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ON SOME NOTABLE PLANE
SETS,ITI: DRAGONS

A. Benedek and R. Panzone

ABSTRACT. We prove in an essentially geometrical way that
Heighway’s dragons (chinese dragons) are sets of Lebesgue
measure 172 that tile the plane. We also exhibit the convex hull
of the usual dragon and show that the union of two Heighway’s
dragons is equal to Knuth’s twindragon.

PART 1.

1.INTRODUCTION. a) We deal in this paper with the so called
chinese dragon, or simply dragon, associated to the (dt?@bn)
curve introduced by John E. Heighway, (cf.[D]). It is a
self-similar plane set of similarity dimension 2 that can be
obtained from the unit interval u:= [0,1] and the similarity
maps Q and R:

(1) Q(z) = (1+i)z/2 R(z) = 1 + (-1+i)z/2.
These functions are related as follows:
(2) R(z) = i[Q(2) - (1+1i)/2] + (1+i)/2 .
In Fig.5, the approximating curve for j=6 :
_ i _k . . o
dj+1" U{...*Q «R e...(u): ...+itk+...=7)}

is depicted. This polygonal has 2j sides. Heighway’s dragon is a
compact set invariant for the iterated function system (Q,R),
(cf.[E], Ch.4), that looks like the diagram in Fig. 1.

To prove this assertion (by induction) observe that if one
travels along the curve dj+1 from 0 to 1 and denotes with D (U)
the corners where the curve turns right (left) 90° then the
sequence of D’s and U’s coincides with that given in [D],§1.

b) Nomenclature: dim(X) = Hausdorff dimension of X; m(X) =
plane Lebesgue measure of X; co(X) = closed convex hull of X;
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#X = cardinality of X; if ¢ is a similarity of ratio r and
X = og(X’) then we say that X is r-similar to X’;
X, = {y; |x-y|< a for some x € X}.
T(H) will denote a tiling of the plane in the following precise
sense: H is a measurable bounded set and R2= U{H(i):; i=1,2,...}
where each H(i) is 1l-similar to H, verifying

i#j = m(H(i) n H(3j)) = O.
Let b=-1+i. F will denote the set of complex numbers whose
representation in the binary complex number system (b,{0,1)})
are of the form (O.a_la_z...)b. In other words, F is the so
called Knuth’s twindragon, (cf.[K], p.172 and [S], p.330).
c) If instead of the interval u one starts with an isosceles
right-angled triangle M in the first quadrant with hypotenuse u,
the same limit set is obtained. D(M) will denote this set. In
Fig.2 some steps of the process that leads to D(M) can be seen.
Q transforms the mother M in the right-angled triangle B and
A = R(M). A and B are the daughters of M; in the second step the
triangles C, D, F and E are obtained, see Fig.2,1-3. Here,
F UE == Q(B U A). Descendants of M will be called all the
triangles obtained following this procedure; the order of
descent of a triangle of the process is equal to the number of
steps plus 1. That is, the order of descent is counted beginning
with 1 for the mother. So, J is a daughter of I but fourth
descendant of A. In Fig.2,3-5, appear the offsprings of M of
order 4 and 5. In the diagrams of Fig.3 are distiguished the
descendants of A from those of B that are drawn with dotted
lines. Let P be a triangle r-similar to M. The mappings to
obtain the dragon D(P) generated by P, that play the same role
as Q and R, will be denoted by A[P] and P[P], respectively.

k+1 k

For arbkitrary X let 5(X) = Q(X) U R(X), & (X) = %4+347(X). Then,

bk+1(M) tends to D(M) and Ak+1(M) = ﬁk(A U B). This means that

if we replace each triangle P of order k by A[P](P) and P[P](P)
(its daughters) then we obtain all descendants of order k+1.
Thus, we have an alternative view of the construction of the
approximating families of right-angled triangles of equal size
with 1limit D(M). Then,.

