105
Revista de la
Unién Matemadtica Argentina
Volumen 39, 1995.

L? APPROXIMATION OF GENERALIZED BI-AXITALLY
SYMMETRIC POTENTIALS WITH FAST GROWTH

H. S. Kasana and D. Kumar

ABSTRACT. The paper deals with growth and approximation of solutions (not necessarily
entire) of certain elliptic partial differential equations. These solutions are called generalized bi-
axially symmetric potentials (GBSP). We obtain the characterization of ¢-type and lower ¢-type
of a GBSP, H € Hg, 0 < R < oo, in terms of decay of approximation error E,i]‘p(H, R,)),i=1,2.

1 INTRODUCTION

Generalized bi-axially symmetric potentials (GBSP’s) are the solutions of elliptic partial differ-
ential equation

0?H 0*°H 2a+10H 28+10H
- =0, a.8>-—

1.1 oH
(1.1) 0z? = 0y? y dy y Oz

N —

which are even in ¢ and y cf. Gilbert [1]. A polynomial of degree n which is even in 2 and y is
said to be a GBSP polynomial of degree n if it satisfies (1.1). A GBSP H regular about origin
can be expanded as

(1.2) H=H(r0) - Z anr? Pl (c0s28).

n=0C
where £ = rcosf, y = rsin 6 and P,(l“'ﬁ)(f) are Jacobi polynomials.

Let Dp = {(z,y): 22 +y?> < R, 0 < R < oo} and D be the closure of Dr. A (‘BSP H is said
to be regular in Dp if the series (1.2) converges uniformly on every compact subset of Dp. Let
Hpg be the class of all GBSP’s regular in Dg/ for every R’ < R but for no R’ > R. The functions
in the class H,, are called entire GBSP’s.

McCoy [6] considered the approximation of an entire GBSP H by GBSP polynomials and found
the rate of decay of approximation error :

1/p
Eup(H,1) = inf 11 = gl = ot ([ [ utecpltiteyPis ay)
. 51
in terms of growth parameters associated with the maximum modulus M(r, H) = max |H(r,6)|,

where p1 is a weight function and 1 < p < .

Also, McCoy (7] considered the approximation of pseudo analytic functions, constructed as
complex combination of real valued analytic functions to the Stokes-Beltrami system on the
disc. These functions include the GBSP’s. He obtained some coefficients and Bernstein type
growth theorems on the disc in sup norm.
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A GBSP H is said to be regular in Dg,, the closure of Dg, if it is regular in Dp/ for some
R > R,. Let FRO be the class of all GBSP’s regular on Dg,. For H € —ITRO, set

IlH|r, = m H
_|| Emax |H(z,y),

and for 1 < p < o0,
1/p
(19 11y = ([ (R0 (R, 00 d0)

1/p
(1.4) V1, = ([ @yl de dy) ,

/\

where the functions w and @ are positive and integrable (in the sense of Lebesgue) such that 1
and 1 are bounded and || Ik, and || |, , are LP-norms on Hp, . For H € HR, approx1matlon
€rToTsS E »(H,R,) and E2 (H,R,) are defined as

(1.5) H,R,) = mf IH - gllr, ,

n p(

3 _ 2
(1.6) Eq (8, Ro) = inf || - gliR,

where 7, consists of all GBSP polynomials of degree at most 2n. The concept of index ¢, the
g-order p(q) and lower g-order A(q) were introduced by Sato [8] in order to obtain a measure
of growth of the maximum modulus when it is rapidly iﬁcreasing. Thus, let M(r,H) — o as
r — R and for ¢ = 2,3,..., we define

logld) M(R, H)
(H,R) =1 =
Plo)(H, R) = m s A

where log!% M(r,H)= M(r,H) and logle—1) M(r,H) = log(log[q'z] M(r,H)).

The GBSP H € Hp is said to have the index ¢ if p,(H,R) < oo and p,_1)(H,R) = co. If
q is the index of H then p,(H,R) is called the g-order of H. The notions of the index and
g-order play a significant role in classifying the rapidly increasing functions analytic in Dg. To
compare the growth of two functions analytic in Dr that have same g-orders the distinct growth
parameters are used.

