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§1. Introduction

Let X be a set. A symmetric function d : X x X — IR* U {0} is a quasi-distance
if d(x.y) = 0 if and only if &+ = y and there exists a constant K such that the inequality
dir. ) < Kdir. ) +d(y. =) holds for every z,y and z in X. The d-ball with center z € X
and radious r > 0 is the set B(z,r) = {y € X : d(z,y) < r}. We shall consider X as a
ropological space with the topology induced by the balls as a system of neighborhoods of
each point. Let y be a positive measure on the Borel o-algebra of subsets of X. Even
when the balls may not be open sets, it is not difficult to show that they are Borel sets.
We shall say, following for example [3] or [12], that (X, d, ) is a space of homogeneous
type if the following doubling condition

0 < u(B(z,2r)) < Ap(B(z,7)) < 00

holds for some constant A and every z € X and r > 0. If, moreover, p is a regular measure
then continuous functions are dense in LP(X) for 1 < p < co and, consequently, Lebesgue

differentiation theorem holds true.

It is a well known result on spaces of homogeneous type the following theorem proved
by R. Macias and C. Segovia in [12]. Given d a quasi-distance on X there exist a quasi-

distance d' on X equivalent to d and two constants C > 0 and 0 < 8 < 1 such that
(1.1) |d'(z,y) — d'(z,2)| < Cr'~Pd'(y, 2)”

holds for every z,y, z and r such that d'(z,y) < r and d'(z,z) < r. When the space X is
equipped with a quasi-distance satisfying (1.1) we say that the space is of order 8.

The generalization of Calderdn-Zygmund kernels to spaces of homogeneous type be-
comes more natural when the space is normalized in the following sense, first introduced
n [12]. We shall say that (X, d, x) is a normal space if there exist four positive constants
Ay, Ay, K, and K5 such that

Air < u(B(z, 1)) < Aar for Kyju({z}) <r < Kou(X)
B(z,r)=X if 7> Kou(X)
B(z,r) = {z} if r < Kyp({z}).

It is clear that we may assume without loosing generality that K3 < 1 < Kj.

Let us now introduce the main function spaces which concerns us in this paper. Let

¢ : IRt — IR" be a non-decreasing function satisfying the A, Orlicz’s condition p(2r) <
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Cp(r) for some positive constant C and every r > 0 (see [11]). Given a real function f
defined on a space of homogeneous type (X, d, i) we shall say that f satisfies a Lipschitz-¢
condition and we shall write f € A, if there exists C > 0 such that

|f(z) - f(y)l < Cp(d(z,y))  for every z,y € X.

The infimun of those constants C is a semi-norm which added to the L* norm gives a
Banach space structure on A,. When ¢(t) = t? for0 < g < 1, A, is the class of Lipschitz-
B functions, which under the hypothesis of p regular, is dense in every LP for p < oo.
Sometimes we shall write A,(X,d) instead of A, to emphasize the role of the distance.
Let f € L}, ie. fB Il di < oo for every ball B, we say that f is of ¢-bounded mean
oscillation and write f € BMO,, if there exists a constant C such that the inequality

ﬁ‘) /B |f — fldu < Co(r(B)),

holds for every ball B in X, where r(B) is the radious of B and fp = u(B)™' [ fdp.
If we identify two functions which differ by a constant, BMO,, becomes a Banach space
with the norm

1fllpsso, = sup— /|f foldu,

w(r
which is equivalent to supginf, g u(B) '@ (r(B))™" [p|f — a|du. In the last section we
shall use the notation BMO,(X,d, 1) instead of BM O, in order to recall the particular

structure of space of homogeneous type.

