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ACCELERATING SIMPLIFIED MONOTONE NEWTON ITERATIONS
S. ABDEL MASIH AND J.P. MILASZEWICZ

ABSTRACT. Simplified Newton iterations are analyzed in the context given by the
hypotheses of the monotone Newton theorem; it is known that they produce upper and
lower sequences with monotone convergence to a root of the nonlinear system Fy = 0. It
is proved here that accurate partial elimination accelerates convergence in both sequences,

while retaining monotonicity.

1. INTRODUCTION.

The monotone Newton theorem (See [6]) and some of its generalizations give conditions
that generate two monotone sequences, one decreasing and one increasing, both converging
at least quadratically to the same root of the nonlinear system Fy = 0 . This result
has three main advantages, when compared with the usual Newton convergence theorem.
Firstly, no a priori knowledge of the existence of a root is assumed; secondly, a reliable
bound for the error in the determination of the exact root is provided by the vector
difference of any two terms. one from the upper sequence and another from the lower one;
finally, if these two terms correspond to the same iterate, the bounds on the error thus
obtained converge to 0 at least quadratically. On the other hand, actual application of the
result implies increased work per iteration, because two linear systems per step, instead of
one, must be solved with the same Jacobian matrix. This objection may loose part of its
value, if, for instance, a two-processor parallel computer is available.

The hypotheses of the monutone Newton theorem will be assumed throughout this note. In
this context, a gain in convergence speed can be obtained by partial reduction of the mitial
system, if applied accurately; we say that an unknown has been accurately eliminated. if
the equation used for the elimination has the same index (See [4]); whether the acceleration
thus obtained can be complemented by the reduction of computational work depends on the
problem dealt with and the choice of unknowns to be eliminated. Another useful possibility
is given by the simplified monotone Newton iterations; with them, updating of the Jacobian
matrix is done every p iterations (we consider here only fixed updating steplength p. for
the sake of simplicity): in this case, an extension of the monotone Newton theorem says
that pairwise monotone convergence is obtained with convergence order greater or equal
than p + 1 (See theorem 4 in [7)).

The main objective in this paper is to prove that accurate partial reduction in the original
system, via partial elimination of unknowns, yields improvement in convergence of the

simplified Newton iterates, as in the (non simplified) monotone Newton context.
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2. THE SIMPLIFIED NEWTON-FOURIER ITERATIONS.
Consider a continuously differentiable function F' : D C ™ — R™ , for which we seek a
solution to the equation
Fy=0 . (2.1)
It will be assumed that we have z° < ¢°, ie. 2¥ <y?, for 1 <: < n, are such that
(2°,y°) :=={z e R"/2* <2 <y°} C D,

and
Fz° SOSFyO

We also suppose that F is order convex on (z°,y°), i.e.
FAz+ (1= \y) <AFz+(1—-\)Fy
whenever z <yory<zand A€ (0,1).
The following result is known as the monotone Newton theorem .

THEOREM 2.1. Suppose that for each x € <z°,y0>, F'(z) is a nonsingular M-matrix (i.e.
(F'(2))i,; <0, fori# j, and F'(z)™! is nonnegative). Then the Newton iterates

y =y - PN TIRYS, k=00, (2.2)

satisfy y* | y* € (2°,y°) as k — oo and y* is the unique solution of (2.1) in (z°,y°).
Moreover, if F'' is isotone on (.l'°,y°>(1'.e. r < vy implies F'(z) < F'(y)), then the
Néwton-Fourier (N-F) iterates

"= ok - Fl(y*) T Fek, k=0,1,... (2.3)
satisfy ok T y* as k — oo. We also have
Fe¥<o0<Fy* ., k=0,1,... . | (2.4)
Finally, if for some norm,
|F'(z) = F'(y)l <yllz—yll ¥V z,y€e(a®y’) , (2.5)
then there exists a constant ¢ such that

Iy 4! = < eyt -2t k=01, (26)

PROOF: See [6].
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REMARK 2.2. Apparently, it has been Baluev (See [2]), who first realized that the iterates
in (2.3) generate a complementary sequence to the one given by (2.2); we shall call the
couple (zF ,y"). the Newton-Fourier (N-F') iterates. Other possible formulations of the
theorem above are obtained by interchanging the roles of z° and y°, and also by supposing
that F' is order concave (See Table 13.1 in [6]). Note that isotonocity of F' implies order

convexity of F'; however, some partial results do not need the isotonicity hypothesis.