We have the following definitions :

Definition 1. A GBSP H € Hp, 0 < R < oo having g-order p,(H, R)(pq(H, R) > 0) is said to
have g-type T,(H,R) and lower ¢-type t,(H, R) if

T,(H,R) _ . sup logl'=!(r, H)

- <
t,(H,R) ~ =R inf ( N )pq(H,R)v <t,(H,R) < T,(H,R) < o0

R—r

In this paper we study the growth and approximation of solutions (not necessarily entire) of
certain elliptic partial differential equations. These solutions are called generalized bi-azially
symmetric potentials (GBSP’s). The GBSP’s are taken to be regular in a finite hyperball and
influence the growth of their maximum moduli on the rate of decay of their approximation
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errors in LP-norm defined by (1.3) and (1.4). The results and methods employed are different
from those of McCoy [7]. The text has been divided into three parts. Section 1 consists of
introductory exposition of the topic and Section 2 includes some lemmas. Finally, we prove
some theorems which characterize the g-type T,(H, R) and lower g-type t,(H,R) of a GBSP
H € Hp,, 0 < R, < 00, in terms of rate of decay of approximation errors Ejl’p(H,Ro),O <
Ro< R < o0,1=1,2.

2 PRELIMINARY RESULTS

In this section we give some lemmas as preliminary results which have been used in the sequel.

Lemma 2.1. Let H € Hr, R > R,. Then there exist GBSP polynomials g, € 7, such that

| H = gall < KM(r, H)(n+ 1)"/2(R/r)*"+D)

for all r sufficiently near to R and all sufficiently large values of n. Here A is a constant
independent of 7 and n and 7 = max(a, 3).

Proof. The proof of this lemma follows from [4].
Lemma 2.2. Let H € Hgr, R > R,. Then there exist GBSP polynomials g, € 7, such that

(2.1) E}(H,R,) < Ki(n+ 1"} (R, /r)* "tV M(r, H); i = 1,2

for all r sufficiently near to R and all sufficiently large values of n. Here K is a constant
depending on R,, w, and p only and K, a constant depending on R,, W and p.

Proof. Using (1.3), (1.4), (1.5), (1.6) and Lemma 2.1 we get the required result.
Lemma 2.3. Let H € Hpg. Then for n > 1,

TVP(20) /" (20 + a4+ 3+ 1)P(n, a0, 3)(n + n + D)

n| B2 < "
|| T Dint1) '

(H,R,).
_ D(n+1)P(nto+p+1)

where P(n,a,f3,) = (Z+a+l)(niﬂ+l) .

Proof. By (1.5), for H € H g_there exists a GBSP polynomial g%_; € m,_; such that

1 2r . ) 1/p
(22)  2ELA(HR) 2 il 2 a7 ([ 1H1R0.6)= g3 1RO db)
1 T p 0

since 1/w is bounded and we have w > %, T > 0. For p > 1 choose v* such that 1/p+1/v" = 1.
Using Holder’s inequality we get

2r 2r 1/p 2r 1/2*
(23) [ 1H(R0,0) = g5 1(Ronbld0 < ([ 11 Ro.0) = g7, (R, 0)740) ([ a0)"
0

Combining (2.3) and (2.4), we get

i
g TP

1
(2m)V/T1/P

2E, 1 p(H, R,)

v

2r
[ 1 Ro,0) — 7R 10

/2
[ 1 Ro.8) - g2y (R 10
0
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for p > 1, since GBSP’s H and g;_, are even in 2 and y. For p = 1, (2.4) is obvious with v* = 0.
From the orthogonality of Jacobi polynomials [9] and uniform convergence of the series (1.2) on
Dpg,_, we have

a, R*™
(2n4+ a4+ B+ 1)p(n,af)

Thus, for any g € m,_; we have

= 2/ H(Ry,0)p!*P)(cos 20) sin?*+1  cos?*+1 9 db.

a R*"p(n, a,8)”
@n+.+ﬂ+n

(2.5) =2 / (H(Ro,6) — g( Ry, 0))p'®")(cos 26) sin>*+! 8 cos?5+1 8 6.

