is taken over all possible representations of f of the fOT'm (4.3). 

We now observe that, since every 'It' in EO! belongs to Lip(p), we can define the linear 

transformation R from HP,g into Hw given by 

(3.6) R (1) = 1, 
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where 1 is the restriction of f to Ecr. 

The next result states that R is an isomorphism onto H w. Its proof makes use of the 

atomic decomposition of Hw and Lemma (5.5) in [V], and it follows the lines of (5.9) in 

[MSJ. 

(3.7) THEOREM: Let R be as in (3.6). Then R defines a one to one l-inear mapping 

from jjp,q onto HW. Moreover, there exist two positive constants c] and C2 such that 

(3.8) 

PROOF: Let f = L, bi in jj p,q. Theorem A implies that 

On the other hand, given 9 E Hw , again by Theorem A, there exists a sequence {bd of 

multiples of (p, q) atoms such that 

9 = :L bi in (E cr ), and Aq( {bd) :s: c II 9 IIHw . 

By (3.4), the sum L, bi defines an element f of jjp,q whose restriction to EDt coincides 
I 

with g, that is R(J) = g. In order to show that R is one to one, we need to prove 

that f( 'lj;) = 0 for every 'lj; E EDt implies f( 'lj;) = 0 for every 'lj; in Lip(p). This result is 

obtained in Lemma (5.5) of [V] as a consequence of lemma (3.2). 

In what follows we will restrict our attention to the case X = IRn and we shall study 

the connection of the Hardy-Orlicz spaces Hw(IRn) with Riesz transforms. Using the 

boundedness result established in section 2, we shall obtain in Theorem (3.38) a char­

acterization of Hw(IRn) in terms of these operators 

LetP(x) be the Poisson kernel defined by Pix) = cn (1 + !xI2)-~ and denote Pt(x) = 
rn P(x/t). For f E L2 n Hw(IRn ), we shall consider' the n + 1 harmonic functions in 

IR~+ 1 = {( x ,t) : x E IRn, t > O} defined by 
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Let us denote by F(x, t) the vector field associated to I given by 

(3.9) F( x, t) = (Ul (t, .c), ... , tt n ( t, x), Un+l (t, x)). 

The vector field F satisfies the following generalized Cauchy-Riemann equations: 

(3.10) 
n au' au' aUk 

divF = '" _J = 0 and _J = -
~ax' aXk ax' 

. j=1 J J 

for every j =I- k ; j, k E {I, ... , n + I}, where Xn+l = t. 

Let x E mn and f(x) = {(y, t) E m++l : Ix - yl < t} the cone of aperture one and 

vertex in x. We define the non-tangential maximal function f**(x) of I as 

f**(x) = sup u(t,y) = sup Pt*l(y)· 
(y,t)Er(x) (y,t)Er(x) 

We shall also consider the following maximal operator 

IM(x) = supII(~)I/A(~), 

where A(~) = J 1~(t)ldt + Isupp~IM+l J Iv,(M+l)(t)ldt and the supremum is taken over 

all the functions ~ E Coo with compact support such that dist(x, suPPv') < Isupp~l. 
For the case ofHP, p ~ 1, it is known that the norm 111M IILP is equivalent to that 

given by the atomic descomposition. On the other hand, in [V] (see Theorem A) the 

equivalence between the atomic Orlicz norm and the norm II I; IlL., is shown in the 

general context of spaces of homogeneous type. 

For the case mn , following the same argument given in Theorem A it can also be 

established that the norm 111M IlL., is equivalent to that defined in the a.tomic Orlicz 

space HP,q. Therefore, in the following we shall make use of the maximal 1M instead of 

I;. 

Moreover, following Garda Cuerva - Rubio de Francia ([GC-RF] pag. 247) it is easy to 

see that 

111M IlL., ~ c II f** IlL., forM such thatMI > 1 . 

On the other hand, the reverse inequality is a consequence of the following result whose 

proof is similar to that of Lemma (4.3) in [V]. 

(3.11) LEMMA: Let w a growth function of positive lower type I > n~l' Assume that 

b(x) is a function belonging to be Lq(mn ), 1 < q ~ 00, with S1tpport cointained in 
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B = B( Xo, ro) and J b( x )dx = o. Then, there exists a constant c, independent of b( J:}, 

such that J w(b**(x))dx ::; clBlw(11 b Ilg IBI-llg),. 

Therefore, in the following we shall assume that there exist two positive constants 

0< Cl ::; C2, satisfying 

(3.12) 

We shall need the following technical lemma concerning the equivalence between growth 

functions. 