(3) D(M) = D(A) u D(B) ; D(A) = R(D(M)) ; D(B) = Q(D(M)).
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If we pay attention only to the hypotenuse and legs of M then
the same proof shows that the legs (hypotenuses) of the
triangles of order k+1 are the sides of dk+1 (dk).

d) Let Gj be the family of triangles of order of descent equal
to j. Then, if A is a descendant of order m of A* € G.,

(4) D(A) € D(A*) , D(a) is (1//2)™ l-similar to D(a").
Besides, the hypotenuses of the offsprings of order j are sides
of squares in a (regular) net of squares with 0 as one vertex,
of side (1//2)j'1, formed by lines parallel to the coordinate
axes if j is odd and at 45° if j is even.

We call standard a triangulation of a square if it is the one
obtained by means of the diagonals of the square. Thus, of two
consecutive regular nets that of smaller width triangulates in a

standard way each square of the other.

e) We give two proofs of next Theorem 1. The second is geomet-
rical, resembling that of P. Lévy for his famous curve, ([Y]).
THEOREM 1. Let D=D(M). Then, D=cl(int(D)), m(D)=1/2 and there is
a tiling T(D) of the plane.

We also prove that the following result holds, (see [E],p.30).
THEOREM 2. Let M* be the image of M by the linear map

(5) t(z):=1 - z.

Then, m(D(M) n D(M*))=0. Besides, there is an isometric linear
map 2 such that Q(F) = D(M) u D(M*),

In Fig.4 a diagram of the equality Q(F) = D(M)uD(M"*) is shown.
Since D(M") is a chinese dragon, F is the union of two dragons.
This accounts for the name "twindragon". But F is also the union
of two 1//2-copies of itself that intersect in a set of measure
zero, {see Fig.11). In fact, F is the invariant set for the
K], [E] or [B]):

(z) = ¢,(z) + 1/b.

fcllowing similarity maps, (cf.

r
(6} ,@O(z) = z2/b - Ql

2. BASIC RESULTS. Recall that D:=D(M).

LEMMA 1. If descendants of the same order have points in common
then these are vertices.

PROOF. The lemma can be proved by induction since if it is true
for Gj then it follows from the alternative construction that it

also holds for Gj+l’ QED.
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Lemma 1 is also a corollary of [D}, Th.4 - that says in
particular that a dragon curve traverses each of its line
segments exactly once - if one takes into account that the

boundary of Gj+1 is equal to dj u dj+1‘

LEMMA 2. If U and V are descendants of M but no one is an
offspring of the other then m(D(U) n D(V)) = 0.

PROOF. m(D(A)nD(B)) = 0 since m(D) = m(D(A)uD(B)) and m(D(A)) =
= m(D(B)) = m(D//2) = m(D)/2. Now, Lemma 2 is a consequence of
(4) whenever U is an offspring of A and V of B. From this
observation the general case follows, QED.

It applies in particular to descendants of M of the same order.
LEMMA 3. m(D) 2= 1/2.

PROOF. Let Gﬁ be the family of right-angled triangles that have
in common with those of Gj the hypotenuse. Because of lemma 1,
m(u{A € Gj’ AT€ Gﬁ)) = 1/2. Since U{A € Gj) converges in the
metric of Hausdorff to D, the lemma follows, QED.

LEMMA 4. Let q be the unit square and {M, M’, M", M"’) its
standard triangulation where M’=1+i-M, M"=i(1-M). Then,

i) m(D(M) n D(M’)) =0

ii) D(M) u D(M’) = D(M") U D(M"")

iii) m(D(M) n D(M*)) = 0.

PROOF. i) follows from Lemma 2 since m(D(M) n D(M’)) is equal,
except for a constant factor, to m(D(U) n D(V)), U and V as in
Fig.3,3.

ii) Observe that D(R(M)) = R(D(M)) = A[M"’](D(M"’). Thus,

D(A) c D(M"’). Repeating this argument one obtains the desired
equality.

iii) e(x+iy):= x-iy. Thus, 6(M)=M*~. Because of ii),

D(M*) c D(®(M")) u D(8(M"’)). Then, to prove iii) it suffices
to show that m(D(M) n [D(6(M"))uD(6(M*’"))]) = 0. This follows
again from Lemma 2 and Fig.3,3 since W, U and V occupy the same
relative positions as M, 8(M") and 6(M"’), respectively, QED.
DEFINITION. 7(q):= D(M)UD(M’) ; 6(u):= D(M)UD(M*).