From [9], we know that

(a,83) F(k+nt+1)
(2.6) ?Lﬁ’éllp (0] = T(n+ DIk +1)

Taking in particular, ¢;;_, it follows that

77 = ma‘x(av/g)'

a, R I(n+n+1) m/2
(2n+ a + B8+ 1)p(n,ap) I'(n+1)I'(n+1) Jo
Combining (2.5) and (2.7), the lemma follows.

Lemma 2.4. Let H € Hp,. Then for n > 1, we have

(2.7) 2

IA

|H(Ro,0) — g5_1(R,,0)|d6.

@ |R2”+2 Tl/P(ﬂ'R?)l/1 2n+2)2n4+ a4+ 4+ 1)P(n,a,8)(n+ 0+ 1) H.R
an F(’l]'{'-l (72 + 1) n ]p( )
Proof. By (1.6), for H € Hp,, there exists §,—1 € m,_ such that
2B 1 (H,Ry) 2 |H = gull,
1 _ b 4r d 1/p
> = ([ [ 1) - o) ds dy)
BRO
1 J 1/p

P — - 3§

(28) > g ] @ - gtz dy)

Dpg,

where @ = %,T > 0 and 1/p+ 1/v* = 1. From the orthogonality of Jacobi polynomials and

uniform convergence of the series (1.2) on Dg,, we have for 0 < r < R,
anr®

(2n+a+pB+1)P(n,a,p)

/2 .
= 2/ (H(7,0) = oy (r,0)) PP (cos 0) sin?*+! @ cos? 1 6 d.
0
Using (2.6), we get

a,r?" F(n+n+1) /2"
" < H(r,6_§,—1(r,0)| d.
@t ath+ DP(maf) M+ g+ Jo 11000
Since H and §,_; are even in z and y. Multiplying both sides of the above inequality by r dr
and integrating from 0 to R,, we get
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a,rt2(2n 4+ 2)71 L(n+n+1)
(2n+a+ 5+ DP(n,a,f) = 20(n+ DI(n+1) //'H“’ Gn-1(2,y)| d dy.

(2.9)

Combining (2.8) and (2.9) we obtain the required result.
Lemma 2.5. Let H € Hg, 0 < R < oo(R > R,). Then
T]/p(z,r)l/v

(7‘ H < |(l0| '——r—(—m—)— [(T‘.h) .

where )= 2n+a+ 3+ 1)P(n.a, 3)Latntl) g1

F(n+1) n— lp(I{ R, )(}%) "

Proof. Using (2.6) and Lemma 2.3 we get

I'(n+n+1)

2n p(o, /3 2n
P 20)| < |a, e
Z(z r (cos28)| < |a |+Z|an|r EESIICESY

n=0 n=1
or

Tl/p 27_)1/!

< g + ZL UL R (" (20 + a + 3+ D)P(n.a. f)—_‘"+”+ ),

R, I'(n+1)
which corresponds to desired result.

Lemma 2.6. Let H € Hp. 0 < R < . Then

T’l/p(,h.)l/v‘

M(r.H) < la,
M(r, H) < |a,| + v*T'(n +1)

R*(1— v")M(r.h")

where h*(u) = Y0, 2n +2)(2n+ a + 3+ 1) P(n, a. ) Llotutl) g2

[(n+1) “ri— ]I(H'R 7, )2,

Proof. Using Lemma 2.4 the proof has the same analysis as that of Lemma 2.5.

Lemma 2.7. Let f(z) = Y72, @,z" be analytic in |z| < R. Then the function f(z) is of ¢-order
and ¢-type T(q) if and only if
T(q) = Blg) V(g).

where B(q) = (p+ 1)P*1/p?, A(q) = 1for q = 2: B(q) = 1, A(¢g) =0 for ¢ = 3.1.... and
V(g) = lim supn_’%(log[q":z] n)(log® |a,|R™)#a)+4(9),
Proof. The lemma can be proved by simple manipulation of the results in [2] and [3].

