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ACCELERATING SIMPLIFIED MONOTONE NEWTON ITERATION S  

S .  ABDEL MASIH AND J . P .  MILASZEWICZ 

ABSTRACT. Simplified Newton iterations are analyzed in the context given by the 
hypotheses of the monotone Newton theorem; it is known that they produce upper and 

lower seqllences with mOIlotone convergence to a root of the nonliIlear system Fy = O. It 
is proved here that accurate partial elimination accelerates convergen ce in both sequences , 
while retaining monotoIlicity. 

1 .  INTRODUCTION. 

The monotone Newton theorem ( See [6] ) and some of its generalizat ions give conditiollS 

that generate two mOllotonl" seqllences, OIle decreasing and OIle ill<Tl"asing, both convf'rging 
at least quadratical1y to the same root of the nonlinear system Fy = O .  This result 
has three main advantages , when compared with the usual Newton cOllvergence tlll'orenl . 
Firstly, no a priori knowledge of the existence of a root is assumed: sf'rondly, a reliable 

bound for the error in thc determinatioll of the exact root is providf'd hy the vector 
difference of any two terms . one from the upper sequellce ami allotlwr from tlw lower (me; 
final1y, if these two terms correspolld to thl" same iterate. the hOUllds on thl" error thns 
obtained converge to O at least quadratical1y. On the other hand, actual applicatioll of t Il(' 
result implies illcreased work per iterat ion, because two linear systems per step , instead of 

one. must be solved with the saml" Jacobian matrix. This objection may loose part of its 

value, if, for installce, a two-processor parallel computer is available . 

The hypotheses of the monutone Newtoll theorem will be assumecl thronghout this notl' .  In 
this context ,  a gain in convergenCf' spe{'cl can be ohtained by partial rl"<luction of tllf' ¡!li t ia l  

systern, if  appliecl accurately ; we say that an unknown has bef'll accuratel>, eliminatp(l, i f  

the equation used for the elimillation has the same inclpx ( See [4] ) ;  whether thl" acct>leratioIl 
thus obtained can hf' compleIllented by the reclurtion of computational work depencls OIl the 
problem dealt with and the choice of unknowns to b(' eliminatecl . Anot h('1" useflll possihil i ty 
is given by the simplifiecl monotone Newton i terat ions ; with them, llpclat in[!; of thl" J acohiaIl 
rnatrix is done every p i tera t ions (we consider he1'e only fixe¡l updat illg steplength p. fol' 

th(' sake of sirnplicity ) : in this case , an extension of the mono tone Xt'wton theorClll says 
that pairwise rnonotone convergellce is obtained with ronve1'genCf' orcler grpater o� eq1 \al 
than p + 1 ( See theorem 4 in [í] ) .  
The main objectivp i n  this paper is t o  prove that accurate part ial rl"cluction in  the original 

system, via partial eliminatioll of unknowns , yielcls improvement in convergenct' of the 

simplified Newton iterates , as in the ( non simplified ) monotone Newton context o 
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2 .  THE SIMPLIFIED NEWTON�FOURIER ITERATIONS. 

Consider a continuously differentiable function F : D e 3?n ----+ 3?n , for which we seek a 

solution to the equation 

Fy = ° . (2 . 1 )  

It will b e  assurned that we have x O  ::::: yO , i .e .  x? ::::: y? , for 1 ::::: i ::::: n , are such that 

and 

We also suppose that F is order convex on (XO , yO ) , i . e .  

F( >.x + ( 1  - '\ )y) ::::: '\Fx + ( 1  - '\)Fy 
whenever x ::::: y or y ::::: x and ,\ E (0 , 1 )  . 

The following result is known as the rnonotone N ewton theorern . 

