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- ON THE REPLICA OF LINEAR PRODUCTION GAMES WITH NON
ADDITIVE RESOURCES

RUBEN OSCAR PUENTE and EZIO MARCHI

Abstract. The replica of the Owen-Granot market linear production
game is studied. A suitable way of replicating is devised. The standard
convergence of the replica’s core to a competitive solution is obtained.
The approach presented here could be of wide economic applicability,
since it depends on a proper vector in the core of resource games.

1. INTRODUCTION. The linear production game introduced by Owen [3] is a type
of market game, which is generated by linear programming optimization problems. In
this game it is important the relation between the core and the competitive set. The
competitive set is always contained in the core of an LP-game, but both sets are not
identical. However, if the set of players is replicated many times, the core of replicated
games converges to the competitive set, i.e., the vectors belonging to the core of all
replicas of linear production games are the competitive vectors. This result can be
considered a consequence of a well-known theorem of Debreu and Scarf [1] which states
this convergence-in the area of economics. Owen has also proved a special result for
linear production games: the convergence after a finite number of replications when the
dual optimal set is a single. Samet and Zemel [5] provide a necessary and sufficient
condition for finite convergence in LP-games. Granot [2] generalizes this market model
dealing with non additive resource vectors.

In this paper we study the replicas of Granot’s model. As it is usual in this subject we
obtain the convergence of the replica’s core. This is done in a very general way, which
depends upon an election of W in the cores of the resource games. In a large collection
of cases ¥ may be taken either as Shapley value or as the nucleolus. A convergence to
that competitive payoff is obtained.
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2. NOTATIONS AND PRELIMINARY. For any finite sets N and M, N C M
means non strict inclusion, M \ N means Boolean subtraction, |N| is the cardinal
number and 2V is the power set of N. We shall often use the natural numbers to name
the elements of these sets. The symbol R denotes the real numbers and RV denotes the
N-dimensional Cartesian space whose coordinates are indexed by the elements of N. If
z,y € RN then z <y means z; < y; for all ¢ € N and 1 denotes the vector (1,1, ..., 1).
A cooperative game with transferable utility is a pair (N,v), where N is a nonempty
finite set and v : 2V — R is a set function that satisfies v()) = 0. The elements of N
are the players; a coalition is a subset of 2V and v is the characteristic function of the
game. A game is super additive if one has v(S) 4+ v(T) < v(SUT) whenever SNT = 0;
if the inequalities hold with the equal signs, the game is additive. z.1 < v(N). An
imputation is a vector ¢ € RV that satisfy z.1 = v(N), and z; > v({:}) for all s € N.
The core of (N, v) is the set of imputations so that ;e z; > v(S), for all S C N. A
game is balanced if its core is non empty.

In the linear production game [3] to produce a unit of j-th good (j = 1,2, ..., m), requires
aj; units of the k-th resource (k = 1,2, ...,p) and it can be sold at a price c;. The set of
players is denoted by N. As in [2] we will assume that there is a function b : 2V — R?
that assigns a resource vector to each coalition, b() = 0. A coalition S possesses a
total of bx(.5) units of the k-th resource as a whole. A function b; can be thought of as
the characteristic function of the k-th resource game. The generalized linear production
game (GLPG) is defined by the characteristic function v given by the program

(1) v(S) = max{c.z}, s.t. a.x <bH(S), z2>0.

We assume that the program (1) is feasible and bounded for all S C N. Therefore, the
following dual program defines the same characteristic function.

(2) min{b(S).y}, st. y.a>e¢c, y>0.

A GLPG with additive resource function bis a linear production game, taking the vector
b({7}) as initial resources of the i-th player, i € N.

Theorem A (Granot (1986)). In a linear production situation as above, if all resource
games are balanced, then the corresponding GLPG is also balanced.

Moreover, a GLPG is super additive if all resource games are super additives, although,
neither balance nor super additivity conditions of the resource games are necessary to
obtain this property in a GLPG [4].

If the resource games are balanced, let W[b] be a vector in the core of the resource
game (N, bg), (k=1,2,...,p). Let y* be an optimal solution to (2), with S = N (the grand
coalition). An imputation u is named competitive if it is defined by ;

(3) u; = U;bl.y*, +€N.
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Theorem B (Granot (1986)). In a linear production situation as already described, a
competitive imputation is in the core of the GLPG.

3. RESOURCE FUNCTION EXTENSION. REPLICATED GAME. Foreach
player in the original set IV, there are r players of the same type in the r-replica of a
game, where 7 is a positive integer. The symbol rN denotes the set of all players. A
suitable extension of the resource function is required.

Definition 1. The profile of a coalition S C rN is the vector x(S) = (z),i € N, where
z; is the number of i-type playersin S.

Definition 2. The representation of a coalition S C rN with respect to tN is the set:
S/tN ={i € N :z; > t}.

