ON THE COMPACTNESS OF CONNECTED SETS

S.A. Naimpally and C. M. Pareek

ABSTRACT: Let X be a space and U be an open cover of X. Then X is Uchainable if for each $x \in X$, $st^{\infty}(x, U) = X$ and it is U-uniformly chainable if there is an $n \in N$ such that for each $x \in X$, $X = st^n(x, U)$. In this paper we characterise connected spaces in terms of U-chainability, connected spaces satisfying finite discrete chain condition in terms of U-uniform chainability and obtain several results which are analogues of the known results for metric spaces.

KEY WORDS AND PHRASES : Chainable, uniformly chainable, strictly chainable, connected, countably compact, compact.

MATHEMATICS SUBJECT CLASSIFICATION (1985)

Primary : 54D05, 54D30

Secondary: 54D10, 54D18, 54E45.

1- INTRODUCTION: Connetedness and compactness are widely studied in Topology In 1883 Cantor defined connectedness in metric spaces with the help of ε - chains . At present , however , the Riesz - Hausdorff definition , using the idea of separated sets , is universally accepted . On the other hand , a lot of experimentation has led to several forms of compactness . Compactness and several of its generalizations are defined in terms of open covers ; e.g. compact , countably compact, paracompact , Lindeloff etc . Chainability characterizes connected sets among compact sets in the setting of metric spaces . In the same setting Beer [Be] has characterized compact sets among the connected sets .

In this paper the concept of ε - chainability in metric spaces is generalized by the use of open covers of a topological space. This generalization yields a simple characterization of connectedness in terms of open covers. Several results of Beer [Be] as well as some of the earlier known results are then generalized.

2- **PRELIMINARIES:** In this section we give some basic definition and fundamental facts which are needed in proving the main results in the following sections. Let (X, τ) be a topological space.

Let , μ = a family of open covers of X ; μ_{F} = a family of open covers of X which induces the fine uniformity on X (when X is Tychonoff) ; μ_0 = the family of all open covers of X.

For each $A \subset X$ and $U \in \mu$

 $\mathsf{st}(\mathsf{A}, \mathsf{U}) = \mathsf{st}^1(\mathsf{A}, \mathsf{U}) = \bigcup \{ \mathsf{u} \in \mathsf{U} : \mathsf{A} \cap \mathsf{u} \neq \phi \};\$

 $st^{n}(A, U) = st[st^{n-1}(A, U)]$ for n > 1; and

$$st^{\infty}(A, U) = \bigcup_{n=1}^{\infty} st^{n}(A, U)$$

We write st(x, U) for $st({x}, U)$.

(2.1) Definition : Let $U \in \mu$. Then X is U-chainable iff for each $x \in X$, X = st[∞](x, U). X is μ -chainable iff for each $U \in \mu$, X is U - chainable. (2.2) Definition : For $U \in \mu$, X is called U-locally uniformly chainable iff for each $x \in X$ there is an $n_X \in N$ such that $st^{n_X}(x, U) = X$. If n_X is independent of x, we say that X is U-uniformly chainable. As in (2.1) we can obviously define μ -locally uniformly chainable and μ -uniformly chainable.

The following fact is well known.

(2.3) Theorem : If X is a Hausdorff paracompact space , then $\mu_F = \mu_0$

(2.4) Lemma : X is U-chainable if and only if it is U-locally uniformly chainable.

Proof: If X is U-locally uniformly chainable for $U \in \mu$, then for each $x \in X$, there is an $n_X \in N$ such that $X = st^{n_X}(x, U)$. Now for each $p \in X$ and $n = 2n_X$, it is easy to see that $X = st^n(p, U)$ i.e., X is U - uniformly chainable. Converse is obvious.

(2.5) Corollary : X is μ -uniformly chainable if and only if it is μ -locally uniformly chainable.

(2.6) Lemma : Let X be any topological space and $U \in \mu_0$. Then for each $x \in X$, st^{∞}(x, U) is an open and closed subset of X.

Proof : If $y \notin st^{\infty}(x, U)$, the $st(y, U) \cap st^{\infty}(x, U) = \emptyset$. This shows that $st^{\infty}(x, U)$ is closed and it is obviously open.

The following result characterizes connectedness in terms of chainability which in turn depends upon covers.

(2.7) Theorem : A space X is connected if and only if X is μ_0 - chainable .