(3.13) LEMMA: Let 'Y ~ 1. Let 1jJ(t) be a contin1tOus increasing function of lower type 

a and upper type (3 such that (3 ~ a > 'Y. Then, the function 

cI>( t) = ('I t 1jJ( s) ds 
Jo s1+/' 

is a continuous, increasing and convex function equivalent to 1/'( t). 

PROOF: Since a> 'Y, we get 

111jJ(tS) 11 SO c 
cI>(t) = ~ds ::; c1jJ(t) j::tds = --1/,(t). 

os/' 0 s"'f 0'-1 

On the other hand, using the fact that 1/,{t) is the upper type /3, we have that 

1jJ(st) ~ csfJ1jJ(t) if s::; 1 . 

Therefore, since (3 > 'Y, we obtain that 

To prove that cI> is a convex function, it is enougth to see that cI>t (t) is increasing. Take 

tl < t 2 • Since 1jJ is non-decreasing and I ~ 1, it follows that 
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which ends the proof of the lemma. 

In the sequel, we shall assume that cfl(t) is a continuous strictly increasing non negative 

function of lower type greater than one and of finite upper type, such that lim cfl( t) = 0 
t-O+ . 

and lim cfl(t) = 00. 
t-+oo 

The following result, on harmonic majorization of subharmonic functions which are 

uniformly in an Orlicz space LIl>, is an extension to that of Theorem 4.10 in [GC-RF]. 

(3.14) THEOREM: LetU(x, t) be a non-negative subarmonic function in lR++lsuch 

that 

sup II U(.,t) IIL.< 00. 
t>o 

Then, U(x, t) has a least. harmonic majorant·in lR++l. Moreover, this harmonic majo­

rant is the Poisson integral of a function h E Lcp (lRn), where h is obtained as the limit 

ofU(x,tj) for any sequence tj 10 (j -'"+ 00) in the weak - * topology of Lcp. 

For the proof of Theorem (3.14) we shall need the next result. 

(3.15) LEMMA: Let U(x, t) be a non-negative subarmonic function in lR++l satisfying 

(3.16) sup II U(., t) IIL.= M < 00. 
t>o 

Then, there exists a constant c depending only on cfl and n, such that 

(3.17) 

Consequently, U(x, t) is bou.nd~d in each proper sub-half-space {(x, t) E lR++l : t ~ [> 

O}. Moreover, the following property holds: 

U(x, t) -'"+ 0 as I(x, t)l-'"+ 00 in each proper sub-half-space. 

PROOF: Let (xo, to) E lR++ 1 and 

Eo = B((xo, to), to/2) c B(xo, t o/2) x (to - to/2, to + to/2) 

= Bo x (to/2,3to/2). 

Since U(x, t) is sub-harmonic, applying the Holder inequality (1.12) with III the com­

plementary function of cfl, we have 

(3.18) U(xo, to) :::; -l-J U(x, t)dxdt::; n~l l~to r XBo (x)U(x, t)dxdt 
IBol_ to to/~ ilRn 

Bo 

c l~to 
:::; t n+! II U(.,t) IIL.II XBo IIL~ dt. 

o to/2 
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Taking II XBo ilL",=: IBol1>-I(l/IBo/), from (3.16) and (3.18), we get (3.17). On the 

other hand, given to > 0 fix and E > 0, since lim 1>-1(5) = 0, there exists t1 > to such 
8-+0+ 

that 1>-l(l/t~).s E. Thus, by (3.17) we obtain that 

U(x, t) .s CME, for every t 2: i l and.r E JR" 

It only remains to prove that U(x, i) .s E, for every io .s t < t] and I:rl big enough. Let 

x E JR"and Ixl > tl . Take B = B((x, i), io/2) with to .s i < i l . Proceeding as in the 

first part of the proof, we get 

(3.19) 

3 t 

U(x, i) .s tn~l II XB(x,t o/2) ilL", 12 1 II XB(x,to/2)(')U(" i) ilL .. di 
a . to /2 

Now, let us observe that, for each i, we have 

(3.20) J1> [XB(x,to/2)(y)U(y,i)] dy = r 1>(U(y, i))dy 
} B(x,to/2) 

.s r 1> (U(y, i)) dy 
JIYI~lxHl /2 

Since 1> is of finite upper type, from (3.16) and (3.20) it follows that 

II XB(x,to/2)(.)U(.,i) IIL .. ---> 0 as I:rl---> 00 for each i . 

Therefore, using in (3.19) tht; Lebesg71.e dominated convergence Theorem, we obtain that 

U(x, i) ---> 0 as Ixl ---> 00, uniformly for every to .s t < t, completing the proof of the 

lemma. 