THEOREM 2 . 1 .  Suppose that for each x E (XO , yO ) , F '(x )  is a nonsingular M-rnatrix (i . e. 
(F ' ( x )  ) i , j  ::::: 0 ,  for i -=f. j ,  and F '(x ) - 1 is nonnegative). Then the Newton iterates 

k = 0 , 1 ,  . . .  ( 2 .2)  
satisfy yk 1 y* E (xO , yO ) . as k -+ 00 and y* is the unique solution of (2. 1) in (XO , yO ) . 
Moreover, if F '  is isotone on (:rO , yO ) (i . e. :r ::::: y irpplies F ' ( x ) ::::: F ' ( y ) ), then the 
Néwton-Fourier (N-F) iterates 

k = 0 , 1 ,  . . .  ( 2 . 3 ) 

satisfy :rk  i y* as k -+ oo .  vVe also have 

,,� = 0 , 1 ,  . . .  ( 2 .4 )  

Pinally, if for sorn e norm. 

1 I F ' ( x ) - F ' ( y ) 1 1  ::::: , 1 1 :r - yll ( 2 . 5  ) 

then there exists a constant  e such that 

k = 0 , 1 ,  . . .  (2 .6 )  

PROOF :  See [6] . 
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REMARK 2 . 2 .  Apparently, it has been Baluev (See [2) ) ,  who first realized that the iterates 
in (2.3) generate a complementary sequence to the one given by (2 .2) ;  we shall call thc 

couple (xk , yk) the Newton-Fourier (N-F) iterates . Other possible formulations of the 

theorem aboye are obtained by interchanging the roles of xO and yO ,  and also by supposing 

that F is order concave (See Table 13 . 1  in [6) ) .  Note that isotonocity of F I implies order 

convexity of Fj however, sorne partial results do not need the isotonicity hypothesis .  

In the context given by the theorem aboye, i t  is  possible to introduce simplified monotone 

Newton iterations with a fixed steplength p :::: 1 as follows: 

For k = 0 , 1 ,  . . .  
yk ,O : = yk 
xk ,o  : = xk 

For i = 1 ,  . . .  , p  
yk , i : = yk, i- l _ F '(yk ) - l Fyk , i- l 
xk , i : = xk , i- l _ F ' ( yk )- l Fxk ,i- l 

yk+ l : = yk ,p 
xk+ l : = xk,p ( 2.7)  

These simplified iterations can be useful in two basic situations, i .e .  when the J acobian 

matrix F / ( y ) is difficult to calculate, and when F ' ( y )  becomes ill conditioned for y near 

the root ; thus making it impractical to further apply the Newton mcthod. Thc following 
theorem extends the monotone Newton theorem to the simplified N-F iterations . 

THEOREM 2 . 3 .  Tbe sequences ( x k ) and ( y k ) satisfy: 
(i) Fxk , i :::; ° :::; Fyk , i V I :::; i :::; p 
(ii) xk :::; xk , i- l :::; xk , i :::; x k+ l :::; yk+ l :::; yk , i :::; yk , i- l :::; yk V I :::; i :::; p 
(iii) ( xk ) and ( yk )  botb converge to y* .  
(iv) Tbere exists bp sucb tbat 

k = 0, 1 ,  . . . (2 .8 ) 

PROOF : ( i )  and (ii) can be proved inductively, as the corresponding statements in Theorem 

2 . 1 ;  ( iii) then also follows as in Theorem 2 . 1 .  

( iv)Note first that , sinee (xO , yO ) is compact and F ' i s  eontinuous, there exists b such that 
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It is not difficult to see that the following inequalities hold 

I l yk+ l - Xk+ l l l  = I l yk ,p _ Xk ,p 1 1  = l l yk ,p- l - Xk,p-l - F ' (yk ) - l  (Fyk,p- l  _ Fxk,P- l ) 1 I  

� I IF ' (yk )- l I I I I F ' (yk )(yk ,p- l _ Xk ,P- l ) _ Fyk ,p- l  + Fxk ,P- 1 1 1  

where 

� b 111 1 
(F ' (yk ) _ F ' ( xk ,p- l  + t(yk ,P� 1 _ xk ,P- l ) ) , yk ,P- l _ Xk ,P- I ) dt l l  

� b (11 I I F ' (yk ) - F ' (X k ,P- I  + t( yk ,P- l  _ Xk ,p- l  » 1 1 dt) I l y k ,p- l  _ ,rk ,P- I I I  