Let us observe that for ©(t) = 1 the space BMO,, is BMO and the space A, is L*.
More generally the inclusion A, C BMO,, is always true. On the other hand, except for
trivial spaces (X, d, ), the oposite inclusion is not true for general . Nevertheless, when
¢(t) = tP for 0 < B < 1 the spaces A, and BMO,, coincide. This result is a consequence
of the following generalization to spaces of homogeneous type and general ¢ of the classical
theorem of John and Nirenberg [2]. Let (X,d, ) a space of homogeneous type with p a
regular measure, then f € BMO,, if and only if there exist constants a, b and 7 such that
the inequality

(1.3) ¥a(t) = b/ L) ge

'1;‘(13))
holds for every ball B = B(z,r), and t € (0,yu(B)), where 1p(t) is the non increasing
rearrangemet of |f — fz| on B, where from now on B is the ball concentric with B and
radious 2K times that of B, i.e. B = 2KB. Let us remark that given f € BMO,, then
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(1.3) holds with b = C||f||Bmo,- We recall that the rearrangement on B of a function

g, is essentially the inverse function of the distribution of |g| over B. More precisely if
pB(s) = p({z € B:|g(z)| > s}),  fors >0,

is the distrubution of |g| on B, then, its rearrangement on B is given by

¥p(t) = sup{s: up(s) > t}.
For the basic properties of the rearrangement see [16].

The main results of this note are, loosely, the following theorems. The precise state-

ments and proofs are given in sections 3, 4 and 5.
Theorem I: For &(r) = loo %i—?dt, singular integrals are bounded operators from
BMO,(X,d,p) into BMOg (X, d, ).

Theorem II: For invariant quasi-distance d on IR™ and p Lebesgue measure, provided
that BMO(IR",d, ) C L*® + 3, K;L* and that (4.8) we have

BMO,(IR",d, p) C Ay(IR",d) + Y K:A,(IR",d).

Theorem III: For d the normalized parabolic quasi-distance on IR™ associated to a diago-
nalizable matrix A, and  satisfying (4.8) we have the characterization BM O, (IR",d, ) =
A (R™,d) + >, KiA,(IR™, d)..

§2. Preliminary lemmas

This section contains some lemmas on the behaviour of BMO, functions. Even
when most of the following result hold true in more general situations, we shall assume in
this section that (X,d, ) is a normal space, of order 3 and y is a regular measure, this

conditions will be enough for our later application.

(2.1) Lemma: Let f € BMO,, then 5 € LP(IRY) for 1 < p < co, where 15 is the non-
increasing rearrangement fo the function |f(z) — fz| on B. Moreover there is a constant
C such that

1 o0 ) 1/p |
(;(—Ef) /0 [¥5(?)] dt) < Cl|fllBmo, (r)

holds for every ball B with r = r(B).
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Proof: From (1.3) and Minkowski’s inequality the result can be obtained in the following

r P 1/p
/ #(s) 4 dt)
er(zt57) S

( / s dt)? < Clfllsxo, ( /
vu(B)

r S0(5) ) 1/p
<cliflismo, | 22 ([ Xttty i@1at) s
0 8 0 vu(B)

<Clilawo, [ 22 (umiyie)” as

S

BY/r v 4
< C'Hf]|BMO,,‘-—<'9(T)'U(L ) / s 1ds
0

Tar

way

< ClIfllBmo, p(r)u(B)'/?. =

(2.2) Lemma: Let f'€¢ BMO,, then f € Lf  and moreover there exists a constant C

loc
such that

1 1/p
— £|P < '-
(5 [157) " <Clisllaso, etr) +155]
holds for every ball B.

Proof: Since ¥p(t) and |f — f5| have the same distribution function, in order to compute
Jg|f — f5IP du we can start by computing fooo ¥p(t)? dt. Let B a ball from Lemma (2.1)

we get
1/p
(fisrae) <l

=\If = fa)xslls +|1faxslls
<( / ()P + | f5lu(B)?

< C|IfllBmo, ¢(r)u(B)? + |f5|u(B)' /7.

The following lemma is an extension to spaces of homogeneous type and general functions
¢ of a well known result related to the growth at infinity of BMO(IR™) function (see for
example [10]).