PROOF OF THEOREM (3.14) : Let {ij}j be a sequence such that tj 1 0 and 

denote iJ(x) = U(x,tj). Since II iJ IIL .. < 00 for every j, there exists a subsequence of 

{iJ}, that we also denote {iJ}, converging in the weak- * topology of Lcp (see Theorem 

144 in [K]). That is, there exists a function f E Lcp, such that for every 9 E LIjJ, W being 

the complementary function of 1>, we have 

(3.21 ) J iJ(x)g(x)dx i:--;" J f(x)g(x)dx. 

If we are able to prove that 

(3.22) U(x,i+ij).s J Pt(x -y)fj(y)dy 

JR" 
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for every j, then using (3.21), Lh, conclusion of the Theorem follows inmediately. Now, 

in order to prove (3.22) it is enougll to see that the functions 

tend to zero when I(x, t)1 --.. 00. In fact, if this happens, given E > 0, there exists R > 0 

big enough satisfying 

(3.23) 

for every (x, t) such that I(x, t)1 ;::: R, and in particular, (3.23) holds for every (x, t) 

in the boundary of the region ]{R = {(x, t) E 1R~+1 : I(x, t)1 ::; R}. Since Dj(x, t) is 

subharmonic, it follows that 

D j (x, t) ::; E , for every (x, t) E ]{ R , 

which together with (3.23) proves (3.22). Finally, let us prove the convergence of the 

functions Gj and Fj . Applying Lemma (3.15), we obtain, 

Gj(x, t) --.. 0 as I(x, t)1 --.. 00 

and 

fJ(x) --.. 0 as Ixl --.. 00 . 

Using this fact and that fJ E; Lit>, by a standard argumente, we may conclude that 

Fj(x, t) --.. 0 as I(x, t)1 --.. 00 , 

which completes the proof of the Theorem. 

We also need the following lemma which gives a norm inequality between the vector 

field F(x, t), defined in (3.9), and the function f(x) .. 

(3.24) LEMMA: Let F(x, t) be the function defined in (3.9). Then 

sup II F(., t) IILw::; c II f IIHw . 
t>o 

PROOF: Let "I = "11 + "12 be a constant to be fixed· later on. Let us estimate 

(3.25) J [ IF(x, t)1 ] d < J [~ IUj(t, x)1 1 d sup w x w ~ sup x 
t>o ("I II f IIHw)I/1 - j=] t ("I II f IIHw )1/1 
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An application of Theorem 2.20, together with (3.25) and the fact that w(s) is lower 

type 1, imply 

by choosing "71 = C2 and "72 = nC2c with C2 the constant appearing in (3.12). This 

finishes the proof of the lemma. 

The next lemma provides the boundedness of the Poisson integral on Hw' 

(3.26) LEMMA: Let f E Hw. Then u(t,x) = Pt*f(x) belongs to U nHw, 1 < q:::; 00, 

and 

II u(t,·) 11K,:::; ell f IIH",. 

PROOF: In view of Theorem (3.7), we have that f E HP'oo and there exists a sequence 

of multiples of (p, 00) atoms such that 

f('Il) = L bj('Il) , for every 'Il E Lip(p) . 
j 

Since Pt{x) E Lip(p) with II Pt IILip(p):::; c(t), we get 

(3.27) lu(t,x)1 = If(Pt(x -.)) I ~ I Lbj (Pt(x - .» I:::; c II Pt(x -.) IILip(p):::; c(t) . 
j 

Therefore, u(t,.) is an Loo function. Now, let us see that u(t,.) E Lq, 1 < q < 00. Given 

9 E 5, we have 
N 

u(t, ~)(g(.)) = J lim "bj*Pt(x)g(x)dx 
N-+oo L...J 

j=1 
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Using (3.27) and the Lebesgue dominated convergence Theorem, we obtain 

N 

lu(t,·)(gc))1 = I )~L J bj*Pt(x)g(x)dxl 
j=1 
N 

= I lim "'Jbj(x)Pt*g(x)dx l 
N---oo ~ j=1 

N 

= I lim '" bj(Pt*g)1 
N---oo ~ 

j=1 
= I!(Pt*g)1 ::;; e /I Pt*g /lLip(p) . 