� b I (1 1 
I l yk - xk ,P� l - t(yk ,p- l _ Xk ,p- l  ) 1 1  dt) I l yk ,p- l _ xk 'P� l l l 

� b I ( 1 l y k - ;rk ,P- 1 1 1 + � I I ( yk ,p- l  - Xk ,p- l  ) 1 1) I l y k ,p- l  - xk ,P- 1 1 1 

� b I (�rs) I l y k  - x k  1 1  I l y k ,p- l - xk ,P- 1 1 1 

1 1  1 1  � r l l 1 1 00 and 1 1  1 100  � s i l 1 1 . 
Thus, if we set b1 ;=  h,( �rs ) ,  we have 

If p = 1 ,  we essentially have ( 2 .6 ) ;  if p '¡'  1 ,  we finally get 

REMARK 2 .4 .  Theorem 2 .3  slightly improves a result stated by Wolfe ( See Theorem 4 in 

[7) ) .  Wolfe's proof of (2 . 8 )  is based on Satz 4 in [1 ] , which assumes F " to be continuous: 

the proof aboye assumes the somewhat weaker hypothesis ( 2 . 5 ) .  Also. the inequalit ies 

stated here for the inner loops iterates will be needed in the following s{'ction. 
THEOREM 2 . 5 .  Consider two steplengtbs p and q witb p < q , and denote tbe corresponding 

N-F sequences by ( x� , y; )  and ( x � , y: ) . If kp + í = " q  + j ,  witb O � i < p and O � j < q .  
tben 

x s ,j < x k , i  < y* < y k , i  < yS . J  
q - p

- - p - q  

PROOF : Notice that y l = yO ,P . thus p q '  

An induction argument completes the proof. 



3. ELIMINATION AND NEWTON-FOURIER ITERATIONS. 

The main result will be proved in this section, i .e .  that accurate partial elimination im­

proves convergence oí the simplified Newton iterations. In this way we extend the corre­
sponding result in the mntext oí Theorem 2. 1 (See Theorem 3 .9  in [4] ) . Some additional 

material is taken almost verbatim from [4] . 
Since F '(y* ) is a nonsingular M-matrix, it íollows that 8dI (Y* ) i:- O; the implicit fundion 

theorem yields the existence oí neighborhoods U oí y* ,  V oí y* := (Y2 " ' " Y� ) and a 
function 9 : V ---+ �, such that h (g(y) ,  y) = O ; if moreover y E U is such that h (y) = O ,  

then VI = g(y) (y := ( Y 2, ' "  , Yn ) ) .  We as sume throughout that (XO , yO ) C  U and that 

( XO , ll) e V; unnecessary distinction between row and column vectors will be avoided. 

It is possible now to eliminate YI in ( 1 . 1 ) ,  by means of g , and get the reduced syst.em 

where F := (Ji ) i = 2, . . . ) n , y E V , and fl ff) := fi (g(Y) , y) 

THEOREM 3 . 1 .  The following propositions hold: 
(i) g is isotone on (.1' 0 , yo ) and x� � g(xk ) � y; � g(yk ) � yf , k = 0, 1 , . . .  

(ii) F ' (y) is an M-matrix for y E  (XO , yo ) and 

( F ' )¡ / (y )  = ( F ' r;/ ( g(fi) , y) , for ( i:- 1 i:- j  

( ' ' ') -F " ' .  (0 0\ III 18 180tone on .1' , Y / . 
(iv) F .rú � O s: F yo 

PROOF : See Lemmas 3 .2 ,  3 . 3 ,  3 .5  and 3 . 7  in [4] . 