(2.3) Lemma: Let f € BMO,, then for @ > 0 there is a constant C such that

[ M =15l ) < Clflamo, | EL i

¢ d(z,zo)lte

where B = B(zo, ).
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Proof: Let a > 1 to be chosen later. Let By = B(zg,a*r) with k > 0, we observe that

By = B then from the doubling condition we have

1
|ka+1 _thl S MAk lf_ka-HId/J‘

A
= f—f 1 d
p#(Bis1) Bk+1| Bl dp

< Allfllsmo, p(a**17).

By iteration we obtain

k
|fB. — fBo| < AllfllBMoO, Y 0(a'r)
(2.4) =0

k
[V t
< Alfllawo, [ 2 ar

We may use this sequence of balls to compute the disired integral in the following way
|f(z) — fBI / |f(z) — fBl
e ———d z).
/zeB d(z, $0)1+" Z By—B,_, d(z, o)t He)

If {zo} is an atom then, there exists j € Z such that a’r < K u({zo}) < a?*'r. Let us
set ko = maz{j, 0} then, by choosing a = A’l_'l’ the summ on the right hand side can be
taken from ky + 1, because By — Bx—1 = 0 if k < ko. Then from the normality hypothesis
and (2.4) we have

[ YDl e 5 (akfffia b7 ., @) = folduto

¢ d(z,z0)1te

k=ko+1
1
C — — d
= k;-*—l (a T')“/L(Bk) |f ka|+|ka fBl H
E |IfllBmo, ( A 2t () >
<C o) +A [ =t
k—%:+l (atr) ' '/T o

— |IfllBmo, “k'¢(i)
<c Y /r - dt.

k=ko+1 (abr)=
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By setting F(s) = f” € 3¢ we obtain that

/ 1f(z) - fB] , u(z) < S lIBro, C||f||BMo¢ i F(a*)

=B d(z, zo)*e W (@)
C o0
< ||f||BMo¢/ F) 5
ro 1 t1+°‘

_ Cllfllmo, [~ 1 " p(sr)
= o /1 prews (/1 . ds) dt

SCHf”BMow/ o(sr) ds
1

ro sl+a

:C“f”BMO,p/ 801(“2 ds.m

Let ¢ € C*(IR) be a cutting off function such that » =1, if [z| < 1/2 and 9 =0
if |z| > 1. Then the function g,(z) = [ 4( d(z’y))du(y) is equivalent to u(B(z,r)) in fact

Ap(B(z,71)) < g-(z) < p(B(z,r)). Moreover g,(z) is of class Lipschitz § with constant
r—1L.

The following kernel ¥.(z,y) = ;/;(Lf.’yl)gr_l(:c) induces the approximate identity

operator
= / vr(z, y)f(y) du(y)
X

on L}, . Notice that if f € L? for 1 < p < co the function ,(f)(z) is Lipschitz 8 and if

f is constant then ¥,.(f) is the same constant.
The next lemma shows that i, is a regularizaton operator and provides an estimate

which will be usefull in proving Theorem II.

(2.5) Lemma: Let f € L°°(X) then there is a constant C' > 0 such that for r;s > 0 we

have

sup_[15(f)(z) = $(HW)] < Cllflloo( 2.

d(z,y)<r

Proof: We observe that if s < r the result follows immediately because |[¢)s(f)l|co < [[f|]co-
Then we suppose r < s. Given z,y € X and r > 0 such that d(z,y) < r we have

ba(F)(@) — $s( ()] < / ba(, 2) — a(y, 2)I17(2)] dia(z)
d(y, z)

s||f||w[ )l‘b (@:2))
+/w<d(y’z)>

S

)

dp(z)
11 ‘
g9s(z)  gs(y)

du(2)] .
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It is clear from the definition of g, that the second term on the right hand side is bounded
by the first, so that it is enough to get the disired bound for this term. Thus, on account
of the regularity of ¢ and (1.1) we get

c Ay, 2) = d(z,2)] ,

W(B(,9) /W,Q)AB@,Q) p du(2)
C  dazy)

S iB@e)

Notice that for r < s, we have B(z,s)AB(y,s) C B(z,2Ks) then the result follows from

the doubling condition since AW < C with C independent of z,y and s . =

s (F)(@) — ¥a(f)(¥)] <

#(B(z,s)AB(y, s)).