Lemma 2.8. Let f(z) = ) 72, @y, 2™ be analytic in |z| < R and have g-order p(q) (p(¢) > 0)
and lower g-type t(q). If v(ny) = |ay, /an,,, |1/ (nk+1=1%) forms a nondecreasing sequence of k for
k > k,, then

. ] R la)+Al9)
(2.10) B(g)t(q) < likm inf(log["_zl 7‘1;‘.)(—%»'—”*‘——)
Ry X

and

k—o0

‘ ] R q)+A(q)
(2.11) B(q)t(q) < L(g)lim inf(logl?~? ,,k_”( og* Im il ) :
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where L(g) = lim sup,_ .. (logl*=% nz/1ogl*=4 nj_;) and B(q) and A(q) have the same meaning
as in Lemma 2.7. .

Proof. The proof of this lemma is available in [2] and [3].

3 MAIN RESULTS

Theorem 3.1. Let H € Hp and have g-order ps(H,R) (0 < py(H,R) < o0) and g-type
T,(H,R). Then
(3.1) G(q)= B(q, H) T,(H,R),

where

1=1,2

logt Ei (H, Ro)(£)*" )pq(H,RHA(q)

G(q) = lim sup(loglt—% n)( -

B(q,H) = mgég);;g;fg’,:)“. Alg)=1ifqg=2and B(¢.H) =1, Alq)=0ifg=3.1....

Proof. Let G(gq) < oco. For given ¢ > 0 and for all n > n,(€), we have

logt EX (H, R,)( R% )2n ) pa(H.R)+A(q)

n

(log[q‘z] n)( < G(g)+ ¢

or

. R .
loglt=Un 4+ (pg(H.R)+ A(q)) + (log* log™ E, ,(H,R,)+ 2nlog T logn < G(q)+ ¢
or

logl*=1n
log n —log* log* Ej, ,(H,R,) — 2nlog(R/R,)

3 log(G(q) + ¢€)
logn — log™ log™ E ,(H.R,) — 2nlog(R/R,)’

Pyl H.R) + Alq) >

Let 0 < T,(H,R) < 0o. For given ¢ > 0 and r > r, (1.7) implies

log M(r, H) < exp["‘zl{(Tqm, R)+ e>(—RR )”‘H'R)}.

-7

Using Lemma 2.2, we further have

; R . 1 R
log* E;, L (H, Ro)(F)Z” <logM(r,H)+ (n+ §)log(n + 1)+ 2n log(;) + log K;

1.
(32)< explt3{(T,(H, R)+ ("} 4 (14 3) log(n + 1) + 2alog .+ O(1)

Let 7 be given by the equation

q—2

(3.3) II expm{(Tq(H, R)+6)(5

- Rpy(H,R)’

R )pq(H,R)} ZH(R‘ 7')

=0
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For ¢ = 2, using (3.3) in (3.2) we have for sufficiently large values of n

(H,R)
i 2n ¢ (T,(H, R) + ) A% (Qn)qu o
log* (En ,p(H R )( ) g, R)
o (pa )
On proceeding to limits, the above inequality yields G(2) < B(2, H) T,(H, R).
Next, for ¢ = 3,4,..., (3.3) implies

(14 pg(H, R)) + o(1)

as n — 00.

R logle=2 1/pq(H,R)
R—r— (Tq(H,R)+ e)
Using above in (3.2), we have

log* E}, ,(H, Ro)(—)z" <n+(n+ )log(n+1)+2log( )+ 0(1)
or

+ i R \2n\ p4(H,R)
log* E;,(H, B,)(£) ) " (T B + (1 + o(1)).

(1og"~2 (1 + o(1))

Taking limits as n — oo, we observe that T,(H,R) > G(q) for ¢ > 3.

n

To prove the reverse inequality we utilise Lemma 2.5 for the case i = 1 and Lemma 2.6 for i = 2
and then apply Lemma 2.7 to the functions h(u) and h*(u).