In order to prove that u (t, .) E L q, it is enough to show 

(3-.28) /I Pt*g /lLip(p)::;; e(t) /I 9 /lLq' 

Let x, x' E IRn with Ix - x'I> t/2. Then using the fact that p is of upper type m < 1, 

we have 

(3.29) /Pt*g(x) - Pt*g(x')1 ::;; 2 /I Pt*g /100::;; 2 /I Pt ilL' /I 9 /lL" 

::;; eCn/q'p ex ~ xII) /I 9 /lL" 

::;; eCn/q'max{l/t, l}mp(lx - x'I) /I 9 /lLq' 

= e(t)p(lx - x'I) /I 9 /lL" 

On the other hand, if Ix - x"1 < t/2, we obtain 

(3.30) IPt*g(x) - Pt*g(x')1 ::;; J /Pt(x - y) - Pt(x' - y)1 Ig(y)ldy 

::;; (J /Pt(x - y) - Pt(x' - yWdy y/q /I gilL" 

::;; Ix - x'iII 9 /lL" (J IV' xPt((x - y) + 8(x _ xl)Wdy) l/q 

( )

1/9 

Ix - x'I dy 
::;; e t n+1 /I gilL" J dy + J (tllx _ y/)(n+2)q 

x-yl<t Ix-yl>t 

::;; e (Ix ~ xII) m C n/q' II 9 /lLq' 

::;; ep ex ~ xII) c n/q' Il 9 /lL"::;; e(t)p(lx - x') II 9 /lL" , 
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because p is of upper type m < 1. Thus, from (3.29) and (3.30) we obtain (3.:28). Next 

we prove that u(t,·) E Hw. In fact, 

(3.31) u(t,·)**(x) = sup JPs*Pt*f(y)l:::; sup IPt+s*f(x)l:::; f**(:r) . 
Iy-xl<s Iy-xl<s+t 

Therefore, we conclude that Pt* f E H"" with II Pt* f II Hw:::; c II f II Hw' 

(3.32) REMARK: Let f E (Lip(p»)', then u(x, t) = f(Pd x - .)) i8 a. harmonic fll:nction 

in m~+l. In fact, taking for example Hu( x, t + h) - u(.r)], it can be proved that this 

incremental quotient tends to f( it Pt ( x - .) ),by showing that for each (x, t) fixed 

II ~[Pt+h(X - .) - Pt(x - .)]- .! Pt(x - .) IILip(p) ~·o ' 
h~O 

This, in turn, is a consequence of the mean value Theorem, and the fact that p is upper 

type m < 1. 

(3.33) LEMMA: Let f be a distribution belonging to Hw. Then 

lIu(t,.)-fIIHw~O, ast~O. 

PROOF: Let e: > O. We first assume that f E Hw n Lq, 1 < q :::; 00. Thus, there exists 

a ball B = B( Xo ,R) such that 

(3.34) J w (f**(x)) dx < c/2. 

CB 

Since by (3.31) u(t, ·)**(x) :::; J**(x), it follows that 

(3.35) J w [(u(t,.) - f(·»**(x)] dx :::; 2 J w (f**(x» dx < c. 

CB CB 

On the other hand, if >'t =11 u(t,·) - f IILq IBI-1/q, using that w(s)/s is non increasing, 

we have 

w ((u(t,.) - f)**(x)) :::; cw (M(u(t,.) - f)(x») 

:::; cw [(M(u(t, J - f) (x) + At] 

:::; CW(At) (M(U(t, 1t- f)(x) + 1) . 
Integrating on B, we obtain 
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(3.36) J W[(ll(t,.) - f)**(x)]d:r 

B 

::; CW(At)IBI ~o . 
t~O 

From (3.35) and (3.36), since W is of finite upper type, we get 

(3.37) II ll(t,·)-fIIHw _0, 
t-O 

which proves the lemma under the assumnption f E Hw nLg. Next, we shall remove 

that assumption. Let f E Hw. Given c > 0, by the density of Lq in Hw (see Theorem 

(4.16) in [VD, there exists 9 E Lq such that II f - 9 IIHw < c. Hence, in view of Lemma 

(3.26), we have that there exists to = to(c) such that 

Illl(t,·) - f IIHw ::;11 Pt*(f - g) IIHw + II P,*g - 9 IIHw+ II f - 9 1111.;, 

::; c + c II f - 9 II Hw::; cc: , 

for every t ::; to, as we wanted to prove. 

Now we are in a position to prove the main theorem, which give5 another characteriza­

tion of the H ardy- Orlicz spaces. 

(3.38) THEOREM: Let W be a j1mction of lower type I s'uch tha.t I > n~ l' Ass·u.rne that 

w(s)/s is non increasing. Then there exist two consta.nts (;1 an C2 ,lU,tisfying 

n. 