The following lemma provides an upper bound for the BMO distance from f to its
aproximate ¥, (f), which will also be applied to prove the Theorem IL

(2 6) Lemma: Let f € Lloc(X) and P(f,r) = f‘él}% m fB(z,r’) |f(y) - fB(J:,r’)l d/l(y)
T’S’I‘
then there exists a constant C such that

[|f —¥r(f)llBMo < Cp(f,Cr).

Proof: Let By = B(zo,70) be a given ball. We shall divide the proof in two cases according

ro <rorr <ry. Letusfirst assume rg <r then

_1
H(Bo) Bo

If =¥ (f)ldu < If = fBoldp + —=~ |¢r(f — fBy)ldu

(B ) Js
/ oo (f — £30)) d.
By

#(Bo) JB,
< p(f,ro0) + @

It remains to bound the last term

ey Jo 17 = 0l @) < s [ 001F = Sl)(2) i)

B 1 §1 d(:l:,y)
~ w(Bo) Jp, 9-(2) JB(a,r) i

o dp(z) :
= H(Bo)/ = 1l </B(y,r) ﬂ(B(“”’T))) )

S Cp(f, 2KTO).

)N = £Bol(y) du(y) du(z)

The last inequality follows because there exists C > 0 such that B(y,Cr) C B(z,r) for

every ¢ € B(y,r). Let us assume now that r < ro. We shall use a covering lemma of
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Wiener type for which the homogeneous spaces are a natural setting (see for example [5]).
For every ¢ € By = B(zo,r9) we consider the ball with center z and radious r > 0 then
B = {B(z,r):x € By} is a covering of By then, there exists a sequence of non-overlaping
balls {B; : + € IN} C B, such that By C U®,B; with B; = B(z;,Cr) and, clearly,
Ux2,B; C B,. Consequently

_——u(lBo) /B |f = ¥e(f)l du < u(+90) Z/B |f = %e(£)] dps
1 & - 1 1
u(Bo) ;"(B") [N(B,-)‘ /B F=Ial+ Sy /B fa - ¢r(f)|]

C 1
1(Bo) ;N(Bi) [P.(f, Cr) + ) /B.- |fs, — ¢,(f)|] .

IN

IN

Since Y o, u(Bi) < Cu(By) it is enough to prove thii.t L—(%—;—) fB.- |f5, — ¥ ()] < p(f, Cr).
If z € B; we have that B(z,r) C B(z;,(c+1)Kr) = B; C B(z,2K?(C +1)r) and B; C B;
then

o, — be(F) < |f3, — Fa, |+ |f 5 — %ol F)
1 d(z, )
B)/ £ Sal+lhn =y [ s

(X0 5, — )l duty)

)f(v) du(y)|

< Cp(f,(c +1)Kr) + — ,() .

< Cp(f,(c+1)Kr). =

§3. Theorem I

In this section we shall work with a normal space of homogeneous type (X,d, u), of
order B and a regular measure p. These hypotheses allows us to make use of all the results
in §2. Since the singular integral operators which we shall be concerned are to be defined
on spaces of generally unbounded funcions, the conditions on the kernel k£ must be strong
enough in order to give a meaning to Kf for f € BM O,. It turns out that the following
conditions will suffice to this end and moreover they will be enough to extend Peetre’s [15]

result to a very general setting.

(3.1) Let £ : X x X — IR be a measurable function such that
(3.1.1) |k(z,y)| < Cd(z,y)~?! for every z # y,
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(3.1.2) there exists a €(0,1] and C > 0 such that for 2d(z,y) < d(y, z) we have

d(z,y)*
k(z,y) — k(z,2)| + [k(y,z) — k(z,2)| < CW’
we may assume, without loosing generality, that o < § where § is the space’s order.

(3.1.3) let 0 < 7 < R < oo then

/ k(z,y)du(y) =0 for every z € X
<d(z,y)<R

/ k(z,y)du(z) =0 for every y € X,
(z.y)<R

(3.1.4) the operator Kg ,f(z) = fr<d(z,y)<R k(z,y)f(y) du(y) is bounded in L?(X) with

constant which does not depend on R or r.