(3 . 1  ) 

( 3 . 2 ) 

REMA RK 3 . 2 .  Theorem 3 . 1  gives the possibility of applying Theorem 2 . 1  to the reduced 
system ( 3 . 1 )  with starting interval ( :1'0 , yo ) ; it has been proved in [4] that under appropriate 
conditions the N - F iterates arising from the reduced system (3 . 1 )  converge better than those 
generated by the original system ( See Theorem 3 .9  in [4] ) .  Our aim is to extend this result 

to the simplified Newton sequences ; the conclusions in Theorem 3 . 1 ,  especially (3 .2 ) ,  and 

Theorem 2 .3  as well , will be used in the prooí without explicit mention; the reasoning is 
basically similar to that in [4] . We need the notation corresponding to algorithm ( 2 . 7 ) ,  
when applied to the reduced system; let us  set 



and define 

FOT k = O, 1 ,  . . .  

y k ,O : = y k 

X- k ,o : = X- k  
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FOT i = 1 ,  . . . , p  
y k , i  : =  y k , i- l  _ F '(y k )-l  F y k,i- l  

X-k, i : = X- k, i- l  _ F '(y k )- lFx k , i-l 

y k+ l : = y k ,p 
X- k+1 : = X- k ,p 

THEOREM 3 . 3 .  The following inequalities hold for k = 0 , 1 ,  . . .  and 1 :::; i :::; p : 

----r;I < X- k , i < x ·  J .1 y* < _ k , i Yj < ----r;I Yj 
k , i xl < g(X- k , i ) < * Yl < g(

y k , i ) < k , i YI 

PROOF : Suppose that the condusions hold for a ('ertain k and O :::; i :::; p - l .  

For 2 :::; j :::; n , we have 

n 

n 

1=2 
n 

= y}< . i  - L( F / )j) ( g (y k ) , y k ) * fl ( g ('iJ k . i ) , y k . i ) 
1= 1 

and thus 
n 

y! , i
+ l :::; y! , i _ L ( F / r;:J ( yk ) * f¡(g (y k , i ) , y k ,

i
) 

1= 1 
( 3 . 3 )  
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The inductive hypotheses, including the order convexity of F, also imply that 

which yields 

Fy".i _ F(g(y" . i ) ,  y " . i )  :::; F '(y" . i )(y" . i _ (g(y k , i ) ,  y " .i )) 
:::; F ' (y" )(yk . i _ (g(y " . i ) , y " , i ) )  , 

(g(y " ,t y " . i ) _ F '(yk )- 1 F(g(y " · i ) . y " . i ) :::; yk . i _ F '(y" )- 1 Fy" , i  = y" , i+ l ( 3.4 ) 
Thus, for 2 :::; j :::; n, (3 .4 )  meROS that 

n 
_ � . i 

_ 
" (F ' )-:- I ( " ) f ( (- " . i ) - " , i ) < - � . i+ t  Y J � J . I  Y * 1 9 Y , Y - Y 1 ' 
1= 1 

which combined with ( 3 . 3 )  yields 

¡¡ " . i+ l :::; yk . i+ 1 
Since we haye y. :::; y " . i+ l , it follows that 

On the other hand. it is now clear that 

and thus 

n 
Ir i+ l  

= Iri - ¿(F ' )¡; ( g(¡¡ k ) . ¡¡ " )  * fl ( g ( Y k . i ) ,  X ", i ) , 
1=1 

n 
Ir i+ 1  2:: If· · i - 2:(F ' )j} (yk )  * f¡ ( g (y k , i ) , X k , i ) 

1= 1 

We also have 

whence 

F( g(I k . i ) . z: Ir.i )  _ FX " · i :::; F ' (g(;¡ k , i ) , z: " , i )« g(X " , i ) , X k , i ) _ X" · i ) 
:::; F ' (yK )« g ( X k , i ) , X k , i ) _ Xk , i ) , 