(3.39) C1 II f IIHw ::;11 f IILw + L II Rjf IILw::; C2 II f Illiw ' 
j+1 

n 

(3.40) C1 II f IIHw ::;11 ~~ u(t,.) IILw + L II ~~IJ Rj(ll(t, .)) IILw 
j=l 

::; C2 II f IIHw' for every f E Hw' 

PROOF: Let f E Lq n Hw(.JRH ). Let us first check'the right inequality on (3.39). Since 

Pt* f tends to f in Lq, we have that 

If(x)1 ::; f**(x) and IRif(x)1 ::; (Rjf)**(x) for a.e.x E mn. 
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rherefore, 

f w [(c IIIJ~~~~)l/I] ~ J w Lc I:/;~I(:~I)I/I] dx ~ 1 , 

and, applying Theorem (2.20), 

f [ 'IRj/(x)1 ] d < f [ Rjf**(x) 'J d < 1 
w (c II I IIH,..) 1/1 X - w (c II I IIH,.,)I/1 x - , 

for every j = 1"" n, which implies that 

n 

II filL.., + L II Rjl ilL.., ~ c2 II I IIH.., 
j=l 

On the other hand, in order to prove the left inequality on (3.39), we sha.ll eonsider the 

function 

(3.41) U(y, t) = W(y, t)1" , 

with n;;l < n~1 < l' < 1, which is subharmonic in view of ,Lemma 4.14 in [Ge, 

RF]. Now, we observe that Lemma (3.13) implies that the function 'INt) = w(t l / I') is 

equivalent to a Young function q,(t) of lowe type Ill' > 1 and of upper type 1//'. Then 

using Lemma (3.24), we get 

f [ U(y,t) ] < f ( IF(y,t)1 ) < ' 
~~~ q, (cllfIlH.,)I'/1 dy_~~~ w (cIl/IlH..,)!/1 dy_1. 

Therefore 

sup II U(·,t) IIL.~ c II I II~'< 00. 
t>o .., 

By Theorem (3.14), there exists a function h E L</> such that 

(3.42) U(y, t) ~ Pt*h(y). 

Moreover, for tj ! 0 (j -+ (0) andg E L"" with t/J the Young complementm'y function 

of q" we have 

(3.43) f h(x)g(x)dX = lim f U(x, tj)g(x)dx. 
}-OO 

Now, if G(x) = sup(y,t)Er(z) IF(y,t)l, by (3.41) and (3.42) we obtain that 

f w [G(x)/(c II h IIL.)I/I'] dx ;;:: fw [ sup (U(y, t)/c II hilL", )I/I'jdx 
, ' (y,t)Er(z) 

f ( h**(X) )1/1 f (Mh(X») 
~ w c II h II L. dx ~ q, c II h II L. dx, 
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where Mh(x) is the Hardy-Littlewood maximal function. From the maximal operator 

theory in Orlicz spaces, it is known that M is bounded on Lq,. Therefore, it follows 

that 

(3.44) II G IILw Sell h II~~' , 
This implies, in particular, that F is non-tangentialry bounded at almost every x E JRn. 

Consequently, by Theorem 4.21 in [GC, RF)), there exists a function Fo(x) such that 

(3.45) Fo(x) = lim non tang F(y, t) , for a.e.x E JRn 
(y, t) - x 

In view of (3.43) and (3.45), we get 

, 1/1' 
(3.46) h(x) = IFo(x)11 for a.e.x E JRn and II Fo IILw~11 hilL,. 
Futhermore, since Pt* f converges to f in Lq, we obtain 

(3.47) 1F,(x)1 ~ (/(X)' + t,(R;/(X))') '1' for a.e.x E JRn and 

n 

II Fo ilL", SII f IILw + L II Rjf IILw 
j=1 

Then, from (3.44),(3.46) and (3.47), we have 

J w [f**(x)/(c(1I f IILw + til Rd IILw ))1/1] dx 
J=1 . 

<; J w [G(X)/('(II 1 ilL. + t, II R;f ilL. ))'1'] dx 

S J w Lc II ~(~~w )1/1] dx S J w [(ell ~~:~ )1//'] dx 

s 1, 

which completes the proof of the Theorem for the case f E Lq nHw. Now, we assume 

that f E Hw. Since Lemma (3.26) implies that u(t,·) E Lq nHw, applying (3.39) it 

follows that 
n 

(3.48) Cl II u(t,.) IIHwSIl u(t,.) IILw + L II Rj(u(t, .» IIH~. 
j=1 

S C2 II u(t,·) IIHw 
From Lemm~ (3.26) and Remark (3.33), we m1W conclude that u(t, ;1') is harmonic 

and non-tangentially bounded function. Hence, there exists limu{t,x) for a.e.x E JRn. 
1-0 

Therefore, taking limit in (3.48) and applying Lemma (3.33) and the Lebesgue dominated 

convergence Theorem, we obtain (3.40) ending the proof of the Theorem./ / / 
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