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ABSTRACT : Let X be a space and U be an open cover of X . Then X is U

chainable if for each x E X ,  sfXl(x , U) = X and it is U-unifonnly chainable if 

there is an n E N such that for each x E X, X = stn(x , U) . In this paper we 

characterise connected spaces in tenns of U-chainability , connected spaces 

satisfying fmite discrete chain condition in tenns of U-unifonn chainability and 

obtain several results which are analogues of the known resuIts for metric 

spaces . 
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1- INTRODUCTION: Connetedness and compactness are widely studied in 

Topology . In 1 883 Cantor defmed connectedness in metric spaces with 

the help oí· E _ .  chains . At present , however , the Riesz - Hausdorff 

defmition , using the idea of separated sets , is universally accepted . On 

the other hand , a lot of experimentation has led to several forms of 

compactness . Compactness and several of its generalizations are defined 

in tenns of open covers ; e.g. compact , coootably compact, paracompact , 

Lindeloff etc . Chainability characterizes connected sets among compact 

sets in the setting of metric spaces . In the same setting Beer [Be] has 

characterized compact sets among the connected sets . 

In this paper the concept of E - chainability in metric spaces is 

generalized by the use oí open covers oí a topological space. This 

generalization yields a simple characterization of connectedness in terms 

of open covers . Several results of Beer [Be] as welI as sorne of the earlier 

known results are then generalized . 

2- . PRELIMINARIES: In this section we give sorne basic defmition and 

fundamental facts which are needed in proving the main results in the 

following sections. Let (X, 't) be a topological space . 

Let , � = a family of open covers of X ; � = a family of open covers of 

X which induces the fine uniformity on X (when X is Tychonoff) ; J..lo = 

the family of all open covers of X . .  

For each A c X and U E � 

st(A , U) = st l (A , U) = u { U E U : A n u :;t:  el> } ; 

stn(A , U) = st[stn- l (A ,U)] for n > 1 ;  and 

c;() 
stOO(A , U) :;:: U stfl(A , U) . 

n = l  

We write st(x , U)  for st( {x}  , U) . 

(2. 1 )  Definition : Let U E � . Then X is U-chainable iff for each x E X • 

X = stoo(x , U) . X is ¡J-chainable iff for each U E � , X is U - chainable . 
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(2.2) Defmition : For U e 11 ,  X is called U-Iocally uniformly chainable iff for 

�ach x e X there is an nx e N  such that st nX (x ,  U) = X . If nx is independent 

.of x , we say that X is U-uniformly chainable . As in (2. 1 )  we can obviously 

define 1l-localIy uniform1y chainable and Il-unifonnly chainable . 

The folIowing fact is welI known . 

(2 .3) Theorem : If X is a Hausdorff paracompact space , then IlF = 110 

(2.4) Lernma : X is U-chainable if and only if it is U-Iocally uniforrnly 
chainable . 

Proof : If X is U-Iocally uniforrnly chainable for U e 11 ,  then for each x e X, 
there is an nx eN such that X = st n X  (x , U) . Now for each P E X and n = 2nx, 

it is easy to see that X = stn(p , U) i .e .  , X  is U - unifonnly chainable. 

Converse is obvious . 

(2 .5)  Corollary : X is Il-uniforrnly chainahle if and only if it i s  1l-10cally 

uniforrnly chainable . 

(2 .6) Lernma : Let X be any topological space and U e 11" . Then for each 

x e X , sfOO(x , U) is an open and closed subset of X . 

Proof : If y E stcx:l(x ,U) , the st(y ,U) n stcx:l(x ,U) = 0  . This shows that stcx:l(x 
,U) is closed and it is obviously open . 

The . following result characterizes connectedness In tenns of 

chainability which in tum depends upon covers . 

(2 .7) Theorem : A space X is connected if and only if X is !lo - chainable . 

Proof : The result folIows from the facts (a) Xis connected if and only if it 

has no proper open and closed suhset and (b) for each x e X and U e !lo , 
sfOO(x , U) is open and closed . 