Definition 3. Let ¥ be as in (3). The W-extension of a resource function b, is the
function b* defined by

oy o1 +_Jaifa>0 }

5(8) = b/ + W) - 11 = {6 0L
Definition 4. Let ¥ be as in (3). A U-convergent extension b° is a set function that
satisfies:

1) (S) = {(S/N), if x(S) < 1,

2) b5(S) = rb(N), if x(S) =rl1,

3) b4(S) < b*(S), for all S, and

4) limy(s)moo b°(S) = b*(S), [x(S) — oo if min{z | x(S) = (z),7 € N} — o).
Definition 5. Given a GLPG, let ¥ be as in (3), and let ¢ be a U-convergent extension.
The game (TN, v.) is defined by the program (1), where the resource vector is b°.

We assume in the sequel that for each coalition S C r N, the linear program (1) is feasible
and bounded so that the optimal objective function values for the various coalitions are
finite. It is immediate that if x(S) < 1 then ve(S) = v(S), and that ve(rN) = rv(N).
So, the characteristic function v, of a replicated game, will be simply denoted by v.
Any imputation in the core of a r-b¢-replica, assigns an equal payoff to the same type of
players (analogous to Theorem 2 in [3]). Therefore, core imputations can be represented
by n-dimensional vectors. The following results should be interpreted in this way.

Theorem 1. A V-competitive imputation belongs to the core of a V-convergent r-b®-
replica, for all r. .
Proof. We will prove that W[b;] belongs to the core of b (k = 1,2,...,p). Because
U[b,] belongs to the core of each by, we have

(4) Ulbg].1 = be(N),

() U[be].x(S) = be(S), S CN.
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Using (4) and Definition 4.2, we obtain W[b].r1 = bg(rN).
Now consider S C rN. Using (5), Definitions 3 and 4.3, we have

U[bk]-x(5) = Wlbe-[x(S) = 1]* + U [be]- X(S/N) = bE(S).

Theorem B completes the proof.

Theorem 2. Given a GLPG, let ¥ be as in (3), and let b® be a ¥-convergent extension.
An imputation u is ¥-competitive if it belongs to the core o fthe r-b¢-replica, forallr > 1.

Proof. Let u be a vector in the core of all replicas. Consider the system:

(6) Wibly <ui,i€N,
(7) ya>c,
(8) y > 0.

Suppose that this system has a solution. Adding (6) for ¢ € N, results that y is an
optimal solution to (2). Hence, (6) holds with the equal signs. We conclude that u is a
W-competitive imputation.

If the system (6)-(8) has no solution, consider the dual program of a trivial objective
function subject to these constraints:

max{c.z —uz}, st. az—V¥[b.2<0, z,2>0.

This program is feasible and unbounded. Thus, there will exist vectors z, = such that

(9) cr>uz,

(10) a.x < Y[b.z,

(11) >0,




101

(12) ' z> 0.

The vector z can be chosen with rational numbers so that the strict inequalities (10)
and (12) hold. Multiplication of z and z by the common denominator makes z; positive
integer, ¢ € N. Now, multiplication by a positive integer ¢ produces another solution
which slackens inequalities in (10). In brief, for any positive integer ¢, there exists a
solution z, z of (9)-(12) such that z; is positive integer and z; > t, for 1 € N.

Then, consider a coalition S with x(S) = z, so that S/tN = N, where ¢ is a positive
integer such that § = b;(S) — b%(S) is small, § > 0 (See Definition 5). Then

(13) BE(S) + 6 = U[by.z .

For a sufficiently small §, from (10) and (13) we obtain

(14) S ' a.x <b°(S).

Now, (11) and (14) are the program (1) constraints. Therefore, z is a feasible solution

of (1). So,

(15) v(S) > c.x.

However, since u belongs to the core of all r-replica,

(16) u.z > v(S).

But (9), (15) and (16) are contradictory. Therefore, the system (6)-(8) has a solution
and the proof is complete.

Theorem 3. Let b° be a V-convergent extension of a non negative GLPG, which
converges ut finite steps at the V-extension b*. If y* is the only optimal solution of (2)
for the coalition N, then, for a sufficiently large r, the core of the r-b¢-replicated game
contains only the V-competitive solution.

Proof. Let r; be an integer large enough so that b°(S) = *(S) if S/(r1 —1)N = N.
Consider § = min{b(N).y —v(N)} > 0, where the minimal value is taken into the finite
set of extreme solutions of the program (2) constraints, such that y # y*. Let r; be
an integer large enough so that (r; —1)é > v(N). Let r = maz{ry,r,}, and, for any
io €N, let S be the coalition S =rN — {ip}.

We will prove that the optimal solution y* for the coalition 7N, is also optimal for S.
Let y° be optimal for the program (2). If y¥ # y* then
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(17) b°(S).y5 = b°(5).y% = {(r — B(N) + Tizi, ¥ilb]}.y°
> (r—1)b(N).yS > rv(N).

On the other hand, v(S) < v(rN), since the core of (rN,v) is nonempty and v is
nonnegative. This fact contradicts (17). So, y* is optimal for S.