Theorem 3.2. Let H € Hg and H have g-order po(H, R) and lower g-type t,(H, R). Let nj
be an increasing sequence of natural numbers. Then

log* Ei,_ (H,R,)(£ )™
B(q,H)tq(H, R) > li]:'nlllf [(k)g[q—-?] nk-—l)( g kp( - )(Ha) )pq(H,R‘)-i-A(q)] .
—00 k
Proof. Let
. [ loglt=Ap,_; logt EkkP(H,Ro)(%)zn" pq(H,R)+A(q)]_ _
llggf[( Blg. 1) - ) =¢(g)=¢

First suppose that 0 < ¢ < co. Then, for ¢ > ¢ > 0 and k > k,,

MW’MRX)M>4@:H&@Wmmm

nk,p loglt=2

Choose a sequence {ry, } such that

_ '

s1og E.  (8=9C"0)
Ty log[q"zl Ng—1

where C'(q) = p2(H,R)if ¢ =2and C'(¢)=C",0< C' < 1if¢=3,4....

By Lemma 2.2, if £ > k, and rx < 7 < 7k41, then denoting p,(H, R) + A(q) by p*, we get
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; R 1 R
logM(r,H) > log En, (H, RO)(R—)Z"’C —(n+ §)log(nk+1) — 2ng log(;‘——) — log K;

R : : ik
(¢~ e)B(q,H)) ” 1 (G- C@\>* |k
> nk( Iog[q_z] ) - (7] + 5) log Ng41 — Nk (log[q_Z] —_ ) — 10g K;

(- \& : 1
(3.4) = nk(—_—~—€———-> {B(q,H)_‘ - C'(q)?‘}-{—O(l).
10g[q 2] Np_1

Using (3.4) we get

explt=3{ (9~ IC'(g)(2log )"} 1 1
log M(r, H) > B ¥ - co® fron)
C'(q)F (2log 7 =)~ LA

>

exp[q—ll{(¢— €)C'(q)(2log g)-p*} [ B(q, H)
Bl

(2log B)1 o )T 1] +o,

For ¢ = 2, we have

log M(r, H) _ (¢ = €)ps( H, R)(log R?/r?)=r2(H.F)

(P}%r')pz(H’R) : '('Rlir Ye2(H,R)

+ o(1).

Proceeding to limits as r — R we get t2( H, R) > ¢.
Now, for ¢ = 3,4..., »

[9-1]
lim inf 108 M(r, H)

.
r—R (%)M(}LR) 2 ¢C"

Since the above inequality holds for every C’, making C' — 1, we get t,(H,R) > ¢ forqg = 3,4....
If ¢ = 0 the result follows trivially. If ¢ = ox:, the above inequality with an arbitrary large number
in place of ¢ — € gives t4(H, R) = c.

Theorem 3.3. Let H € Hp 0 <7 < 00o(R, < R) and H have g-order po(H, R) and lower ¢-type
t,(H, R). If ¥(nk) = (B}, p(H, R,)/(E,,,, (H, R,))"/("k+1=7) forms a nondecreasing function
of k for k > k, and log[q‘ﬂ n), ~ log[q_z] ngy1 as k — oo, then

og* E} (H,R)(#)™"
' ng
log* Ei, (H,Ro)(£)™

Nk

I k
B(q, H)ty(H,R) < lign.inf [(log[q‘z] g )( )Pq(H:RHA(q)]

‘ k
(3.5) < L(q) likm inf [(log[q_zl ng—1)( )Pq(H»R)+A(‘J)] ,

where L(gq) = lim sup;_,,(logls~2 ni/logli = ny_y).

Proof. The proof of the above theorem follows by using Lemma 2.2 and Lemma 2.7 for ¢ = 1 to
" the function h(u) and for ¢ = 2 to the function h*(u).

On combining theorems 2 and 3 we have the following result :
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Theorem 3.4. Let H € HR0 < r < oq(Ro < R)and H have g-order p,(H, R) and lower g-type
t,(H,R). If ¥(ng) = (Eflkyp(H, R,)/(E: H,R,))/("s+1-7) forms a nondecreasing function

nk+1,p(
of k for k > k, and log[q‘2] ng & log[q‘z] ngy1 as k —= 0o

log* Ey, , (H, Bo) ;)" )pq(H,R)M(q’]

Ba, H)ty(H, B) = liminf [(logl"~2 )
—00 : Nk
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