(2. 8) Corollary : A Hausdorff paracompact space X is connected if and only 

if it is IIp-chainable . 
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(2.9) Corollary : A compact Hausdorff space X is connected if and on1y if it 

is IlF- chainable . 

(2 . 1 0) Remarks : Since a compact Hausdorff space has a unique compatible 

uniformity , the aboye results generalize the well known result : a compact 

metric space is connected if and on1y if it is E - chainable for each E > O [Be] . 

3. COMPACTNESS OF CONNECTED SPACES : 

At frrst we introduce a concept which is analogous to total boumJedness 

in uniform spaces • 

(3 . 1 ) Definition : X is Il - star compact if and only if for each U E Il ,  there is 

a fmite subset F of X such that X = st(F , U) . 

Fleischman [FI] introduced the concept of star compactness , which is !lo 
- star compact and showed that a T2 space X is star compact ifand only if it is 

countably compact _ In case Il is a compatible uniformity on a Tychonoff space 

X , then Il - star compactness is equivalent to Il- total boundedness . 

In case X is a (metric) uniform space with a compatible covering 

(metric) uniformity Il , Il - chainability plus Ji - total boundedness yields Il -
uniform chainability (se e [Be] page 808) . We analogously have the following 

result which can be easily shown to hold . 

(3 . 1 ) Lernma : If X is Il - star compact and Il - chainable , then X is Il -

uniformly chainable . 

We now characterize !lo - uniformly chainable spaces . 

(3 .2) Definition : X is DFCC if and on1y if every discrete collection of open 

sets is finite . 

(3 . 3 )  Theorem : A T 3 space X is !lo � uniformly chainable if and on1y if it is 

connected and is DFCC . 
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Proof : Suppose X is T3 and !lo- unifonnly chainable . By Theorern (2. 7) , X is  

connected . If X is not DFCC , then there is a countably infinite discrete 

collection of open sets U = { un : n e N } . Choose xn e Un for each n in N . 

F or each n in N defme 

An  A n  A n  A n  n n h A � Xn E 1 � 1 � 2 � . . .  � m c. . .  C An � An � un w ere rn IS open 10r 

each rn .  

Define : 

W = X - u{A n : n E N } .  n 

yn = A n  
1 2 

yn = un _ A n  l '  n n-

Now let V =  {W} u { yn : rn < n , n E N } . lt is easy to see that it is a ro 
collection of nonernpty open sets in X . It is a cover of X . For any x in X , 
either x is a rnernber of un for sorne n and hence x is in V n for sorne rn and n , 

ro 

or x � un E N un in which case x is in W . Consider x in X and n in N . Now 

there exist infinitely rnany un which do not contain x . Pick p > n such that x is  

not in up . It is easy to see that stn(xp , V) � Up , so xp � stP(x , V) . x and n 
are arbitrary , so X cannot be !lo . unifonnly chainable . 

For the converse , as sume that X is !lo - chainable and has DFCC 

property but is not !lo - unifonnly chainable . Then there exists an x in X and U 
in �fJ ' such that X 1:- stO(x , U) for each n in N . { st ( x ,  U)for i = 1 
Define Ui = 

st i ( x ,  U)  - CL(st i - 1 ( x ,  U))  for i > 1 .  
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Since X is � - chainable , ui "* 0 for each i in N and {Ui : i E N} is a 
discrete collection of open sets . So , X is not DFCC , a contradiction . 

We now introduce a concept which will provide a characterization of 

countably compact connected spaces in terms of open covers . 

(3 .4) Definition : Let U E Ilo . X is said to be strictly U - chainable if and onIy 

if there is a fmite subset F = {xi : 1� i � n} of X such that X = st(F , U) and 

xi+ 1 E st( Xi ' U) for 1 � i � n- l . X is strictIy Il - chainable if and onIy if it is 

strictIy U - chainable for each U E Il . 

From OUT previous discussion , it is clear that a strictIy U - chainable 

space is U - uniformly chainable . 