Now, the hypotheses (3.1) on the kernel k allows us to define the singular integral on
L? in the following way Kf = lim R_.OQICR ~f where the limit is taken in the L? sense
(1 < p < oc) and almost everywhere 1f01 < p < 00, see for instance [1]). Our first step
is to give an extension of this definition to BMO,,. See for example the book [7] for the

definition of singular integral operators on BMO for the euclidean case.

(3.2) Lemma: Let K be a kernel satisfying (3.1). Given f € BMO, with ¢ satisfying

[ #3Y dt < oo, then

(3.3) for any ball B with radious r and any z,y € B we have that the integral

Saf(e.9) = [ (ke 5) = kw2 ) dut2)
is absolutely convergent. Moreover

58] < Clfllmsro, | S5 de-+1f3),

(3.4) there is a set of zero measure N in X x X such that the function

Fy(z) = K(fxp)z) - K(fxp)(y) + Spf(z,y)

is defined for every (z,y) ¢ N and it does not depend on the ball B containing z and v,
(3.5) given y; # y2 we have that Fy (z) — Fy,(z) does not depend on z.
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Before proving Lemma (3.2), let us make the following definition and a few remarks
on the conditions (3.1) on k.

(3.6) Definition: Given f € BMO,, we define Kf(z), except for additive constants, to
be the function Fy(z). .

(3.7) Remarks: K is well defined for functions in L* or in A,. From (3.1.3) and the very
definition of K on BMO we see that K1 = 0. So that can we easily see that

(38) Fy(z) = K((f — fz)xs)(e) — K(fxp)(y) + Sp(f — f3)(z,y).

Let us also mention that, in several cases, (3.1.4) can 'be obtained from (3.1.7), ¢ = 1,2, 3.
For example, Cotlar’s lemma can be applied to get the L2-norm inequality when the space

satisfies a regularity condition of the kind: there exist v € (0,1] and C > 0 such that
(3.9) w(B(z,r)) — w(B(z,s)) < C(r — s)7r' =7

holds for every z and every r, s such that 0 < s < r. The case v = 1 was considered in [1]
and the case v > 0 in [6]. Moreover in [6] is proved that if the space X satisfies (3.9) then
K1 € BMO if and only if K is a bounded operator in L?( X).

Let us also mention that in the paper [14], the same result is obtained with even less

restrictive conditions on the space and the kernel.

Proof (Lemma (3.2)):
Proof of (3.3): Givenz € B = B(zo,) and z ¢ B then d(z,z) > r and d(z, z) is equivalent

to d(zo, z), so we have

1S5£(2,y)| < Cd(z,y)P /d o d—(Lf(j)—)l'H,d,L(z)

(z0,2)>2Kr d(z0$z)l+ﬂ (z,z)>r d($,2)1+ﬂ

<Crf (C“f”BMOW/ 2rt) o + /,If,gl).
1

rB $1+8

Proof of (3.4): We see from Lemma (2.2) that fx 5 € L*(X) then K(fx5)(z) exists almost

everywhere, in the following sense

K(fxg)(z) = lim k(z,y)f(y)x5(y) du(y)

€0 Ja(z,y)>e
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for almost all z € X. We observe that if we take z € B one of such points, it is easy to
prove that given B’ another ball containing z then also exists K(fx 3/)(z). Consequently
there exists a measurable set N with x(N) = 0 such that for every z ¢ N and every ball
B containing z, K(fx3)(z) is finite. Let us write N'= (N x X)U (X x N). Let B and
B' be two balls containing z and y. By decomposing x 5 as x5 + X5_ 5 — X5/ _j WE see
that the definition of F,(z) with B or B' coincide.

Proof of (3.5): If we take a ball B with z, y and y’ belonging to B, it is easy to see that
Fy(z) — Fy(z) = Fy(y')- =

Let us now state and proof the main result of this section

Theorem I: Let k be a kernel satisfying (3.1) and ¢ a function such that ®(r) =

floo fl(:? dt < co. Then the singular integral K is bounded as an operator from BMO,,

into BMOs.