In the context given by the theorem above, it is possible to introduce simplified monotone
Newton iterations with a fixed steplength p > 1 as follows:

For k=0,1,...
k0 = gk
b0 =gk

Fori=1,...,p
yk,i = yk,i—l _ Fi(yk)-lek,i—l

l,k,l - l,k,i—l _ Fl(yk)—lka,i—l
k
k+1. y y
k4L _ ko (2.7)

These simplified iterations .can be useful in two basic situations, i.e. when the Jacobian
matrix F'(y) is difficult to calculate, and when F'(y) becomes ill conditioned for y near

the root; thus making it impractical to further apply the Newton method. The following

theorem extends the monotone. Newton theorem to the simplified N-F iterations.

THEOREM 2.3. The sequences (z*) and (y*) satisfy:

(i) FzF*<0<Fy* V 1<i<p

(i) oF <zhil < ghi < o1 < bt < ki < phicl <k Y 1< <p
(iii) (z*) and (y*) both converge to y*.

(iv) There exists b, such that

e e E sl L E R R (28)

PROOF: (i) and (ii) can be proved inductively, as the corresponding statements in Theorem
2.1; (iii) then also follows as in Theorem 2.1.

(iv)Note first that, since (z%,y° >is compact and F' is continuous, there exists b such that

I(F'w)~ <t vV ye(z®y°).
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It is not difficult to see that the following inequalities hold

“yk+1 _ :l'k+1H — ”yk,p _ Ik,p | — “yk,p—l _ xk,p—l _ Fl(yk)—l(Fyk,p—l _ F:L'k’p_l)”
< IlFl(yk)—lH “Fl(yk)(yk,p—l _ xk,p—l) _ Fy(:,p—l + sz,p—l”
1
<s / (F'(y") = P8P 70 t(ytr™! = gbomly), yhp =t — gty ay .
0
1
< b (/ ”Fl(yk) _ FI(:Ek’p_l +t(yk,p—l _ (Ek'p_l))Hdt) Hyk.P—] _ J,Ifi,p—lll
<b~y </ “y k,p—1 _t(yk,p—l _ zk,p—])H dt) ”yk,p-] _ zk,p—1”
S (e B ) W T
3
<by (—rs) o et
where

I <7l Moo and || fle <sll |l

Thus, if we set b := by( %r.s), we have
Hyk+1 - Ik+1“ < b ”yk _ Ik“ “yk,p—l _ ;Tk,p—lll

If p =1, we essentially have (2.6); if p # 1, we finally get

k k -1 i,k _ k| PH]

ly*** =" < B [yt - 2

REMARK 2.4. Theorem 2.3 slightly improves a result stated by Wolfe (See Theorem 4 in
[7]). Wolfe’s proof of (2.8) is based on Satz 4 in [1], which assumes F'" to be continuous:
the proof above assumes the somewhat weaker hypothesis (2.5). Also. the inequalities

stated here for the inner loops iterates will be needed in the following section.

THEOREM 2.5. Consider two steplengths p and g with p < ¢, and denote the corresponding
N-F sequences by (.r’;,y;f) and (Ig,y;‘). Ifkp+i=sqg+j, with0<i<pand0<j<gq.
then

zpd <zt <yt <ypt <yl
ProOF: Notice that y,‘, = y0'?; thus
1, s — K K - K]
T = 7 = UG R <yl - PG FuO =

An induction argument completes the proof.
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3. ELIMINATION AND NEWTON-FOURIER ITERATIONS.