(3 .5) Tbeorem : A Hausdorff space X is strictIy Il - chainable if and onIy if it 

is Il - starcompact and Il - chainable . 

Proof : Suppose X is Il - starcompact and Il-chainable . Let U E Il .  lben there 
is a finite set F = {xi : 1 � i � n} e X such that st(F , U) = X .  Since X is Il

chainable, for each i � n- l , there is a finite set Fi = { x ) : 1 � j � ni } and { u ) : 1 1 

2 � j  � ni} e U such that 

(i) x � 
= Xi E Ui , 

1 

(ii) . "i ni  xi = Xi+l E Ui ' 
(iii) xl E ul nul + 1  forj = 2 ,3 ,4 ,  . . . , ni- 1 . 
Tben F* = u{Fi : 1 � i � n} provides a strict U - chain as in (3 .4) . Tbe 

converse is obvious . 

Combining Tbeorem 3 .5  with Fleischman ' s TbeQrem [FI] , we can state 

the following . 

(3.6) Corollary : A Hausdorff spaee X is eountably compaet and eonneeted if 

and only if it is strietly J.i.O - chainable . 

We conelude by providing a sequential eharaeterization of J.i.O-uniform 

ehainability . F or U E J..I.O we defme U-ehain distanee funetion +U : XxX � {O , 

1 , 2 • . . .  } u {oo} as foUows : 
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'U(x , y) = n- l where n is the smallest natural nwnber sueh that 

y E stn(x , U) . 
= 00 if no sueh n exists . 

From Theorem (2.7) it is clear that X is eonneeted if and only if for each U E 
I-t o 'U is finite . If X is eonneeted and U E I-to we say that ; 

( a) 'U is eonstant on a sequenee (xn) if and only if { ,U( Xn , xm) : m= m} is 

a singleton ; 

(b) 'U is bounded on (xn) if and only if {,U( Xn ' x m) : n :;tm } is finite . 

We shall need the following basic theorem of combinatories . 

(3 . 7) Ramsey's Theorem : Let r E N and {A¡ : 1 ::;  i ::;m } a partition of the r

element subsets of N • Then there is an infinite subset S of N and i E { l  , 2 , 3 , 

. . .  , m}  sueh that eaeh r-element subset of S belongs to A¡ . 

For the proof see[3] . 

(3 . 8) Theorem : For a eonneeted spaee the following are equivalent : 

(a) X is l-to-unifonn1y ehainable . 

(b) For eaeh U E !lo ,  eaeh sequenee (xn) in X has a subsequenee on whieh 

. 'U is constant . 

(e) For each U E I-to ,  eaeh sequence (xo) in X has a subsequenee on whieh 

'U is bounded . 

Proof : (a) � (b) . Let U E I-to .  Sinee X is I-to-uniformly ehainable , there is an 

m in N sueh that 'U(x , y) ::; m for all x , y in X . If (xn) is a finite sequenee • 

there is nothing to prove . If (xn) is an ¡nfinite sequenee defme : 

A¡ = { {xi . xk} : 'U(xi , xIJ = l } , O::; i ::; m . 

Clearly , { A l ,  A 2, A 3 ' . . .  , A m} is a partition of 2-element subsets 

of the infmite set { xn : n E N  } . By Ramsey's Theorem (3 . 7) , there is an io 
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such that for some infmite subset S of  { xi : i E N } aIl two element subsets of 
S are in Ai . By arranging the elements S in the natural order we have a 
subsequence on which CPU is constant . 

(b) � (c) is obvious . 

(c) � (a) . If X is not 110- uniformly chainable , there is a U E ilo and y in X 
such that X ::¡:. stn(y , U) for each n in N .  Let xl  = Y and Xn E stD(Xl , U) 

stn- 1  (xl , U) . Clearly , (xo) is an infmite sequence such that CPU(xn , xm) � 
I n - m  I . Hence CPU is unbounded on any subsequ,ence of (xn,) . 
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