Thus, by taking account of ( 3 .5 ) ,  it follows that 

and we finally obtain 

( 3. 5 )  
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R EMARK 3 .4 .  If instead of applying accurate elimination, !ln unknown is eliminated by 
means of a differently numbered equation, Theorem 3 .3 is no longer true (see Remark 
3 . 10  in [4] and the counterexample given there) j nevertheless an extension of Theorem 
3 . 1 1  in [4] ' comparing the generated sequences for such elimination, can be proved for the 
simplified N-F iterations in case the elimination satisfies the hypotheses in that theorem. 
Theorem 3 .3  provides a useful too1 for the reduction of non1inear systems that satisfy its 
hypotheses , in either of the two basic situations mentioned following ( 2 . 7 ) j  such reduction 

yie1ds a better convergence j however , its application should take account of the computa­
tional cost invo1ved, as in the linear case (See [3] ) . Thus , theorem 3 .3  implies that if the 
computationa1 cost of the elimination is neg1igib1e and the computationa1 cost per itera­

tion is not increased, then a net gain is to be expected with the simp1ified N-F iterations 

app1ied to ( 3 . 1 ) .  These considerations will be illustrated in the following seetion . 

4. A NUMERICAL EXAMPLE 
The examp1e treated in this seetion is taken from [4] . Thus, verification of the hypotheses 
in Theorem 2 . 1 is omitted here. The calculations have been carried out with the doub1e 
precision of Fortran 5 .0  on a p e .  Let us define F : IRn ---+ IRn by 

2YI - Y2 3 !t := h 2 + YI 

f. ' - 2Yi - Yi - I - Yi+ 1  3 
, . - h2 + Yi • 

?'y3 Y f 
. - � n 

- ' n - I  
n ' - h2 . with h : = _1_ 1/ + 1 

If Yn is eliminated by means of f .. . we get the reduced system 

- 2Yl - Y2 3 fl = h 2 + YI 
-J . 

= 
2Yi  - Yi - l  - Yi+ l :1 

, h2  + Yi • 

-f - 2Y,, _ 1 - Yn -2 - 9 :1 . n - l - h2 + Y,, - I  
( Yn - I ) � where g := 2 

( 4 . 1 ) 

( 4 . 2 )  

Consider n = 10 .  ;rO : = ( O  • . . . •  O .  0 . 14,  0 .41 ) alld yU := ( 1 . . . . . 1 ) .  The st oppin� ('ritt'ria 

have been 
I I Fyk • i 1 1 2  < . f  : =  10- 1 3  

I I F.r k . i I 1 2 < f 
and ( 4 . 3 )  

( 4 ..1 )  
These criteria have cnsured mRchine cOllvergence, i . t' .  t-h(' i te�at t's relllaill constant thert"­
artero Tab1e 4. 1 describes the necessary work to attaill cOllvergellCt' for t he i t eratiolls ( 2 .  ; ) .  
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Only relevant steplengths have been taken into account in the table o The leftmost column 

indicates the steplength p; the foHowing two columns indicate, respectively, the values kp+ i  
for which (4 .3) and (4.4) are satisfied for the N-F iterations applied t o  (4. 1 ) ,  whereas the 

last two columns describe the corresponding values when the iterations are applied to (4 .2) .  
The monotone behaviour in each column illustrates Theorem 2 .5 .  For the actual iterates 
with p = 1 see Tables 4 . 1  and 4 .2  in [5] . 

TABLE 4 . 1  

p I I Fyk , i 1 1 2  < € I I Fxk , i 1 1 2  < € I I F yk , i 1 1 2  < € I I F xk , i 1 1 2  < € 
pk+i 

1 6 8 5 6 
2 8 9 6 6 
3 10  10  7 8 
4 10  11  8 8 
5 12 12  8 8 
6 13 13  9 9 
7 15 15  10  10 
8 16 17 10  10 
9 16  1 7  1 1  1 1  
10 1 7  1 8  1 2  1 2  
1 1  1 7  18  12  13 
12  17  18 13 13 
1,3 18  19  14 14 
14 19  19  15  15  
15 20 20 16  16  
20 23 24 21 21 
23 26 26 24 24 
24 27 27 24 24 
29 31 32 
30 32 32 
44 45 46 
45 46 46 
82 83 83 
83 83 83 

According to this table , the reduced system behaves numerically better than the 

original one for every steplength. This example also shows that , if simplified iterations are 

to be computed throughout with the initial Jacobian matrix, i .e . with no updating at aH , 

then the amount of computational work for the reduced system may be much smaller than 

the corresponding one for the original system. 
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