In words, 7(q) is the mill wheel associated to q and §(u) is the
k-dragon associated to [0,1]. They are depicted in Fig.4.

3. PROOF OF THEOREM 2. Let O be the linear map such that
0 = a((-1+2i)/5), 1 = a((-1-3i)/5), (2+i)/5 = a(o0),
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(note that the points to which Q is ‘applied belong to F). Let

(co,al) be the iterat»d function system of similarities in R2
3.0 . . . -1 . . . -1 . -
defined by 04:= Q @0 Q AT a Ql'n . Then,
_ .1+ 1+ 1i __ 1+
oo(z) = 3 2 + 5 ol(z) =~ z +1

and Q(F) is the invariant set for this iterated function sfstem.
These maps and those defined in (1) can be written as followé,

=2z/b + 1

g=(z -1)/b (o]

(7) .. 0 . 1 i

. Q(z) = -2/b R(z) = -iz/b + 1
where b = -1+i. The following relations hold,
00(1—2) = Q(2) : R-R(2) = -iz/2 + (1+i)/2
Q-Q(z) = iz/2 o,(z) =1 - oo(l—z)
Q:R(2) = -2/2 + (14+i)/2 R.Q(2z) = -z/2 + 1
0,°Q = ReR ~ 0g*R =1 - R-Q
0g°(1 = R) = QR %1 - =00 |
Assume A0 is a nonvoid bounded set. To fix ideas suppose. that
A, = M as in Fig.8. We define Al recursively:
(8) AL =Q(A ;) UR(A ;).

We have, for n =2 1, that
OO(An,U (1 - An)) =

= 0,+Q(A ;) U Oy R(A__1) U-0,-(1-Q(A _1)) U 0, (1-R(A__;)) =

)

= R-R(A_;) U (1 - R-Q(A;_ 1)) U Q-Q(A,_;) U QR(A_,

qi(An u (1 - An)) =

= (2 -0,(2 = A))) U (1 -o04(A))) = (1 -0Q0Q(A _,)) U

U (1~ Q-R(A__1)) U (1 - R-R(A__;)) URQA__ ).

In consequence, o ’
GU(An U (1l -2a))u al(An Uu(l-.a))=3a,U (1 - An+1)'
Since AL U (1 - Al - D(M) U D(M*") as n - » in Hausdorff’s
metric, it follows that §(u) = Q(F), QED.

FIRST PROOF OF THEOREM 1. There exists a tiling T(F) of the
plane according to our definition, (cf.[K],[B]). m(F)=1, Th. .2
and Lemma 4,iii) imply that there is a tiling T(D) with m(Dji=

=1/2. For the remaining part of the theorem, see, b) Th. 5, QED.
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QR(M)

RR(M)=Q(1-Q(M))

Fig. 8,2

Q(1-R(MI)=1-RQ(M)

4 | Fig. 10
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PART IL.

4. THE CONVEX HULL OF HEIGHWAY’S‘DRAGON. In the second part of
this paper we show that the convex hull of the dragon D is a
decagon and that of a mill wheel, a dodecagon. Theorem 1 becomes
an inmediate corollary of next Theorem 5 and this provides an
alternative proof of that theorem.

THEOREM 3. The convex hull of D is the decagon

C:= co(Pl,...,Plo), where

P.= (2 + 2i)/3 = R(P7) (2 - i)/3 = R(Pz)

P;= 2i/3 = Q(P,) :* (3 - 1)/3 = R(Py)
Py= (-1 + 1)/3 = Q(P,) Pg= (7 - 1)/6 = R(P,)
P,= -1/3 = Q(P;) Py= 7/6 = R(Py)
Po=-(1 + 1)/6 = Q(P,) P,,=(5 + 31)/6 = R(P()
PROOF. The theorem will follow from i) and ii) :

ey ece R ce

ii) Pj €D for j=1,...,10 » .
To prove i) it suffices to show that the images of the vertices
of ¢ by Q and R belong to ¢. To accomplish this only remains to
see that