Proof: Let B = B(zg,r) be a given ball, pick a point z; € B and take K f(z) = F;,(z).
From (3.8) we have

1 1
5 V@) = s [ @ duo dute) <
2
< 5 LI = F3xa)@)1+ 157 — F3)(a, )] o)

Let us get the desired bound for each term on the right separately. For the first one, apply
Holder inequality, the L? boundeness of the singular integral, Lemma (2.2) and finally the

monotonicity of ¢ to obtain

1 1 , 1/2
57 LI = FpxaXoldute) <~ [ IR = Sl duta))

c \ 1/2
< oo (V= 73l @) duta))
< C||fllBmo, »(r)
< C|lfllemo, ®(r).

For the second, from (3.3) of lemma (3.2) we conclude that

55 155 = f3)(@. 20l du(e) < Cll 1o, ).

(3.10) Corollary: Let k be a kernel satisfying (3.1), and ¢ such that &(r) < Cy(r) then
K is a continuous operator from BM O, into BMO,, and so is from A, on BMO,,.
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§4. Theorem II

In this section we restrict ourselves to the space X = IR", d a quasi-distance invariant
under traslations, i.e. d(z,y) = d(z — y) and p the Lebesgue measure. We assume that
(IR",d,p) is a normal space of homogeneous type of order 3. Let us observe that this
space is non-atomic and p(X ) = oo. Let k be a kernel of a singular integral operator
satisfying (3.1) such that k(z,y) = k(z — y).

Let g be a given function of class C1(IR"), such that ¢ = 1 on the d-ball B(zo, R/2)
and g = 0 outside B(zo,R). Let h be a Lipschitz-f function with support contained in
B(zo,R) and [ hdp = 1. Then the function

(a1) n(z) = g(z) — h(z) / 9(y)du(y)

is of class Lipschitz-3 with compact support and mean value zero.

(4.2) Lemma: With the same notation used in §2 we have

(4.3) ¥r(z,y) = ¥r(y, o).

(4.4) ¥, 0y = by 09y

(4.5) If K is a singular integral operator with kernel k then K o %, = 3, o K.
(4.6) For 1 big enough, suppipr(¥+(n)) C B(zo,Cr) and [, (%r(n))] < 755
(4.7) [ $r(¥r(m)) = 0.

Proof of (4.3): Since d(z,y) = d(z — y) we conclude that g-(z) = ¢,(0) = g,(y)-
Proof of (4.4):

800 = s [ (F22) [ () 5 dute duty

B gr(o)lgs(o) /¢ (d(t 0)> /d) (El—(—g;:—y)) fly— z)dp(y) du(z)
N gim / v (d("; 0)) (e f)(z — 2) du(z)
= ws(¢r(f))(m)
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Proof of (4.5): 1t is enough to prove the statment on C§®

K. (£))(z) = lim / Kz, 2Ye (F)(2) diu(2)

d(z,z)>e

= lim / ke, 2) /1/» (i@%@) f(z = y) dp(y) du(z)

e=0 Ja(z,z)>e 9r(0)

= lim —d) (M)

e—0 9r(0)  Ji(z,2)>e

Wb (d(y,()))

_ / o0 I~ W duly) = 6K f ).

Proof of (4.6): Let R be such that suppn C B(zo, R) and take R < r

se@ = o [ [ () (L) ) duce)

We observe that if z & B(zg,4K?r) then B(z,r)N B(z,r) = 0 for every z € B(z,r) then
supppr(¥r(n)) C B(zo,4K?r). Let ¢ € B(zo,4K?r) then since [n = 0 and from the

condition of order § on the quasi-distance, we have

] (21)) Hloos) - o) B
e (152 (1)) )|_———() /B ) / ¢( ) dy(y) du(z)

c 2.z B.—B 2 d(I>y)
< GO0 o N, 20 ) / ¢( ) du(y)

rA R / In(2)] dyz)
B(zo,R)

k(z,2)f(z —y)du(z) du(y)

IA

0)

S A
Proof of (4.7): It follows immediately because g,(z) = ¢.(0). =

Let us now state and proof the main result of this section which is an extension of the

result in [9].