The main result will be proved in this section, i.e. that accurate partial elimination im-
proves convergence of the simplified Newton iterations. In this way we extend the corre-
sponding result in the context of Theorem 2.1 (Se¢ Theorem 3.9 in [4]). Some additional
material is taker almost verbatim {rom [4].

Since F''(y*) is a nonsingular M-matrix, it follows that 8 f1(y*) # 0; the implicit function
theorem yields the existence of neighborhoods U of y*, V of y* := (y3,...,y%) and a
function ¢ : V. — R, such that fi(g(¥),y) = 0 ; if moreover y € U is such that fi(y) =0,
then y1 = ¢(¥) (¥ := (y2,...,¥n)). We assume throughout that (xo,y0>c U and that
<;6, ;’->C V; unnecessary distinction between row and column vectors will be avoided.

It is possible now to eliminate y; in (1.1), by means of g, and get the reduced system
Fy=0 , (3.1)

where F:=(f;) i=2...,n , eV ,and (@) = fi(9(¥),9)

THEOREM 3.1. The following propositions hold:
(i) g is isotone on <F,y_0> and ¥ < g(;’;) <yr < g(y¥) < y* k=0,1,...

(i) F'(3) is an M-matrix for j € <;6,;6> and

(F')5' @) = (F"; (9(@),7) for i#1#j . (3.2)

o

(iii) F'' is isotone on <;r

(iv) Fr% <0< Fyo.

-\
.y"/.

PROOF: See Lemmas 3.2, 3.3, 3.5 and 3.7 in [4].

REMARK 3.2. Theorem 3.1 gives the possibility of applying Theorem 2.1 to the reduced
system (3.1) with starting interval <:r7, ‘;ﬁ>; it has been proved in [4] that under appropriate
conditions the N-F iterates arising from the reduced system (3.1) converge better than those
generated by the original system (See Theorem 3.9 in [4]). Our aim is to extend this result
to the simplified Newton sequences; the conclusions in Theorem 3.1, especially (3.2), and
Theorem 2.3 as well, will be used in the proof without explicit mention; the reasoning is
basically similar to that in [4]. We need the notation corresponding to algorithm (2.7),
when applied to the reduced system; let us set

7%:=¢y% and T°:=20 ,



58

and define
For k=0,1,
L —g*
kO . _ Zk

k1. _ =k,
gy =g P

T =gk

THEOREM 3.3. The following inequalities hold for k =0,1,...and1<i<p:

—k,i k,i
yjl < yj' ’

—k.i k.1
9@ < oy

ki ki
0 < T’
Zj > 7

IN
AN

v
< g@M) < oyt

IA

PROOF: Suppose that the conclusions hold for a certain k and 0 <7 < p— 1.
For 2 < j < n, we have

g, =g - (F' @ FEH);

=7, = Y (F50@" « fum*h

1=2

=7, =Y (F519@*).7%) « fug(@*"). 7%
=2 ’
=7, =Y (F71(9(@*).7%) * filg@**). 7%
Now (g(7*),7%) < y* yields F'(¢(y%),5*) < F'(y*), which implies
0< F'(y")7 <(F')"Ng(m*)5")

and thus n
v <y = Y (R * fle@E. 50 (3.3)
=1
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The inductive hypotheses, including the order convexity of F, also imply that

Fy*' — Fg*").g"") S F'(y" )" ~ (93").5")
S F'OH - (o@" 5"

which yields
(@575 - F'(") T Flg@* ). g% < g™ — F'(y*) T Fyh = yo !

Thus, for 2 < j < n, (3.4) means that
" Z(F W) flg(@H TR <gitt
which combined with (3.3) yields
ghitl < gFart
Since we have y* < g*'*+! | it follows that

yt = g(¥") < g(@* ) < glyFrT) < k!