R(Pg) = (3 + 4i)/6 ' R(Pg) = (5+71)/12

R(Plo) = (2 + 1i)/6 v ‘ R(Pl) = 1/3

Q(Py) = -i/6 | - Q(Pg) = (3 +1)/6

Q(P;) = (2 + 1i)/3 Q(Pg) = (4 + 3i)/6
Q(Pg) = (7 + 7i)/12 Q(P ) =(1 + 41)/6

are in € and this is easily checked. . In fact, R(P ) € P.P P2
R(Plo) € P1P6 Q(P ) € PlP6 Q(P ) € PSPl; R(P ) € P4P9:

Q(Plo) € Ple. Q(P ) € P1P6, Q(P ) € P5P8' Q(P ) € P1P6

and R(Pg) is in the triangle P1P2Q(P5).

on the other hand, to prove ii) it is enough to show that

P] € D since the vertices P2 Plo are obtained from P1 after
repeated applications of Q and R. Observe that no one of these
points is in the convex hull of the others, (see Fig.9).

But R+«R:Q:Q(2z) = 2/4 + (1 + 1)/2 implies that

(R(Z)Q(z))(n)(z) = z/4n + ((1 + i)y/2)(1 + a7l oy 41'n).

The right-hand side of the last equality converges to
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(2 + 2i)/3 = P, for n - ». Thus, P. € D, QED.

1 1

THEOREM 4. i) co(D(M) U D(M*)) is ah octagon,

ii) co(D(M) U D(M‘)) is a dodecagon.

PROOF. i) Because of Th. 2 we have, co(D(M) u D(M’)) =

= co(ﬂ(F))'ﬁ-n(Cd(F)). But, co(F) is an octagon, (cf.[B]).
ii) t(€) = co(D(M*)) implies that i+ t(€) = co(D(M’)). '

Since €(z):= i+t(z) = 1+i-z, the vertices of co(D(M’)) are
Py = (1/6,1/?) i Ppo= (1/3,1/3) : P, = (1,1/3) 7 P; = (4/3,2/3)
= (4/3,1) ; Bg = (7/6,7/6) i Bg = (1/3,4/3) i B, = (0,4/3)
Pg = (-1/6,7/6) i Py = (-1/6,1).
Now it is easy to see (see Fig.10) that
’ 5 D D D
co(D(M) u D(M’)) co(P P P5’P6’P7’P8’P3’P4’P5’P6’P7'P8)
and that all the points are necessary, ‘QED. -
COROLLARY 1. co(7(q))c q := [-1/3,4/31x[-1/3,4/3].
Let C, be the net of squares of sides parallel to the axis that

0
contains q and let 4(q) be the family of elght aquares in € \(q)

that have points in common with g. Then,
COROLLARY 2. If q € CO\(q) and co(7(q’)) n co(T(q)) # [ T
then q’e€a(q).’ : ‘

5. A TESSELATION Of THE PLANE WITH MILL WHEELS. Let us_begih |
with an auxiliéry résult. ‘ » ‘ ‘
LEMMA 5. Let T(Y) {Y(i)) and T(2Z2)={Z2(i)}), i=1, 2 3, , be
tilings of the plane. Assume that there ex1sts d < o such that
dist((Y(i),Z(i)) < d, sup(diam'yY, diam 2Z) < d.

Then, m(Y) = m(Z) > 0. .
PROCF. Let A be a square of sides parallel to the axes of lehgth

h and & = 8{h):=-{i; A n Y(l) # d). Then,
(9) n? < m(Y).#6(h) < (h+2d)2
h2
(10) Loom(Y) = lim 4o
hco #0(h)
Let 6" be the set obtained with Z 1nstead of Y. Then,'
. 2
_h™
11 Z) = 1lim
(11)  m(z) Lin e hy

Since ®o>m(Y)>0, #6(h) is asymptotically equal -to h /m(Y).
#0(h) ~ #e((h) follows from next 1nequa11t;es:
(12) #6(h) < #6’(h+4d) < #6(h+8d)
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In consequence, m(Y)=m(2), QED.