Let u be an imputation in the core of the r-b°-replica. Then

ru.l =v(rN)=r b(N).y*, and
rud = uig > o(S) = b(S).y7 = [(r = DO(N) + Tigiy Wilb]] 07,

from where

(18) Uy < [b(N) -y \Il,-[b]] Y <V, [0y

i
Adding (18) for ig € N we obtain v(N) = u.1 < T ey Vilbl.y* = b(N).y* = v(N).
Therefore, (18) holds with the equal sign. So that u is the ¥-competitive solution.

4. EXAMPLES. The three following examples show extensions of a same resource
function.

Example 1. Consider a GLPG with two players, two resources and two goods, & {1}) =
(3,1), b({2}) = (2,4), b({1,2}) = (5,7) and programs:

max{z; + 22} = v(S) = min{bi(S)y1 + b2(S)y2}

st. x4 2z2 < by(S) Y1+2y2 21
221 + 22 < By(S) 2ty 21
$1,$2_>_0 ylay220’~
The dual program has three extreme points: (1,0), (0,1) and (1,3). However it has

one optimal only for the grand coalition: y* = (% %)

The characteristic function is v({1}) = 1, v({2}) =

Clv)={(un,u) |[itus=4,1<u <2},

The core of the resource games are C(b;) = {(3,2)} , C(b2) = {(1+¢,6—¢) | 0 <t < 2}.

The competitive set is D(v) = {(u1,u2) | ur +ug =4, 3 <uy <2}

For the 1% resource, ¥[b;] = (3,2) and for b; the Shapley value is chosen: ¥[by] = (2,5).
5 7

Hence, the associated competitive solution is: (3, 3).

Consider the trivial W-extension b° = b* that depends only on the profile:

v({L,2}) =4 and the core is

bi(z1, 22) = 321 + 224,
b3(z1, 22) = sgn(z1) + 4sgn(zz) + 2sgn(z122) + 2[z1 — 1]* + 5[z, — 1]*.
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The following table summarizes the important core data.

r 21z bj(S) b5(S) v(S) core condition
1 1.0 3 1 1 1<u;

1 0 1 2 4 2 u; <2

1 1 1 5 7 4 ur +us =4
2 2 1 8 9 U $<wm
21 2 71 12 1 w < &

The 2-replica core is C*(v) = {(£,I)}. Theorem 3 guarantees equality for r > 6.

In the next example, the extension of the resource function is not W-convergent, as
in the strong sense of Definition 4.4. However, examining the Theorem 3 proof, it is
concluded that the condition to the convergence may be weakened. For instance, to
each S C rN and € > 0 if x(S5) > I then b;(tS) — b5(tS) < te for all sufficiently large
integer {.

Example 2. Consider another ¥-extension b of Example 1 function:
b5 (21, 22) = 321 + 223,

721 + Ef;zl+l{5 - } ) if 21 <2
b;(zl, 22) = 722 + Zfl=22+1{2 - 1.} B if 21 > 2y
7Zl ) if 21 = 22

[T

The following table summarizes the important core data.

Tz 2y b§(S) b5(S) v(S5) core condition
1 1 0 3 1 1 1< u
1 0 1 2 4 2 u <2
1 1 1 5 7 4 u1+u2-—4
1 17 _ 1 51
T T O S S A
3 3 2 13 16-1 B _ 1 1<y
3 3 9 3”9 =>U
3 2 3 12 19-1 a_1 g <541
r 1t r—1 5 -2 77‘—5—% 47"—%—317 %—sl—rgul
rr—1 r 5-3 Tr—2-1 4r—2- 1 u1§§+31—r

The r-replica core is C7(v) = {(u1,u2) [ v1+uz =4, I - <w <3+ £}

The next example shows that the replica’s core can be empty, when the ¥-convergence
condition 6%(S) < b*(S) is not satisfied for all S (See Definition 4.3 and Theorem 1).
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Example 3. Consider the W-extension of the example 1 function given by:
b§(21, 22) = 321 + 22,

Ta+ T {5+3) . if 1<a <z
bg(21,22) = Tz9 + Zf;;;{Z — %} y if z1>202>1
b3(21, 22) otherwise

The following table summarizes the important core data. A column b3(5) is added.

roz oz B(S) b5(S) b5(S) w(S) core condition
1 1.0 3 1 1 1 1<y
10 1 2 4 4 2 up <2

1 1 1 5 7 7 4 uy +uy =4
2 2 1 8 8 9 8 1<y

2 1 2 71 13 12 D up <4

3 32 13 15+ 16 241 <y

3 2 3 12 19+% 19 341 u <8

The 3-replica core is empty, because the last two inequalities contradict the others, but
b5(1,2) > b5(1,2), for instance.

FINAL REMARK. We would like to emphasize that our results of convergence
present certain ’duality’. By this, we mean that the theorems depend upon the choice
of ¥. But, on the other hand, the applicability of the main theorems is powerful since
the new agents introduce their resources in a coordinated way measured by ¥, thus
making our results potentially applicable to economic models.
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