Theorem II: Let ¢ be a nondecreasing function satisfying the following growth condition

(4.8) T / o(t) dt < Co(r).

118 -

If there exist m singular integral operators K; with kernels salisfying (3.1) such that
BMO C L*® 4 3770 K;L™ then we also have

BMO, C A, + Y KjA,.
=1
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More precisely, if f € BMO,, then there exist g; € A, such that f =go + E;":l Kjg; and
Yi=o llgilla, < ClifllBMmo, - :

This result and Theorem I, give us a characterization of BM O, provided that BMO C
L*> + E;’;l IC;L°°. In fact we have the following result

(4.9) Corollary: Let ¢ be a nondecreasing function satisfying (4.8). Assume that there
exist m singular integral operators K; such that BMO C L*™ + E;r;l K;L%. Then

BMO, = A, + ) KjA,.
i=1
Once we have proved the lemmas of section two, Theorem I and Lemma (4.2), the

proof of Theorem II follow very closely that of Janson [9].

Proof of Theorem II: Let ¢ be a fixed positive real number. Since we may assume without
loosing generality that ¢ is a nondecreasing continuous function, it is clear that the set of
integers i, such that 2'¢(rq) belongs to the image of ¢, is an integer interval which may
be finite or not. Following [9] we shall denote this interval by [—L,M]. Thus for every
i € [—L, M) there exists a positive r; such that ¢(r;) = 2'p(ry). Let us now take a function
fin BMO,, with norm equal to one. From Lemma (2.6), monotonicity and A; condition
on ¢ we have, ||f — ¥.(f)|lBmo < Cp(f, Cr) < Cey(r) so that,

17 (f) = Yrit1(FllBMo < |¥ri (f) = fllBmo + |If = bres1(lIBMO
< C(p(ri) +o(ris1))
< Co(rs).
By our hypothesis the function %y, (f) — %, (f) € BMO can be written

Yri() = $ripn () = Y Kjud,
7=0

where the functions u},7 = 0, - -, m belong to L and ||u}||cc < C¢p(r;) and, for simplicity

Ko is the identity operator. Let us define v; = Y, Lu;) + z/)nH(u;) and w; = v; - v;(O)

From Lemma (2.5) we get the following estimate for the modulus of continuity of wf ,

w(wi,r) = sup |wl(z) —wi(y)| = w(vj,7)
d(z,y)<r

<c [C%)ﬂ ; <T—:+—1>ﬂ] o
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Since, moreover w(w},r) < 4||uf|lec < Cop(r;) and |w}(z)| < w(w},d(z,z0)) we have
ZNWAMLSEZw@%w)
< Z Co(ri)+C Z( )B (ri)

ri<r Ti>T
<C [w) +rP / Z‘;&f dt]
< C(r).

In the third inequality we have used the following estimates, first noticing that the sum
Yri<r P(ri) is taken only over i < 4y where 4y is such that 2i0p(ry) < (r) < 20t p(ry)
we conclude that Y . o(ri) < ¢(ro) 22 2° < Cp(r), and second summing by parts we

Z Tz 1)
k z
_ _1[(n)_¢0i

]

obtain

»MS
‘6
"‘%

4 22lrm) (i)

Tgi Tf—l

8

r Tit1

#) 4
s 2ﬂ/ tﬁ+1
Consequently ). w]- converges absolutely to functions g; with w(g;,7) < Ce(r), thus
llg;lla, < C. Since K1 = 0 and from (4.5) and (4.4) of Lemma (4.2) we obtain

m m

P - ol
E Kjw; = E K;v;
j=0 ‘_

Z Tu(lcu +'¢'r.+1( ju;)

= (d’r. + '/’T.'+1) Z’CJ'“;'