Proof: The result follows from the facts (a) X is connected if and only if it has no proper open and closed subset and (b) for each $x \in X$ and $U \in \mu_0$, $st^{\infty}(x, U)$ is open and closed.

(2.8) Corollary : A Hausdorff paracompact space X is connected if and only if it is μ_F -chainable.

(2.9) Corollary : A compact Hausdorff space X is connected if and only if it is μ F- chainable .

(2.10) Remarks : Since a compact Hausdorff space has a unique compatible uniformity , the above results generalize the well known result : a compact metric space is connected if and only if it is ε - chainable for each $\varepsilon > O$ [Be].

3. COMPACTNESS OF CONNECTED SPACES :

At first we introduce a concept which is analogous to total boundedness in uniform spaces.

(3.1) Definition : X is μ - star compact if and only if for each $U \in \mu$, there is a finite subset F of X such that X = st(F, U).

Fleischman [Fl] introduced the concept of star compactness, which is μ_0 star compact and showed that a T₂ space X is star compact if and only if it is countably compact. In case μ is a compatible uniformity on a Tychonoff space X, then μ - star compactness is equivalent to μ - total boundedness.

In case X is a (metric) uniform space with a compatible covering (metric) uniformity μ , μ - chainability plus μ - total boundedness yields μ - uniform chainability (see [Be] page 808). We analogously have the following result which can be easily shown to hold.

(3.1) Lemma : If X is μ - star compact and μ - chainable, then X is μ - uniformly chainable.

We now characterize μ_0 uniformly chainable spaces .

(3.2) Definition : X is DFCC if and only if every discrete collection of open sets is finite.

(3.3) Theorem : A T₃ space X is μ_0 uniformly chainable if and only if it is connected and is DFCC.

Proof : Suppose X is T₃ and μ_0 - uniformly chainable. By Theorem (2.7), X is connected. If X is not DFCC, then there is a countably infinite discrete collection of open sets U = { $u_n : n \in N$ }. Choose $x_n \in U_n$ for each n in N.

For each n in N define

 $x_n \in A_1^n \subseteq \overline{A_1^n} \subseteq A_2^n \subseteq ... \subseteq A_m^n \subseteq ... \subseteq A_n^n \subseteq \overline{A_n^n} \subseteq u_n$ where A_m is open for each m.

Define :

$$W = X - \bigcup \{A_n^n : n \in N\}.$$

$$V_1^n = A_2^n$$

$$V_2^n = A_3^n - \overline{A_1^n}$$

$$V_{n-1}^n = A_n^n - \overline{A_{n-2}^n}$$

$$V_n^n = u_n - \overline{A_{n-1}^n}.$$

Now let $V = \{W\} \cup \{V_m^n : m < n, n \in N\}$. It is easy to see that it is a collection of nonempty open sets in X. It is a cover of X. For any x in X, either x is a member of u_n for some n and hence x is in V_m^n for some m and n, or $x \notin \bigcup_{n \in \mathbb{N}} u_n$ in which case x is in W. Consider x in X and n in N. Now there exist infinitely many u_n which do not contain x. Pick p > n such that x is not in u_p . It is easy to see that $st^n(x_p, V) \subseteq U_p$, so $x_p \notin st^p(x, V)$. x and n are arbitrary, so X cannot be μ_0 uniformly chainable.

For the converse , assume that X is μ_0 - chainable and has DFCC property but is not μ_0 - uniformly chainable . Then there exists an x in X and U in μ_0 , such that $X \neq st^n(x, U)$ for each n in N.

Define
$$u_i = \begin{cases} st(x, U) \text{ for } i = 1 \\ st^i(x, U) - CL(st^{i-1}(x, U)) \text{ for } i > 1. \end{cases}$$

Since X is μ_0 - chainable, $u_i \neq \emptyset$ for each i in N and $\{u_i : i \in N\}$ is a discrete collection of open sets. So, X is not DFCC, a contradiction.

We now introduce a concept which will provide a characterization of countably compact connected spaces in terms of open covers.

(3.4) Definition : Let $U \in \mu_0$. X is said to be *strictly U - chainable* if and only if there is a finite subset $F = \{x_i : 1 \le i \le n\}$ of X such that X = st(F, U) and $x_{i+1} \in st(x_i, U)$ for $1 \le i \le n-1$. X is strictly μ - chainable if and only if it is strictly U - chainable for each $U \in \mu$.

