
Revista de la 

U nión Matemática Argentina 

Volumen 39, 199 5 .  

A Riemannian Characterization of Extrinsic 

3-Synlmetric Spaces 

Cristian u. Sanchez* 

Abstract 

This paper contains a new characterization of extrinsic 3-symmetric 

spaces. It involves, besides the induced almost complex stucture associated 

to the 3-symmetric space, only elements related to the Riemannian metric 

and the isometric imbedding. 

1 Introduction 
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This paper contains a characterization of extrinsic ;:¡-symmetric submanifolds of 

RN in terms of the Riemannian metric and the almost complex structure which 
can be canonica.!ly defined in any 3-symmdric space. In fact our result shows 
that the knowledge of the almost complex structure and its reJationship with the 
metric and second fundamental form are sufficient to recover the 3-symmetric 
structure which makes them extrinsic 3-symmetric. 

Sorne 3-symmetric spaces have been identified in [2], [1] and [7] as "twistor 
spaces" over Riemannian symmetric spaces of inner type. It turns out that these 
spaces are just the extrinsic 3-symmetric ones. 

The interest of the theorem included in this note lies on the fad that it is 
an strictly Riemannian result i. e. it characterizes extrinsic 3-symmetric spaces 

in terms geometric invariants arising from the metric and the almost complex 
structure. 

The result is the following. 

Theorern 1 Let 1\,f2n be a compact simply connected almost Hermitian manifold 
with almost complex structure J. Assume that i : lv12n --+ R2n+q is a full isometric 
imbedding with second fundamental form a. Let \7 be the Riemannían connection 
and R(X, Y, Z, W) the Ríemannian curvature tensor. Then M2n is an extrinsic 

3-symmetric submanifold of R2n+q with symmetry tensor S = (1) J - O) 1 if 
and only if the following conditions are satisfied. 
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i) S preserves V J and V2 J. 
ii) R(X, Y,Z, W) = R(JX,JY,Z, W)+ R{JX, Y,JZ, W) + R(JX, Y,Z,JW). 
iii) (VuR) (X, Y, Z, W) + (VuR) (JX, JY, JZ, JW) = O. 
iv) a(JX, JY) = a(X, Y). 
v) VJu (a(X, Y)) = V3V& (a(X, Y)).O 

This result extends a theorem due to D. Ferus [3] which characterizes the 
canonical imbedding of Hermitian Symmetric spaces which, as it is probably 
well known , are extrinsic k-symmetric for each k � 2. The next section contains 
preliminary definitions; the proof of Theorem 1 is contained in section 3. 

2 Section 
Let M2n be a connected Riemannian manifold, as in [5] we say that M has an 
s-structure if for each point p E M there i8 an isometry Op of the Riemannian 
manifold M for which p i8 an isolated fixed point . The s-structure is of order 
k � 2 if O; = idM for each point p and k is the minimum natural number with 
this property. The s-strudure is called regular if Op o Oq = Or o Op, where r = 0A q), 
for every p and q in M. 

If we have an imbedding i : M2n ---+ R2n+q we say that M is an extrin­
sic k-symmetric submanifold of R2n+q if each Op extends to an isometry up : 
R2n+q ---+ R2n+q such that up (Tp(M).L) = idTp(M)1.. In this paper we consider 
only 3-symmetric spaces. 

In 0111' Riem,Amian regular s-manifold we may consider the canonical con­
nection 'Ve defined by the formula of Graham-Ledger in terms of the tensor 
Sp = (Op)*p and the Riemannian connection as follows. Let D(X, Y) be the 
tensor field on M defined by 

then ve is defined now as 'VxY = V x Y - D(X, Y). In this way ve is uniquely 
determined as 800n as we have the s-structure defined on M. It is important to 
indicate that the tensors D and S, as well as the metric on M, are parallel with 
respect to ve. 

Let us recall here a definition given in [8, (2.3)] and used in [6] to characterlze 
R-spaces. The "canonical" covariant derivative of the second fundamental form 
of an isometrically imbedded k-symmetric space is defined by 

(Vxa)(Y, Z) = V� (a(Y, Z)) - a (VxY, Z) - a (Y, VxZ) 

where, as usual, V.L denotes the normal connection of the imbedding . 
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3 Section 
First oí all we observe that the conditions (i), (ii), (iii) and the hypothesis that M 
is almost Hermitian with almost complex structure J are precisely the assump­

tions oí [4, p353, (4.5)]. The conclusion oí [4] is that M is a Riemannian locally 
3-symmetric space and J is the canonical almost complex structure determined by 
the t ensor S defined by the local cubic isomeiries 01 M as J = (�) [8 + (t) 1] . 

Remark: It is important to notice that in his definition on p 352, dray requires 
that each ()p be holomorphic in a neighborhood oí p with respect to the canonical 
almost complex structure of the íamily. This means (()p)*qoJq = J(Bp(q))O(f)p)*q and 

by the nature oí J this implies (Op)*q o 8q = 8(8p(q)) o (Op)*q which is the regularity 
condition oí Graham and Ledger. Then the hypothesis oí [4,p3.53, (4..5)] give a 

regular 3-symmetric space. 
As we indicated in the previous section we have on M the uniquely defined 

canonical connection V'c, In [8, (1.2)] it is shown that a compact k-symmetric 
space M, imbedded in 'RN, is extrinsic k-symmetric ií and only if the following 
two conditions are satisned 
i) V'ca = O on M, 
ii) a (8X,8X) = a(X,X) \:IX E Tp(M),p E Al. 