THEOREM 5. Let 7:=7(q).

a) R? = u(r(a’); q’e Cy)

b) cl(int(7)) =171

c) a’ #Z4q" = m(7(gq’) n 7(q")) =0

d) m(7) = 1,

PROOF. a) = b). int(D) # ¢ because of Baire’s Category Theorem.
Now b) follows from the self-similarity of D.

a) and c) = d). Apply Lemma 5.

c) The proof consists in showing that for any q’e€d(q):

(13) m(7(q) n 7(q’)) = 0.

In Fig.6 we see the squares in 3(g) and the triangles M and M’
renamed as 1 and 2, respectively. It will be enough to prove
that for h=3,...,10 and h=3’,...,10’ it holds that

(14) m(D(triangle 1) n D(triangle h)) = 0.

In fact, the same equality will follow for 1 replaced by 2
because of the symmetry of the diagram and Lemma 4,ii).

We reach the desired result with a previously used argument.

In Fig.3,3 there are two trianhgles of the same order of descent
in the same relative position than triangles 1 and 4. The
dragons generated by them form a set similar to that engendered
by 1 and 4. Then, from Lemma 2 we get (14) for h = 4.
Analogously and using the same figure we prove (14) for h = 8,
8’, 10’. Using Fig.3,4, we prove (14) for h = 3, 37, 4’, 5, 5/,
6, 7, Z', 9 and 9’. And with Fig.3;5 we get rid of the remaining
cases: 6’ and 10.

a) We call C1 the net of squares defined by the diagonals of the

net C,, C, the net obtained with the diagonals of the net ¢, and

so on. Then, Crl is called the derivative of C In general,

the process that provides a net of squares N’nb; means of ‘the
diagonals of another, N, is called a derivation, (P. Lévy, {(Y]).
Let t € C, with n so great that diam t < &¢. There are two nets
of squares: B, a, (see Fig.7), such that Cn is the derivative
of a and C, is also the derivative of B. But these two nets do
not have vertices in common, so only one of them has 0 as a
vertex, which is then Ch-1*
Assume that {m, u, j, k) is the standard triangulation of t. To
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fix ideas let us consider the triangle u. Define sE=P[u](u).

If B=C let = be the triangle of the standard triangulations

-1
of thens;uares belonging to B that contains u. We have in this
case u = P[Z£](2) and s = P[P[Z](Z)](P[Z](Z)), (see Fig.7).

If a=Cn
of the squares in a that contains a leg of u but does not

contain u. In this case, s = A[J](P[=]1(=Z)), that is,

-1+ let T be the triangle in the standard triangulations

s = APIZ1(2)I(P[Z]1(2)). Therefore, in any case, given u from
the standard triangulation of C, there is a:T-in the standard

triangulation of Cn .such that pP[u](u) is a. daughter of

PI(Z]1(Z). Using this iesult one. can prove by induction that there
is a triangle: M in the standard triangplation of C0 such that s
is a descendant of order n+2 of . o .

The dragon D(M) contains the vertices of its approximating sets.
Therefore, any point-of t is at distance less than ¢ of a mill
wheel. Because of Lemma 3, m(7(q))21l. From this»and c), we
deduce that any bounded region intersects only a finite number
of mill wheels, (cf. Lemma 4,ii)). Since 71(q) is compact and
diam 7(q): £ (/50)/3, it follows that any point in R2 belongs. to
a mill wheel, QED. -

cur
ok

6. AN ALTERNATIVE PROOF OF TH. 5, a). 7(q) is contained in-,

a square of sides 5/3 with the same center ‘as q. The symmetry
of ‘the tiling and the compactness of 7(q) imply that if the mill
wheels do not cover the plane it would exist an open‘set G 'c g
not coveéred by them. Assume that m(G) = § > 0. With the same

notation as in Lemma 5 and Y = 7(q), 2

q, we .hdve :

#67(h+4).(1-6) 2 #6(h).m(7(q)) 2 #e(h).1.
Then, for h - o we obtain : 1-§ 2> . lim #e(h)/#6’(h+4) = 1, a
contradic;ion, QED. ‘ , - “V.N
This proof and that of c) follow the same arguments we already
used in [Z]. ‘

.y
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