On the other hand. it is now clear that

T = Z 075 fitg@ TRy
and thus
T > Z flg(@®h),zr)
We also have
F(g(x*%). %) = Fz** < F'(g( —""'),—k»" N(g(z"), 74 -2t
< F'iyk)(g(zkd), k) — b))
whence

Ik.i+1_I F(y ) ]Frkl<(g(l_kl)— ')—F,(yk)_lF(g(Ek'z),f
Thus, by taking account of (3.5), it follows that
:c" i+ <7 =k,i+1
and we finally obtain

2EH < g(2R ) < g(2F ) < g(7F) = ot

k,i)

(3.4)
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REMARK 3.4. If instead of applying accurate elimination, an unknown is eliminated by
means of a differently numbered equation, Theorem 3.3 is no longer true (see Remark
3.10 in [4] and the counterexample given there); nevertheless an extension of Theorem
3.11 in [4], comparing the generated sequences for such elimination, can be proved for the
simplified N-F iterations in case the elimination satisfies the hypotheses in that theorem.
Theorem 3.3 provides a useful tool for the reduction of nonlinear systems that satisfy its
hypotheses, in either of the two basic situations mentioned following (2.7); such reduction
yields a better convergence; however, its application should take account of the computa-
tional cost involved, as in the linear case (See [3]). Thus, theorem 3.3 implies that if the
computational cost of the elimination is negligible and the computational cost per itera-
tion is not increased, then a net gain is to be expected with the simplified N-F iterations

applied to (3.1). These considerations will be illustrated in the following section.

4. A NUMERICAL EXAMPLE

The example treated in this section is taken from [4]. Thus, verification of the hypotheses
in Theorem 2.1 is omitted here. The calculations have heen carried out with the double
precision of Fortran 5.0 on a PC. Let us define F' : R" — R" by

2y1 — Yo 3

fi:= 5 + ¥
2yi — Yi—1 — Yi .
fii= Yi y'h; yz+1+y?. 2<i<n—-1.
2% — Yoo , 1
fni= —y'l—pgn-—l— Jwith h = e (4.1)
If y, is eliminated by means of f,. we get the reduced system
Qi —
T <Y1 — Y2 :
fr=—pm— 1 ui
fi: yl ylh; y+1+y?. 251Sn_2
_ Yy — Yy — ,
fas1 = L= hzn 228 +y.’x'_] .
N
where ¢ 1= (y'"‘)'l ) P (+.2)

Consider n = 10, «° := (0.....0.0.14.0.41) and ¢° := (1.....1). The stopping criteria
have been

||Fyk"'||2 <e:=10"" | and (4.3)
|Fa*l, < (4.4)

These criteria have ensured machine convergence, i.e. the iterates remain constant there-

after. Table 4.1 describes the necessary work to attain convergence for the iterations (2.7).
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Only relevant steplengths have been taken into account in the table. The leftmost column
indicates the steplength p; the following two columns indicate, respectively, the values kp+:
for which (4.3) and (4.4) are satisfied for the N-F iterations applied to (4.1), whereas the
last two columns describe the corresponding values when the iterations are applied to (4.2).
The monotone behaviour in each column illustrates Theorem 2.5. For the actual iterates
with p = 1 see Tables 4.1 and 4.2 in [5].

TABLE 4.1
p | N1Fy* ), <e | IFe™l, <e | |Fg%l,<e | [[Fz*]l, <e
pk+i

1 6 8 5 6
2 8 9 6 6
3 10 10 7 8
4 10 11 8 8
5 12 12 8 8
6 13 13 9 9
7 15 ' 15 10 : 10
8 16 17 10 10
9 16 17 11 11
10 17 18 12 12
11 17 18 12 13
12 17 18 13 13
13 18 19 14 14
14 19 19 15 15
15 20 20 16 16
20 23 24 21 21
23 26 26 24 24
24 27 27 24 24
29 31 32

30 32 32

44 45 46

45 46 46

82 83 83

83 83 83

According to this table, the reduced system behaves numerically better than the
original one for every steplength. This example also shows that, if simplified iterations are
to be computed throughout with the initial Jacobian matrix, i.e. with no updating at all,
then the amount of computational work for the reduced system may be much smaller than

the corresponding one for the original system.
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