= (¢'r.' + 1/’r-‘+1) o (d’r.‘ - 1/"r.'+1 )(f)
= ¢ri(¢ri(f)) - (¢T;+1("/)r.'+1(f))'

Now if <, > denotes the usual inner product on L? we have

< T],Z’C]’gj > = Z < U,Z’C]”w; >
j=0 i j=0
= Z <, '/’n'('/"ri(f)) - 1/"T.'+1(¢'r.'+1(f)) >
= il—i»IEL < %%;(%;(f)) > — 111{1]34 <0, ("/’r.' (f)) >
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Let us consider only the case ¢(0) = 0 and ¢(co0) = oo, the other three situations can be
treated in a similar way by changings the functions g; (see[9]). In our case we have that L =
M = co. So that for i — —oo we have r; — 0 then from (4.3) of Lemma (4.2), we conclude
<0, % (Yri(f)) >=<¥ri(¥r:(n)), f > and then limi_oo < 0, %r (%r(f)) >=<n, f >
since ¥, (¥r;(n)) converge to n in the L? norm when r; — 0. On the other hand since
r; — 0o when i — oo, we get that suppn C B(z,r;), for ¢ large enough. From (4.3), (4.6)
and (4.7) of Lemma (4.2) we have

<n, 'pri (¢T.(f)) > =< ¢T|‘ (1/)r.-(f)),‘77 >
- / $r (B (D)) (F(2) = Faiancry) dul2)
B(z,Cri)

< C sup [ty (Pr; ()| (B0, 7i))(Cri)

C
< g%(cﬂ‘)

then lim; oo < 1, ¥r; (¥r;(f)) >= 0. Consequently we have

<n Y Kjgi >=<n,f>
3=0

for every n with mean value zero, thus, except for an additive constant, f = Z;‘n:o K;g;.

Finally since ||g;|[a, < C and ||f||Bmo, = 1 we have the desired norm inequality . =

§5. Theorem III

To each n x n diagonalizable matrix A and each X > 0, we associate the non isotropic

AlogX where A > 0. Let us also assume following

dilations whose matrix is given by Th = e
8] that the eigenvalues of A are large enough in order to have a unique solution p = p(z) of
[|T1(z)|| = 1 such that p(z —y) becomes a translation invariant distance on IR™. Moreover
bei;g u the Lebesgue measure on IR" we have that (IR", p, 1) is a space of homogeneous
type. Given B = B(zg,r) a p-ball in IR" we have that p(B) = Cr™ where 7 = ! a;; is
the trace of A. The function d(z,y) = p"(z — y) is a quasi-distance of order 7~! on IR"
and (IR",d,p) becomes a normal space of homogeneous type. Coifman and Dahlberg in
[4] proved that there exist 2n operators K; which provide the following characterization of

the maximal Hardy space H!(IR"™,d, i)

HY(R",d,p) = {f € L*(R"):K:f € L'(R") i=1,...,2n}.
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For the maximal function definition of Hardy spaces on the even more general situation
of space of homogeneous type see [13]. The operators K; are defined as multipliers on the
Fourier transform by IE,\f(f) = wl(f)f(f) where w; is homogeneous of degree zero with
respect to Th i.e. wi(Thé) = wi(€), and when restricted to S™7!, w; € C®°(S"71). We
must observe that the w; can be chosen in such a way that the operators K; are singular
integrals with kernels satisfying (3.1) on the space of homogeneous type (IR",d, p).

From the atomic decomposition of H!(IR",d, u) in [13], Macias and Segovia obtain the
extension of Fefferman-Stein duality (H!)* = BMO. This result together with the above
mentioned result by Coifman and Dahlberg readily gives

2n
BMO(R",d,p) = L + Y K:L™.

=1
Finally, on account of Theorem II, we have the following result

Theorem III: If ¢ satisfies the growth condition

L [% e(t)
rT [ ;l—-l-? dt S CSO(T‘)

then the space BMO,, related to the quasi-metric d can be written as

2n
BMO,(IR",d, p) = Ap(IR",d) + ) | Ki\,(IR", d).

=1
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