From our previous discussion, it is clear that a strictly U - chainable space is U - uniformly chainable.

(3.5) Theorem : A Hausdorff space X is strictly μ - chainable if and only if it is μ - starcompact and μ - chainable.

Proof : Suppose X is μ - starcompact and μ -chainable. Let $U \in \mu$. Then there is a finite set $F = \{x_i : 1 \le i \le n\} \subset X$ such that st(F, U) = X. Since X is μ -chainable, for each $i \le n-1$, there is a finite set $F_i = \{x_i^j : 1 \le j \le n_i\}$ and $\{u_i^j : 1 \le j \le n_i\}$

 $2 \le j \le n_i \} \subset U$ such that

(i) $x_i^1 = x_i \in u_i$,

(ii) $x_i^{n_i} = x_{i+1} \in u_i^{n_i}$,

(iii) $x_i^j \in u_i^j \cap u_i^{j+1}$ for $j = 2, 3, 4, \ldots, n_i-1$.

Then $F^* = \bigcup \{F_i : 1 \le i \le n\}$ provides a strict U - chain as in (3.4). The converse is obvious.

Combining Theorem 3.5 with Fleischman's Theorem [Fl], we can state the following .

(3.6) Corollary : A Hausdorff space X is countably compact and connected if and only if it is strictly μ_0 - chainable .

We conclude by providing a sequential characterization of μ_0 -uniform chainability. For $U \in \mu_0$ we define U-chain distance function $\phi_U : X \times X \rightarrow \{0, 1, 2, ...\} \cup \{\infty\}$ as follows:

$$\begin{split} \phi_U(x, y) &= n-1 \text{ where } n \text{ is the smallest natural number such that} \\ y &\in st^n(x, U) \\ &= \infty \qquad \text{if no such } n \text{ exists} \end{split}$$

From Theorem (2.7) it is clear that X is connected if and only if for each $U \in \mu_0$, ϕ_U is finite. If X is connected and $U \in \mu_0$ we say that ;

- (a) \$\overline\$U\$ is constant on a sequence (x_n) if and only if {\$\overline\$U\$(x_n, x_m) : n≠ m} is a singleton;
- (b) ϕ_U is bounded on (x_n) if and only if $\{\phi_U(x_n, x_m) : n \neq m\}$ is finite.

We shall need the following basic theorem of combinatorics .

(3.7) Ramsey's Theorem : Let $r \in N$ and $\{A_i : 1 \le i \le m\}$ a partition of the relement subsets of N. Then there is an infinite subset S of N and $i \in \{1, 2, 3, \dots, m\}$ such that each r-element subset of S belongs to A_i .

For the proof see[3].

(3.8) Theorem : For a connected space the following are equivalent :

- (a) X is μ_0 -uniformly chainable.
- (b) For each $U \in \mu_0$, each sequence (x_n) in X has a subsequence on which ϕ_U is constant.
- (c) For each $U \in \mu_0$, each sequence (x_n) in X has a subsequence on which ϕ_U is bounded.

Proof: (a) \rightarrow (b). Let $U \in \mu_0$. Since X is μ_0 -uniformly chainable, there is an m in N such that $\phi_U(x, y) \le m$ for all x, y in X. If (x_n) is a finite sequence, there is nothing to prove. If (x_n) is an infinite sequence define:

 $A_i = \{ \{x_i, x_k\} : \phi_U(x_i, x_k) = 1\}, 0 \le i \le m$.

Clearly, $\{A_1, A_2, A_3, \ldots, A_m\}$ is a partition of 2-element subsets of the infinite set $\{x_n : n \in \mathbb{N}\}$. By Ramsey's Theorem (3.7), there is an i_0

such that for some infinite subset S of $\{x_i : i \in \mathbb{N}\}$ all two element subsets of S are in A_i . By arranging the elements S in the natural order we have a subsequence on which ϕ_U is constant.

(b) \rightarrow (c) is obvious.

References

- [Be] G. Beer, Which connected spaces are compact, Proc. Amer. Math. Soc. 83 (1981), 807-811.
- [F1] W. M. Fleischman, A new extension of countable compactness, Fund. Math. 68 (1970), 1-9.
- [Ra] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264-286.

Department of Mathematics

Kuwait University

P.O.Box 5969 Safat

13060 Kuwait.

Recibido en febrero de 1993. Versión modificada en marzo de 1994.