We have to show that, in our situation, the hypothesis (iv) and (v) of (1) 
imply (i) and (ii) aboye. 

Let us begin by proving (ii). From (iv) it follows that a(JX, Y) = -o(X, JY) 
and theref ore, 

a (8X, SY) = O) a! ( (v'3) J - 1) X, ( (  v'3) J - 1) y,] = 

= i 3a(JX,JY)-0 V3JX,Y -o x,v'3JY +o(X;Y) = 

= hj [3" (J X, JY) - " V3JX, yj +" ¡ V3.JX, yj + " (X, nl = 

= (i) [30 (J X, JY) + a(X, Y)] = o (X, Y). 
As we Índicated in Section 2, the symmetry tensor S is canonically parallel 

and since J = (7J) [S +0) 1] we have V'eJ = O. Clearly from (iv) \Ve ohtain 
V'2 (a (JX, Y)) = -V'2 (a (X, JY)) and then o (V'z (JX), Y) = -o (V'zX . .In· 
Finally a (JX, V'zY) = -o (X, V'z (JY)) and these equalities add up to 

(V'za) (J X, Y) = - (V'zo) (X, JY). 

By the express ion oí J in terms of 8 this becomes 

(V'za) (SX, Y) + (�) (V'zo) (X, Y) = - (V'zo) (X, 8Y) - (�) (V'zo) (X, Y) 

and thereíore 
(V'zo) (SX, Y) = - (\7za) (X, (8 + 1) Y). 
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But since 52 + S + 1 = O we obtain 

Now we have the following 

Lemma 2 (V'sza) (SX, Y) = (V'za)(X, S2y). 

Proof. By definition we have 

(V'sza) (SX, Y) = V'iz (a (SX, Y)) - a (V'szSX, Y) - a (SX, V'szY) = 
= V';h (a (SX, S3y)) - a (SVzX, Y) - a (SX, V'SzS3y) . 

Now by the condition (iv) of the theorern we have 

a (SV'zX, Y) = a (V'zX, S2y) , 
a (SX, V'SZS3y) = a (SX, V'SZS3y) 

and also 

V'iz (a (SX,S3y)) = V'iz (a (X.S2y)). 
On the other hand, condition (v) can be written as follows 

(�) V'Jz (a(X, Y)) = (�) V'� (a(X. Y)) 

and this, by the definition of S, yields . 
V'�z(a(X,Y))  = V'�(a(X.Y)). 

From all these equalities we finaUy get 

(1) 

and , by definition, this is the right hand side of the identity that was to lw 
proved . O 

By by equation 1 and the Lernrna we ohtain the identity 

(V'sza) (SX, Y) = (V'za) (SX, Y) 
and by writing X instead of SX we transform this identity into 

(V'sza) (X, Y) = (V'za) (X, Y) 
which in turn may be written as 
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Since (1 - 8) is non singular on M we obtain (\7:z0ó) = O and this shows that 
the conditions of the theorem are sufficient . 

Let us prove that the conditions are necessary. 
In [4, (3.6), p349] there is a proof of the necessity of condition (i ) and that 

(ii ) and (iii) are necessary is proved in [4, (3.8)(i) , p349] and [4, (3.10) , · p350] 
respectively. Notice that, by definition, each (}p is a holomorphic isometry and so 
the conditions () (R) = R and 0(\7 R) = R are satisfied. 

That the condition (iv) is necessary, is proved easily as follows: 

a(JX,JY) = (�) a ((8 + (t)¡) X, (8 + O) 1) y) = 
= (�) [a (8X, SY) + O) a (SX, Y) + O) a (X, SY) + (�) a (X, Y)] = 

(Ü [(Üa(X,Y)+ 0)a((S2+S)X,y)] = 

(�) [(Üa(X,Y)-O)a(X,y)] =a(X,Y). 

In order to finish the proof we first notice that condition (v) is equivalent to 
the following identity 

\7�u (a (SX, SY)) = \7� (a (X, Y)). 
In fact, since the second fundamental form satisfies a (SX, SY) = a (X, Y), 

this Iast equality is just 

\7�u (a (X, Y)) = \7� (a (X, Y)). (2) 
Now replacing S = (�) J - O) 1 in the last equality we get 

(¿) \7Ju (a  (X, Y)) - (�) \7& (a (X, Y)) = \7& (a (X, Y)) . 

which is clearly equivalent to 

\7Ju(a(X,Y)) = V3\7&(a(X,Y)). 
Now to prove the equation 2 we need to use that M is extrinsic 3-symmetric 

Le. for each p E ]\,[ there exists an isometry O'p ; R2n+q --+ R2n+q such that 
O'p I Tp(M).L = Id(Tp(M)l.) and O'p I Tp (M) = Op. Since this is the case wehave 

SU = (Op)*pU = (O'p)*pU and therefore 

a (SX, SY) = a ((Op)*pX, (Op)*pY) = (O'p)*pa (X, Y). 
Then we may write 

\7�u (a (SX, SY)) = \7«".p).pU) ((O'p)*pa (X, Y)) = \7& (a (X, Y)). 
This proves the validity of the equation 2 and completes the proof of Theorem 

1. 0 
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